- add instructions: clfi, stck, stckf, kdsa
- clfi and clgfi belong to extended-immediate (not long-displacement)
- some cleanup
Signed-off-by: Patrick Steuer <patrick.steuer@de.ibm.com>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/10346)
Implementations are now spread across several libraries, so the assembler
related defines need to be applied to all affected libraries and modules.
AES_ASM define was missing from libimplementations.a which disabled AESNI
aarch64 changes were made by xkqian.
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/10180)
Apart from public and internal header files, there is a third type called
local header files, which are located next to source files in the source
directory. Currently, they have different suffixes like
'*_lcl.h', '*_local.h', or '*_int.h'
This commit changes the different suffixes to '*_local.h' uniformly.
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9333)
Currently, there are two different directories which contain internal
header files of libcrypto which are meant to be shared internally:
While header files in 'include/internal' are intended to be shared
between libcrypto and libssl, the files in 'crypto/include/internal'
are intended to be shared inside libcrypto only.
To make things complicated, the include search path is set up in such
a way that the directive #include "internal/file.h" could refer to
a file in either of these two directoroes. This makes it necessary
in some cases to add a '_int.h' suffix to some files to resolve this
ambiguity:
#include "internal/file.h" # located in 'include/internal'
#include "internal/file_int.h" # located in 'crypto/include/internal'
This commit moves the private crypto headers from
'crypto/include/internal' to 'include/crypto'
As a result, the include directives become unambiguous
#include "internal/file.h" # located in 'include/internal'
#include "crypto/file.h" # located in 'include/crypto'
hence the superfluous '_int.h' suffixes can be stripped.
The files 'store_int.h' and 'store.h' need to be treated specially;
they are joined into a single file.
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9333)
They now generally conform to the following argument sequence:
script.pl "$(PERLASM_SCHEME)" [ C preprocessor arguments ... ] \
$(PROCESSOR) <output file>
However, in the spirit of being able to use these scripts manually,
they also allow for no argument, or for only the flavour, or for only
the output file. This is done by only using the last argument as
output file if it's a file (it has an extension), and only using the
first argument as flavour if it isn't a file (it doesn't have an
extension).
While we're at it, we make all $xlate calls the same, i.e. the $output
argument is always quoted, and we always die on error when trying to
start $xlate.
There's a perl lesson in this, regarding operator priority...
This will always succeed, even when it fails:
open FOO, "something" || die "ERR: $!";
The reason is that '||' has higher priority than list operators (a
function is essentially a list operator and gobbles up everything
following it that isn't lower priority), and since a non-empty string
is always true, so that ends up being exactly the same as:
open FOO, "something";
This, however, will fail if "something" can't be opened:
open FOO, "something" or die "ERR: $!";
The reason is that 'or' has lower priority that list operators,
i.e. it's performed after the 'open' call.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9884)
Since the arguments are now generated in the build file templates,
they should be removed from the build.info files.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9884)
CLA: trivial
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
(Merged from https://github.com/openssl/openssl/pull/9288)
Signed-off-by: Patrick Steuer <patrick.steuer@de.ibm.com>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8181)
>=20% faster than present code.
Signed-off-by: Patrick Steuer <patrick.steuer@de.ibm.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8560)
"Windows friendliness" means a) unified PIC-ification, unified across
all platforms; b) unified commantary delimiter; c) explicit ldur/stur,
as Visual Studio assembler can't automatically encode ldr/str as
ldur/stur when needed.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8256)
"Windows friendliness" means a) flipping .thumb and .text directives,
b) always generate Thumb-2 code when asked(*); c) Windows-specific
references to external OPENSSL_armcap_P.
(*) so far *some* modules were compiled as .code 32 even if Thumb-2
was targeted. It works at hardware level because processor can alternate
between the modes with no overhead. But clang --target=arm-windows's
builtin assembler just refuses to compile .code 32...
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8252)
ARMv8.3 adds pointer authentication extension, which in this case allows
to ensure that, when offloaded to stack, return address is same at return
as at entry to the subroutine. The new instructions are nops on processors
that don't implement the extension, so that the vetification is backward
compatible.
Reviewed-by: Kurt Roeckx <kurt@roeckx.be>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8205)
Signed-off-by: Patrick Steuer <patrick.steuer@de.ibm.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/7991)
It was an ugly hack to avoid certain problems that are no more.
Also added GENERATE lines for perlasm scripts that didn't have that
explicitly.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8125)
Should be 2018 instead of 20018.
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/7364)
Improvement coefficients vary with TLS fragment length and platform, on
most Intel processors maximum improvement is ~50%, while on Ryzen - 80%.
The "secret" is new dedicated ChaCha20_128 code path and vectorized xor
helpers.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6638)
Only applies to algorithms that support it. Both raw private and public
keys can be obtained for X25519, Ed25519, X448, Ed448. Raw private keys
only can be obtained for HMAC, Poly1305 and SipHash
Fixes#6259
Reviewed-by: Rich Salz <rsalz@openssl.org>
Reviewed-by: Tim Hudson <tjh@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6394)
As it turns out originally published results were skewed by "turbo"
mode. VM apparently remains oblivious to dynamic frequency scaling,
and reports that processor operates at "base" frequency at all times.
While actual frequency gets increased under load.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6406)
Branch to global symbol results in reference to PLT, and when compiling
for THUMB-2 - in a R_ARM_THM_JUMP19 relocation. Some linkers don't
support this relocation (ld.gold), while others can end up truncating
the relocation to fit (ld.bfd).
Convert this branch through PLT into a direct branch that the assembler
can resolve locally.
See https://github.com/android-ndk/ndk/issues/337 for background.
The current workaround is to disable poly1305 optimization assembly,
which is not optimal and can be reverted after this patch:
beab607d2b
CLA: trivial
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5949)
As it turns out gcc -pedantic doesn't seem to consider __uint128_t
as non-standard, unlike __int128 that is.
Fix even MSVC warnings in curve25519.c.
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Rich Salz <rsalz@openssl.org>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5449)
The make variables LIB_CFLAGS, DSO_CFLAGS and so on were used in
addition to CFLAGS and so on. This works without problem on Unix and
Windows, where options with different purposes (such as -D and -I) can
appear anywhere on the command line and get accumulated as they come.
This is not necessarely so on VMS. For example, macros must all be
collected and given through one /DEFINE, and the same goes for
inclusion directories (/INCLUDE).
So, to harmonize all platforms, we repurpose make variables starting
with LIB_, DSO_ and BIN_ to be all encompassing variables that
collects the corresponding values from CFLAGS, CPPFLAGS, DEFINES,
INCLUDES and so on together with possible config target values
specific for libraries DSOs and programs, and use them instead of the
general ones everywhere.
This will, for example, allow VMS to use the exact same generators for
generated files that go through cpp as all other platforms, something
that has been impossible to do safely before now.
Reviewed-by: Andy Polyakov <appro@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5357)
C preprocessor flags get separated from C flags, which has the
advantage that we don't get loads of macro definitions and inclusion
directory specs when linking shared libraries, DSOs and programs.
This is a step to add support for "make variables" when configuring.
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5177)
Hardware used for benchmarking courtesy of Atos, experiments run by
Romain Dolbeau <romain.dolbeau@atos.net>. Kudos!
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/4855)
Convert AVX512F+VL+BW code path to pure AVX512F, so that it can be
executed even on Knights Landing. Trigger for modification was
observation that AVX512 code paths can negatively affect overall
Skylake-X system performance. Since we are likely to suppress
AVX512F capability flag [at least on Skylake-X], conversion serves
as kind of "investment protection".
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/4758)
Around 138 distinct errors found and fixed; thanks!
Reviewed-by: Kurt Roeckx <kurt@roeckx.be>
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/3459)