The provider functions OSSL_FUNC_keymgmt_import_types() and
OSSL_FUNC_keymgmt_export_types() do not get the provider context passed.
This makes it difficult for providers to implement these functions unless
its a static implementation returning a truly constant OSSL_PARAM array.
Some providers may have a need to return an OSSL_PARAM array that is
dependent on the provider configuration, or anything else that is contained
in its provider context.
Add extended variants of these functions that get the provider context passed.
The functions should still return a static and constant OSSL_PARAM array, but
may use the provider context to select the array to return dependent on its
context. The returned array must be constant at least until the provider is
unloaded.
Providers can implement only the original functions, or only the extended
functions, or both. Implementing at least one of those functions is required
if also the respective OSSL_FUNC_keymgmt_import() or OSSL_FUNC_keymgmt_export()
function is implemented. If an extended function is available, it is called by
evp_keymgmt_import_types() or evp_keymgmt_export_types(), otherwise the original
function is called.
This makes the code backward compatible. Existing providers will only implement
the original functions, so these functions will continued to be called.
Newer providers can choose to implement the extended functions, and thus can
benefit from the provider context being passed to the implementation.
Signed-off-by: Ingo Franzki <ifranzki@linux.ibm.com>
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/20255)
The code is derived from @sftcd's work in PR #17172.
This PR puts the DHKEM algorithms into the provider layer as
KEM algorithms for EC and ECX.
This PR only implements the DHKEM component of HPKE as specified in
RFC 9180.
crypto/hpke/hpke_util.c has been added for fuctions that will
be shared between DHKEM and HPKE.
API's for EVP_PKEY_auth_encapsulate_init() and EVP_PKEY_auth_decapsulate_init()
have been added to support authenticated encapsulation. auth_init() functions
were chosen rather that a EVP_PKEY_KEM_set_auth() interface to support
future algorithms that could possibly need different init functions.
Internal code has been refactored, so that it can be shared between the DHKEM
and other systems. Since DHKEM operates on low level keys it needs to be
able to do low level ECDH and ECXDH calls without converting the keys
back into EVP_PKEY/EVP_PKEY_CTX form. See ossl_ecx_compute_key(),
ossl_ec_public_from_private()
DHKEM requires API's to derive a key using a seed (IKM). This did not sit
well inside the DHKEM itself as dispatch functions. This functionality
fits better inside the EC and ECX keymanagers keygen, since
they are just variations of keygen where the private key is generated
in a different manner. This should mainly be used for testing purposes.
See ossl_ec_generate_key_dhkem().
It supports this by allowing a settable param to be passed to keygen
(See OSSL_PKEY_PARAM_DHKEM_IKM).
The keygen calls code within ec and ecx dhkem implementation to handle this.
See ossl_ecx_dhkem_derive_private() and ossl_ec_dhkem_derive_private().
These 2 functions are also used by the EC/ECX DHKEM implementations to generate
the sender ephemeral keys.
Reviewed-by: Hugo Landau <hlandau@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/19068)
These functions are unused and untested. They are also implemented rather
inefficiently. If we ever needed them in the future, they'd almost surely
need to be rewritten more efficiently.
Fixes#18227
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/18237)
Instead of doing a heavy params based query every time a context is asked for
its IV length, this value is cached in the context and only queried if it could
have been modified.
Fixes#17064
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/17543)
Added functions:
evp_signature_fetch_from_prov(), evp_asym_cipher_fetch_from_prov(),
evp_keyexch_fetch_from_prov(), evp_kem_fetch_from_prov()
These are all like the public conterparts, except they all take a
provider instead of a library context as first argument.
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/16725)
This is an internal function to fetch a keymgmt method from a specific
provider.
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/16725)
This function leverages the generic possibility to fetch EVP methods
from a specific provider.
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/16725)
This is refactored to use inner_evp_generic_fetch() without any given
name, which is just there to ensure all decoder implementations are
made into methods, and then use ossl_method_store_do_all() to list
them all.
This also adds the internal evp_generic_do_all_prefetched(), which
can be used if pre-fetching needs to be done separately from listing
all the decoder implementations, or if listing may happen multiple
times.
Fixes#15538Fixes#14837
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/15604)
For functions that exist in 1.1.1 provide a simple aliases via #define.
Fixes#15236
Functions with OSSL_DECODER_, OSSL_ENCODER_, OSSL_STORE_LOADER_,
EVP_KEYEXCH_, EVP_KEM_, EVP_ASYM_CIPHER_, EVP_SIGNATURE_,
EVP_KEYMGMT_, EVP_RAND_, EVP_MAC_, EVP_KDF_, EVP_PKEY_,
EVP_MD_, and EVP_CIPHER_ prefixes are renamed.
Reviewed-by: Paul Dale <pauli@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/15405)
pointers to provider size algorithm contexts.
Fixes#14284
The gettable_ctx_params methods were confusingly passing a 'provctx' and
a provider context which are completely different objects.
Some objects such as EVP_KDF used 'data' while others such as EVP_MD used 'provctx'.
For libcrypto this 'ctx' is an opaque ptr returned when a providers algorithm
implementation creates an internal context using a new_ctx() method.
Hence the new name 'algctx'.
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/15275)
Add a "where did this EVP_{CIPHER,MD} come from" flag: global, via fetch,
or via EVP_{CIPHER,MD}_meth_new. Update EVP_{CIPHER,MD}_free to handle all
three origins. The flag is deliberately right before some function pointers,
so that compile-time failures (int/pointer) will occur, as opposed to
taking a bit in the existing "flags" field. The "global variable" flag
is non-zero, so the default case of using OPENSSL_zalloc (for provider
ciphers), will do the right thing. Ref-counting is a no-op for
Make up_ref no-op for global MD and CIPHER objects
Deprecate EVP_MD_CTX_md(). Added EVP_MD_CTX_get0_md() (same semantics as
the deprecated function) and EVP_MD_CTX_get1_md(). Likewise, deprecate
EVP_CIPHER_CTX_cipher() in favor of EVP_CIPHER_CTX_get0_cipher(), and add
EVP_CIPHER_CTX_get1_CIPHER().
Refactor EVP_MD_free() and EVP_MD_meth_free() to call new common
evp_md_free_int() function.
Refactor EVP_CIPHER_free() and EVP_CIPHER_meth_free() to call new common
evp_cipher_free_int() function.
Also change some flags tests to explicit test == or != zero. E.g.,
if (flags & x) --> if ((flags & x) != 0)
if (!(flags & x)) --> if ((flags & x) == 0)
Only done for those lines where "get0_cipher" calls were made.
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/14193)
To avoid mutating key data add OSSL_FUNC_KEYMGMT_DUP function
to the provider API and implement it for all asym-key key
managements.
Use it when copying everything to an empty EVP_PKEY
which is the case with EVP_PKEY_dup().
Fixes#14658
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/14793)
This corresponds to the |info| field in EVP_PKEY_ASN1_METHOD, as well
as the generic use of OBJ_nid2ln() as a one line description.
We also add the base functionality to make use of this field.
Fixes#14514
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/14656)
We don't want to hold a read lock when calling a user supplied callback.
That callback could do anything so the risk of a deadlock is high.
Instead we collect all the names first inside the read lock, and then
subsequently call the user callback outside the read lock.
Fixes#14225
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/14250)
Many of the new types introduced by OpenSSL 3.0 have an OSSL_ prefix,
e.g., OSSL_CALLBACK, OSSL_PARAM, OSSL_ALGORITHM, OSSL_SERIALIZER.
The OPENSSL_CTX type stands out a little by using a different prefix.
For consistency reasons, this type is renamed to OSSL_LIB_CTX.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/12621)
This is required before the RAND/DRBG framework can be made user mutable.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12904)
SP800-56Br2 requires support for the RSA primitives for RSASVE generate and recover.
As these are simple KEM operations another operation type has been added that can support future extensions.
Added public functions EVP_PKEY_encapsulate_init(), EVP_PKEY_encapsulate(), EVP_PKEY_decapsulate_init() and EVP_PKEY_decapsulate()
Added EVP_KEM_* functions.
Added OSSL_FUNC_kem_* dispatch functions
Added EVP_PKEY_CTX_set_kem_op() so that different types of KEM can be added in the future. This value must currently be set to
"RSASVE" after EVP_PKEY_encapsulate_init() & EVP_PKEY_decapsulate_init() as there is no default value.
This allows the existing RSA key types, keymanagers, and encoders to be used with the encapsulation operations.
The design of the public API's resulted from contributions from @romen & @levitte.
Reviewed-by: Nicola Tuveri <nic.tuv@gmail.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/12750)
Add the AuthEnvelopedData as defined in RFC 5083 with AES-GCM
parameter as defined in RFC 5084.
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/8024)
The RAND_DRBG API did not fit well into the new provider concept as
implemented by EVP_RAND and EVP_RAND_CTX. The main reason is that the
RAND_DRBG API is a mixture of 'front end' and 'back end' API calls
and some of its API calls are rather low-level. This holds in particular
for the callback mechanism (RAND_DRBG_set_callbacks()) and the RAND_DRBG
type changing mechanism (RAND_DRBG_set()).
Adding a compatibility layer to continue supporting the RAND_DRBG API as
a legacy API for a regular deprecation period turned out to come at the
price of complicating the new provider API unnecessarily. Since the
RAND_DRBG API exists only since version 1.1.1, it was decided by the OMC
to drop it entirely.
Other related changes:
Use RNG instead of DRBG in EVP_RAND documentation. The documentation was
using DRBG in places where it should have been RNG or CSRNG.
Move the RAND_DRBG(7) documentation to EVP_RAND(7).
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
(Merged from https://github.com/openssl/openssl/pull/12509)
This function is used to create a keydata for a key that libcrypto
only has a reference to.
This introduces provider references, the contents which only the
provider know how to interpret. Outside of the provider, this is just
an array of bytes.
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12410)
The strength and max_length DRBG parameters were being cached in the EVP_RAND
layer. This commit removes the caching.
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
(Merged from https://github.com/openssl/openssl/pull/12321)
The new naming scheme consistently usese the `OSSL_FUNC_` prefix for all
functions which are dispatched between the core and providers.
This change includes in particular all up- and downcalls, i.e., the
dispatched functions passed from core to provider and vice versa.
- OSSL_core_ -> OSSL_FUNC_core_
- OSSL_provider_ -> OSSL_FUNC_core_
For operations and their function dispatch tables, the following convention
is used:
Type | Name (evp_generic_fetch(3)) |
---------------------|-----------------------------------|
operation | OSSL_OP_FOO |
function id | OSSL_FUNC_FOO_FUNCTION_NAME |
function "name" | OSSL_FUNC_foo_function_name |
function typedef | OSSL_FUNC_foo_function_name_fn |
function ptr getter | OSSL_FUNC_foo_function_name |
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/12222)
Move the three different DRBGs to the provider.
As part of the move, the DRBG specific data was pulled out of a common
structure and into their own structures. Only these smaller structures are
securely allocated. This saves quite a bit of secure memory:
+-------------------------------+
| DRBG | Bytes | Secure |
+--------------+-------+--------+
| HASH | 376 | 512 |
| HMAC | 168 | 256 |
| CTR | 176 | 256 |
| Common (new) | 320 | 0 |
| Common (old) | 592 | 1024 |
+--------------+-------+--------+
Bytes is the structure size on the X86/64.
Secure is the number of bytes of secure memory used (power of two allocator).
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
(Merged from https://github.com/openssl/openssl/pull/11682)
EVP_PKEY_CTX_gettable_params() was missing code for the keygen operation.
After adding it it was noticed that it is probably not required for this type, so instead
the gen_get_params and gen_gettable_params have been remnoved from the provider interface.
gen_get_params was only implemented for ec to get the curve name. This seems redundant
since normally you would set parameters into the keygen_init() and then generate a key.
Normally you would expect to extract data from the key - not the object that we just set up
to do the keygen.
Added a simple settable and gettable test into a test that does keygen.
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/11683)
We introduce these dispatched functions:
- OP_keymgmt_gen_init() to initialize the key object generation.
- OP_keymgmt_gen_set_template() to set a template for key object
generation. The template is another key object, for example one
with domain parameters.
- OP_keymgmt_gen_set_params() to set other key object generation
parameters.
- OP_keymgmt_gen_settable_params() to find out what settable
parameters there are.
- OP_keymgmt_gen() to perform the key object generation.
- OP_keymgmt_gen_cleanup() to clean up the key object generation.
Internal function for easy and consistent use of these ddispatched
functions are added.
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/10289)
At the moment we only provider support for these algorithms in the default
provider. These algorithms only support "one shot" EVP_DigestSign() and
EVP_DigestVerify() as per the existing libcrypto versions.
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/11261)
Previously, evp-keymgmt_util_export_to_provider() took care of all
kinds of exports of EVP_PKEYs to provider side keys, be it from its
legacy key or from another provider side key. This works most of the
times, but there may be cases where the caller wants to be a bit more
in control of what sort of export happens when.
Also, when it's time to remove all legacy stuff, that job will be much
easier if we have a better separation between legacy support and
support of provided stuff, as far as we can take it.
This changes moves the support of legacy key to provider side key
export from evp-keymgmt_util_export_to_provider() to
evp_pkey_make_provided(), and makes sure the latter is called from all
EVP_PKEY functions that handle legacy stuff.
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/11074)
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/10631)
The KEYMGMT libcrypto <-> provider interface currently makes a few
assumptions:
1. provider side domain parameters and key data isn't mutable. In
other words, as soon as a key has been created in any (loaded,
imported data, ...), it's set in stone.
2. provider side domain parameters can be strictly separated from the
key data.
This does work for the most part, but there are places where that's a
bit too rigid for the functionality that the EVP_PKEY API delivers.
Key data needs to be mutable to allow the flexibility that functions
like EVP_PKEY_copy_parameters promise, as well as to provide the
combinations of data that an EVP_PKEY is generally assumed to be able
to hold:
- domain parameters only
- public key only
- public key + private key
- domain parameters + public key
- domain parameters + public key + private key
To remedy all this, we:
1. let go of the distinction between domain parameters and key
material proper in the libcrypto <-> provider interface.
As a consequence, functions that still need it gain a selection
argument, which is a set of bits that indicate what parts of the
key object are to be considered in a specific call. This allows
a reduction of very similar functions into one.
2. Rework the libcrypto <-> provider interface so provider side key
objects are created and destructed with a separate function, and
get their data filled and extracted in through import and export.
(future work will see other key object constructors and other
functions to fill them with data)
Fixes#10979
squash! Redesign the KEYMGMT libcrypto <-> provider interface - the basics
Remedy 1 needs a rewrite:
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/11006)
The code to ensure that an EVP_PKEY is exported to providers is
repeated all over the place, enough that copying it again has the
usual future hazards with code copying.
Instead, we refactor that code into one function,
evp_pkey_make_provided(), and make sure to use that everywhere.
It relies on the creation of EVP_PKEY_CTX to figure out facts about
the input key, should it need to.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/10850)
These functions relied entirely on the presence of 'pkey->pmeth',
which is NULL on provider only keys. This adds an interface to get
domparam and key data from a provider, given corresponding provider
data (the actual domparam or key).
The retrieved data is cached in the EVP_PKEY structure (lending the
idea from provided EVP_CIPHER).
Reviewed-by: Nicola Tuveri <nic.tuv@gmail.com>
(Merged from https://github.com/openssl/openssl/pull/10778)
These functions would only handle provided methods, but there are
cases where the caller just passes along a received method without
knowing the underlying method tech, so might pass along a legacy
method. We therefore need to have them handle this case as well so
they don't cause any unnecessary surprises.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/10845)
This will allow keymgmt implementation for key types that need it to
specify the names of the diverse operation algorithms it can be used
with. Currently, only one name per key type and operation is allowed.
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/10647)
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Patrick Steuer <patrick.steuer@de.ibm.com>
(Merged from https://github.com/openssl/openssl/pull/10461)
Now that KEYMGMT method pointers have moved away from the diverse
methods that are used with EVP_PKEY_CTX, we no longer need to pass
special argument to evp_generic_fetch() and evp_generic_do_all().
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/10309)