Adding support for these operations for the EdDSA implementations
makes pkeyutl usable for signing/verifying for these algorithms.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5880)
There are two undocumented DSA parameter generation options available in
the genpkey command line app:
dsa_paramgen_md and dsa_paramgen_q_bits.
These can also be accessed via the EVP API but only by using
EVP_PKEY_CTX_ctrl() or EVP_PKEY_CTX_ctrl_str() directly. There are no
helper macros for these options.
dsa_paramgen_q_bits sets the length of q in bits (default 160 bits).
dsa_paramgen_md sets the digest that is used during the parameter
generation (default SHA1). In particular the output length of the digest
used must be equal to or greater than the number of bits in q because of
this code:
if (!EVP_Digest(seed, qsize, md, NULL, evpmd, NULL))
goto err;
if (!EVP_Digest(buf, qsize, buf2, NULL, evpmd, NULL))
goto err;
for (i = 0; i < qsize; i++)
md[i] ^= buf2[i];
/* step 3 */
md[0] |= 0x80;
md[qsize - 1] |= 0x01;
if (!BN_bin2bn(md, qsize, q))
goto err;
qsize here is the number of bits in q and evpmd is the digest set via
dsa_paramgen_md. md and buf2 are buffers of length SHA256_DIGEST_LENGTH.
buf2 has been filled with qsize bits of random seed data, and md is
uninitialised.
If the output size of evpmd is less than qsize then the line "md[i] ^=
buf2[i]" will be xoring an uninitialised value and the random seed data
together to form the least significant bits of q (and not using the
output of the digest at all for those bits) - which is probably not what
was intended. The same seed is then used as an input to generating p. If
the uninitialised data is actually all zeros (as seems quite likely)
then the least significant bits of q will exactly match the least
significant bits of the seed.
This problem only occurs if you use these undocumented and difficult to
find options and you set the size of q to be greater than the message
digest output size. This is for parameter generation only not key
generation. This scenario is considered highly unlikely and
therefore the security risk of this is considered negligible.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5800)
The GOST engine needs to be loaded before we initialise libssl. Otherwise
the GOST ciphersuites are not enabled. However the SSL conf module must
be loaded before we initialise libcrypto. Otherwise we will fail to read
the SSL config from a config file properly.
Another problem is that an application may make use of both libcrypto and
libssl. If it performs libcrypto stuff first and OPENSSL_init_crypto()
is called and loads a config file it will fail if that config file has
any libssl stuff in it.
This commit separates out the loading of the SSL conf module from the
interpretation of its contents. The loading piece doesn't know anything
about SSL so this can be moved to libcrypto. The interpretation of what it
means remains in libssl. This means we can load the SSL conf data before
libssl is there and interpret it when it later becomes available.
Fixes#5809
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5818)
Fail harshly (in debug builds) when rand_pool_acquire_entropy isn't
delivering the required amount of entropy. In release builds, this
produces an error with details.
We also take the opportunity to modernise the types used.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5857)
The RAND_DRBG API was added in PR #5462 and modified by PR #5547.
This commit adds the corresponding documention.
Reviewed-by: Kurt Roeckx <kurt@roeckx.be>
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5461)
Constructed types with a recursive definition (such as can be found in
PKCS7) could eventually exceed the stack given malicious input with
excessive recursion. Therefore we limit the stack depth.
CVE-2018-0739
Credit to OSSFuzz for finding this issue.
Reviewed-by: Rich Salz <rsalz@openssl.org>
Since the public and private DRBG are per thread we don't need one
per ssl object anymore. It could also try to get entropy from a DRBG
that's really from an other thread because the SSL object moved to an
other thread.
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
(Merged from https://github.com/openssl/openssl/pull/5547)
Without actually using EVP_PKEY_FLAG_AUTOARGLEN
Reviewed-by: Rich Salz <rsalz@openssl.org>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/4793)
There is a requirements of having access to a live entropy source
which we can't do with the default callbacks. If you need prediction
resistance you need to set up your own callbacks that follow the
requirements of NIST SP 800-90C.
Reviewed-by: Dr. Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
GH: #5402
This commit adds a new api RAND_DRBG_set_defaults() which sets the
default type and flags for new DRBG instances. See also #5576.
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5632)
Fixes#4403
This commit moves the internal header file "internal/rand.h" to
<openssl/rand_drbg.h>, making the RAND_DRBG API public.
The RAND_POOL API remains private, its function prototypes were
moved to "internal/rand_int.h" and converted to lowercase.
Documentation for the new API is work in progress on GitHub #5461.
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5462)
Renamed to EVP_PKEY_new_raw_private_key()/EVP_new_raw_public_key() as per
feedback.
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5520)
Not all algorithms will support this, since their keys are not a simple
block of data. But many can.
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5520)
With the current mechanism, old cipher strings that used to work in 1.1.0,
may inadvertently disable all TLSv1.3 ciphersuites causing connections to
fail. This is confusing for users.
In reality TLSv1.3 are quite different to older ciphers. They are much
simpler and there are only a small number of them so, arguably, they don't
need the same level of control that the older ciphers have.
This change splits the configuration of TLSv1.3 ciphers from older ones.
By default the TLSv1.3 ciphers are on, so you cannot inadvertently disable
them through your existing config.
Fixes#5359
Reviewed-by: Tim Hudson <tjh@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5392)
These functions are similar to SSL_CTX_set_cookie_{generate,verify}_cb,
but used for the application-controlled portion of TLS1.3 stateless
handshake cookies rather than entire DTLSv1 cookies.
Reviewed-by: Ben Kaduk <kaduk@mit.edu>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5463)
Adds application data into the encrypted session ticket
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/3802)
The introduction of thread local public and private DRBG instances (#5547)
makes it very cumbersome to change the reseeding (time) intervals for
those instances. This commit provides a function to set the default
values for all subsequently created DRBG instances.
int RAND_DRBG_set_reseed_defaults(
unsigned int master_reseed_interval,
unsigned int slave_reseed_interval,
time_t master_reseed_time_interval,
time_t slave_reseed_time_interval
);
The function is intended only to be used during application initialization,
before any threads are created and before any random bytes are generated.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5576)
Add functions that will do the work of assigning certificate, privatekey
and chain certs to an SSL or SSL_CTX. If no privatekey is given, use the
publickey. This will permit the keys to pass validation for both ECDSA
and RSA. If a private key has already been set for the certificate, it
is discarded. A real private key can be set later.
This is an all-or-nothing setting of these parameters. Unlike the
SSL/SSL_CTX_use_certificate() and SSL/SSL_CTX_use_PrivateKey() functions,
the existing cert or privatekey is not modified (i.e. parameters copied).
This permits the existing cert/privatekey to be replaced.
It replaces the sequence of:
* SSL_use_certificate()
* SSL_use_privatekey()
* SSL_set1_chain()
And may actually be faster, as multiple checks are consolidated.
The private key can be NULL, if so an ENGINE module needs to contain the
actual private key that is to be used.
Note that ECDH (using the certificate's ECDSA key) ciphers do not work
without the private key being present, based on how the private key is
used in ECDH. ECDH does not offer PFS; ECDHE ciphers should be used instead.
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Ben Kaduk <kaduk@mit.edu>
(Merged from https://github.com/openssl/openssl/pull/1130)
... and add some missing known values.
Sort ssl/tls extension array list
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5304)
Retain open file handle and previous stat data for the CA index
file, enabling detection and index reload (upcoming commit).
Check requirements before entering accept loop.
Reviewed-by: Matt Caswell <matt@openssl.org>