This can effectively reduce the binary size for platforms
that don't need ECX feature(~100KB).
Signed-off-by: Yi Li <yi1.li@intel.com>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/20781)
Concatenation tests are provider version specific, limit them to supporting
versions.
Fixes#21134
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/21140)
Signed-off-by: Liu-ErMeng <liuermeng2@huawei.com>
Reviewed-by: Tom Cosgrove <tom.cosgrove@arm.com>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/20797)
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
Reviewed-by: Hugo Landau <hlandau@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/20762)
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
Reviewed-by: Hugo Landau <hlandau@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/20762)
Signed-off-by: Čestmír Kalina <ckalina@redhat.com>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/12256)
Note: Internally RSA_sign_ASN1_OCTET_STRING() is used with
RSA signing only when the digest is MDC2,
and RSA_verify_ASN1_OCTET_STRING() is unused.
Reviewed-by: Paul Dale <pauli@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/20220)
Fixes#20084
In the 3.0 provider implementation the generic code that handles IV's
only allows a 12 byte IV. Older code intentionally added the ability for
the IV to be truncated.
As this truncation is unsafe, the documentation has been updated to
state that this in no longer allowed. The code has been updated to
produce an error when the iv length is set to any value other than 12.
NOTE: It appears that this additional padding may have originated from the code
which uses a 12 byte IV, that is then passed to CHACHA which zero pads it to 16 bytes.
Note that legacy behaviour in e_chacha20_poly1305.c has not been
updated.
Reviewed-by: Dmitry Belyavskiy <beldmit@gmail.com>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/20151)
Fixes#6277
Description:
Make each of the five EdDSA instances defined in RFC 8032 -- Ed25519,
Ed25519ctx, Ed25519ph, Ed448, Ed448ph -- available via the EVP APIs.
The desired EdDSA instance is specified via an OSSL_PARAM.
All instances, except for Ed25519, allow context strings as input.
Context strings are passed via an OSSL_PARAM. For Ed25519ctx, the
context string must be nonempty.
Ed25519, Ed25519ctx, Ed448 are PureEdDSA instances, which means that
the full message (not a digest) must be passed to sign and verify
operations.
Ed25519ph, Ed448ph are HashEdDSA instances, which means that the input
message is hashed before sign and verify.
Testing:
All 21 test vectors from RFC 8032 have been added to evppkey_ecx.txt
(thanks to Shane Lontis for showing how to do that). Those 21 test
vectors are exercised by evp_test.c and cover all five instances.
Reviewed-by: Hugo Landau <hlandau@openssl.org>
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/19705)
Fixes#19909
I have enforced a maximum bound still but it is much higher.
Note also that TLS13 still uses the 2048 buffer size.
Reviewed-by: Hugo Landau <hlandau@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/19923)
Now that ACVP test vectors exist, support has been added for this mode.
See https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1.pdf
Note that the test vectors used fairly large values for the input key
and the context, so the contraints for these has been increased from
256 to 512 bytes.
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/19916)
Since the fips provider version isn't frozen at 3.0.0, and the first
planned release with the fix in the fips provider is in 3.2.0,
we need to skip all the tests that expect implicit rejection
in all versions below 3.2.0
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Dmitry Belyavskiy <beldmit@gmail.com>
Reviewed-by: Paul Dale <pauli@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/19890)
Fixes#19858
During decryption, the last ciphertext is not fed to next block
correctly when the number of input blocks is exactly 4. Fix this
and add the corresponding test cases.
Thanks xu-yi-zhou for reporting this issue and proposing the fix.
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/19872)
Reviewed-by: Dmitry Belyavskiy <beldmit@gmail.com>
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/13817)
since the 3.0.0 FIPS provider doesn't implement the Bleichenbacher
workaround, the decryption fails instead of providing a synthetic
plaintext, so skip them then
Reviewed-by: Dmitry Belyavskiy <beldmit@gmail.com>
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/13817)
Reviewed-by: Dmitry Belyavskiy <beldmit@gmail.com>
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/13817)
The RSA decryption as implemented before required very careful handling
of both the exit code returned by OpenSSL and the potentially returned
ciphertext. Looking at the recent security vulnerabilities
(CVE-2020-25659 and CVE-2020-25657) it is unlikely that most users of
OpenSSL do it correctly.
Given that correct code requires side channel secure programming in
application code, we can classify the existing RSA decryption methods
as CWE-676, which in turn likely causes CWE-208 and CWE-385 in
application code.
To prevent that, we can use a technique called "implicit rejection".
For that we generate a random message to be returned in case the
padding check fails. We generate the message based on static secret
data (the private exponent) and the provided ciphertext (so that the
attacker cannot determine that the returned value is randomly generated
instead of result of decryption and de-padding). We return it in case
any part of padding check fails.
The upshot of this approach is that then not only is the length of the
returned message useless as the Bleichenbacher oracle, so are the
actual bytes of the returned message. So application code doesn't have
to perform any operations on the returned message in side-channel free
way to remain secure against Bleichenbacher attacks.
Note: this patch implements a specific algorithm, shared with Mozilla
NSS, so that the attacker cannot use one library as an oracle against the
other in heterogeneous environments.
Reviewed-by: Dmitry Belyavskiy <beldmit@gmail.com>
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/13817)
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
Reviewed-by: Hugo Landau <hlandau@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/18809)
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
Reviewed-by: Hugo Landau <hlandau@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/18809)
This PR is based off the contributions in PR #9223 by Jemmy1228.
It has been modified and reworked to:
(1) Work with providers
(2) Support ECDSA and DSA
(3) Add a KDF HMAC_DRBG implementation that shares code with the RAND HMAC_DRBG.
A nonce_type is passed around inside the Signing API's, in order to support any
future deterministic algorithms.
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
Reviewed-by: Hugo Landau <hlandau@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/18809)
Also add negative test cases for CMAC and GMAC using
a cipher with wrong mode.
Reviewed-by: Dmitry Belyavskiy <beldmit@gmail.com>
Reviewed-by: Paul Dale <pauli@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/19401)
Including RIPEMD160 in both the default and legacy providers shouldn't break
anyone and makes the algorithm available more readily.
Fixes#17722
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/19375)
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/19201)
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/19201)
Fixes#16721
This uses AES-ECB to create a counter mode AES-CTR32 (32bit counter, I could
not get AES-CTR to work as-is), and GHASH to implement POLYVAL. Optimally,
there would be separate polyval assembly implementation(s), but the only one
I could find (and it was SSE2 x86_64 code) was not Apache 2.0 licensed.
This implementation lives only in the default provider; there is no legacy
implementation.
The code offered in #16721 is not used; that implementation sits on top of
OpenSSL, this one is embedded inside OpenSSL.
Full test vectors from RFC8452 are included, except the 0 length plaintext;
that is not supported; and I'm not sure it's worthwhile to do so.
Reviewed-by: Hugo Landau <hlandau@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/18693)
Add test vectors for AES OCB for x86 AES-NI multiple of 96 byte issue.
Co-authored-by: Alejandro Sedeño <asedeno@google.com>
Co-authored-by: David Benjamin <davidben@google.com>
Reviewed-by: Paul Dale <pauli@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Dmitry Belyavskiy <beldmit@gmail.com>
Reviewed-by: Paul Dale <pauli@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/16237)
A copy&paste error meant that the RC4-MD5 cipher (used in TLS) used the TLS
AAD data as the MAC key.
CVE-2022-1434
Fixes#18112
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
The GCM mode of the SM4 algorithm is specifieded by RFC8998.
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Reviewed-by: Paul Yang <kaishen.yy@antfin.com>
Reviewed-by: Paul Dale <pauli@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/16491)
This affects test/recipes/30-test_evp_data/evpkdf_scrypt.txt and
test/recipes/30-test_evp_data/evppkey_kdf_scrypt.txt, where the "Out
of memory" stanza weren't up to the task, as they didn't hit the
default scrypt memory limit like they did in OpenSSL 1.1.1.
We solve this by setting the |n| value to the next power of two, and
correcting the expected result.
Fixes#16519
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/16521)
(cherry picked from commit 437d420221)
This test did not really execute, since usually
the OPENSSL_malloc(0) will fail and prevent the
execution of the KDF.
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/16444)
Check the case where C1y < 32 bytes in length (i.e. short overhead), and
also the case with longer plaintext and C1x and C1y > 32 bytes in length
(i.e. long overhead)
Reviewed-by: Paul Dale <pauli@openssl.org>
Reviewed-by: Nicola Tuveri <nic.tuv@gmail.com>
Adding KRB5 test vector 'NextIV' values to evp_test data for AES CTS indicated that the CTS decrypt functions incorrectly returned the wrong IV. The returned IV should match the value returned by the encrypt methods.
Reviewed-by: Paul Dale <pauli@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/16286)