Even though the RISC-V vector instructions only support AES-128 and
AES-256 for key generation, the round instructions themselves can
easily be used to implement AES-192 too - we just need to fallback to
the generic key generation routines in this case.
Note that the vector instructions use the encryption key schedule (but
in reverse order) so we need to generate the encryption key schedule
even when doing decryption using the vector instructions.
Signed-off-by: Ard Biesheuvel <ardb@google.com>
Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
Reviewed-by: Hugo Landau <hlandau@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/21923)
The upcoming RISC-V vector crypto extensions provide
the Zvkned extension, that provides a AES-specific instructions.
This patch provides an implementation that utilizes this
extension if available.
Tested on QEMU and no regressions observed.
Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
Reviewed-by: Hugo Landau <hlandau@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/21923)
In RISC-V we have multiple extensions, that can be
used to accelerate processing.
The known extensions are defined in riscv_arch.def.
From that file test functions of the following
form are generated: RISCV_HAS_$ext().
In recent commits new ways to define the availability
of these test macros have been defined. E.g.:
#define RV32I_ZKND_ZKNE_CAPABLE \
(RISCV_HAS_ZKND() && RISCV_HAS_ZKNE())
[...]
#define RV64I_ZKND_ZKNE_CAPABLE \
(RISCV_HAS_ZKND() && RISCV_HAS_ZKNE())
This leaves us with two different APIs to test capabilities.
Further, creating the same macros for RV32 and RV64 results
in duplicated code (see example above).
This inconsistent situation makes it hard to integrate
further code. So let's clean this up with the following steps:
* Replace RV32I_* and RV64I_* macros by RICSV_HAS_* macros
* Move all test macros into riscv_arch.h
* Use "AND" and "OR" to combine tests with more than one extension
* Rename include files for accelerated processing (remove extension
postfix).
We end up with compile time tests for RV32/RV64 and run-time tests
for available extensions. Adding new routines (e.g. for vector crypto
instructions) should be straightforward.
Testing showed no regressions.
Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/20078)
Signed-off-by: Hongren (Zenithal) Zheng <i@zenithal.me>
Tested-by: Jiatai He <jiatai2021@iscas.ac.cn>
Reviewed-by: Paul Dale <pauli@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/18197)
Fixes#12405Fixes#12377
Calling Init()/Update() and then Init()/Update() again gave a different result when using the same key and iv.
Cipher modes that were using ctx->num were not resetting this value, this includes OFB, CFB & CTR.
The fix is to reset this value during the ciphers einit() and dinit() methods.
Most ciphers go thru a generic method so one line fixes most cases.
Add test for calling EVP_EncryptInit()/EVP_EncryptUpdate() multiple times for all ciphers.
Ciphers should return the same value for both updates.
DES3-WRAP does not since it uses a random in the update.
CCM modes currently also fail on the second update (This also happens in 1_1_1).
Fix memory leak in AES_OCB cipher if EVP_EncryptInit is called multiple times.
Fix AES_SIV cipher dup_ctx and init.
Calling EVP_CIPHER_init multiple times resulted in a memory leak in the siv.
Fixing this leak also showed that the dup ctx was not working for siv mode.
Note: aes_siv_cleanup() can not be used by aes_siv_dupctx() as it clears data
that is required for the decrypt (e.g the tag).
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12413)
Use of the low level AES functions has been informally discouraged for a
long time. We now formally deprecate them.
Applications should instead use the EVP APIs, e.g. EVP_EncryptInit_ex,
EVP_EncryptUpdate, EVP_EncryptFinal_ex, and the equivalently named decrypt
functions.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/10580)
From providers/{common,default}/ to providers/implementations/
Except for common code, which remains in providers/common/ciphers/.
However, we do move providers/common/include/internal/ciphers/*.h
to providers/common/include/prov/, and adjust all source including
any of those header files.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/10088)