There are some compiling errors for mips32r6 and mips64r6:
crypto/bn/bn-mips.S:56: Error: opcode not supported on this processor: mips2 (mips2) `mulu $1,$12,$7'
crypto/mips_arch.h: Assembler messages:
crypto/mips_arch.h:15: Error: junk at end of line, first unrecognized character is `&'
Signed-off-by: Hua Zhang <hua.zhang1974@hotmail.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8464)
These are a couple of utility functions, to make import and export of
BIGNUMs to byte strings in platform native for (little-endian or
big-endian) easier.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/8346)
Thanks to David Benjamin who reported this, performed the analysis and
suggested the patch. I have incorporated some of his analysis in the
comments below.
This issue can cause an out-of-bounds read. It is believed that this was
not reachable until the recent "fixed top" changes. Analysis has so far
only identified one code path that can encounter this - although it is
possible that others may be found. The one code path only impacts 1.0.2 in
certain builds. The fuzzer found a path in RSA where iqmp is too large. If
the input is all zeros, the RSA CRT logic will multiply a padded zero by
iqmp. Two mitigating factors:
- Private keys which trip this are invalid (iqmp is not reduced mod p).
Only systems which take untrusted private keys care.
- In OpenSSL 1.1.x, there is a check which rejects the oversize iqmp,
so the bug is only reproducible in 1.0.2 so far.
Fortunately, the bug appears to be relatively harmless. The consequences of
bn_cmp_word's misbehavior are:
- OpenSSL may crash if the buffers are page-aligned and the previous page is
non-existent.
- OpenSSL will incorrectly treat two BN_ULONG buffers as not equal when they
are equal.
- Side channel concerns.
The first is indeed a concern and is a DoS bug. The second is fine in this
context. bn_cmp_word and bn_cmp_part_words are used to compute abs(a0 - a1)
in Karatsuba. If a0 = a1, it does not matter whether we use a0 - a1 or
a1 - a0. The third would be worth thinking about, but it is overshadowed
by the entire Karatsuba implementation not being constant time.
Due to the difficulty of tripping this and the low impact no CVE is felt
necessary for this issue.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Viktor Dukhovni <viktor@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8326)
The add/double shortcut in ecp_nistz256-x86_64.pl left one instruction
point that did not unwind, and the "slow" path in AES_cbc_encrypt was
not annotated correctly. For the latter, add
.cfi_{remember,restore}_state support to perlasm.
Next, fill in a bunch of functions that are missing no-op .cfi_startproc
and .cfi_endproc blocks. libunwind cannot unwind those stack frames
otherwise.
Finally, work around a bug in libunwind by not encoding rflags. (rflags
isn't a callee-saved register, so there's not much need to annotate it
anyway.)
These were found as part of ABI testing work in BoringSSL.
Reviewed-by: Richard Levitte <levitte@openssl.org>
GH: #8109
"Windows friendliness" means a) unified PIC-ification, unified across
all platforms; b) unified commantary delimiter; c) explicit ldur/stur,
as Visual Studio assembler can't automatically encode ldr/str as
ldur/stur when needed.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8256)
"Windows friendliness" means a) flipping .thumb and .text directives,
b) always generate Thumb-2 code when asked(*); c) Windows-specific
references to external OPENSSL_armcap_P.
(*) so far *some* modules were compiled as .code 32 even if Thumb-2
was targeted. It works at hardware level because processor can alternate
between the modes with no overhead. But clang --target=arm-windows's
builtin assembler just refuses to compile .code 32...
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8252)
ARMv8.3 adds pointer authentication extension, which in this case allows
to ensure that, when offloaded to stack, return address is same at return
as at entry to the subroutine. The new instructions are nops on processors
that don't implement the extension, so that the vetification is backward
compatible.
Reviewed-by: Kurt Roeckx <kurt@roeckx.be>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8205)
Trim trailing whitespace. It doesn't match OpenSSL coding standards,
AFAICT, and it can cause problems with git tooling.
Trailing whitespace remains in test data and external source.
Reviewed-by: Kurt Roeckx <kurt@roeckx.be>
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8092)
When the ret parameter is NULL the generated prime
is in rnd variable and not in ret.
CLA: trivial
Reviewed-by: Nicola Tuveri <nic.tuv@gmail.com>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8076)
Some Travis builds appear to fail because generated objects get
2019 copyrights now, and the diff complains.
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/7986)
Make it just say "the License", which refers back to the standard
boilerplate.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/7764)
Previously, the API version limit was indicated with a numeric version
number. This was "natural" in the pre-3.0.0 because the version was
this simple number.
With 3.0.0, the version is divided into three separate numbers, and
it's only the major number that counts, but we still need to be able
to support pre-3.0.0 version limits.
Therefore, we allow OPENSSL_API_COMPAT to be defined with a pre-3.0.0
style numeric version number or with a simple major number, i.e. can
be defined like this for any application:
-D OPENSSL_API_COMPAT=0x10100000L
-D OPENSSL_API_COMPAT=3
Since the pre-3.0.0 numerical version numbers are high, it's easy to
distinguish between a simple major number and a pre-3.0.0 numerical
version number and to thereby support both forms at the same time.
Internally, we define the following macros depending on the value of
OPENSSL_API_COMPAT:
OPENSSL_API_0_9_8
OPENSSL_API_1_0_0
OPENSSL_API_1_1_0
OPENSSL_API_3
They indicate that functions marked for deprecation in the
corresponding major release shall not be built if defined.
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/7724)
Fixed-top interfaces tolerate zero-padded inputs and facilitate
constant-time-ness. bn_div_fixed_top tolerates zero-padded dividend,
but not divisor. It's argued that divisor's length is public even
when value is secret.
[extended tests]
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/7589)
and add template for constant-time bn_div_3_words.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/7589)
It's being replaced with constant-time alternative.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/7589)
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Nicola Tuveri <nic.tuv@gmail.com>
(Merged from https://github.com/openssl/openssl/pull/7599)
This module includes bn.h via other headers, so it picks up the
definition from there and doesn't need to define them locally (any
more?). Worst case scenario, the redefinition may be different and
cause all sorts of compile errors.
Fixes#7227
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
(Merged from https://github.com/openssl/openssl/pull/7287)
Add bn_{mul|sqr}_fixed_top, bn_from_mont_fixed_top, bn_mod_sub_fixed_top.
Switch to bn_{mul|sqr}_fixed_top in bn_mul_mont_fixed_top and remove
memset in bn_from_montgomery_word.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/6915)
New implementation failed to correctly reset r->neg flag. Spotted by
OSSFuzz.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6783)
A number intended to treat the base as secret should not be branching on
whether it is zero. Test-wise, this is covered by existing tests in bnmod.txt.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6733)
Originally suggested solution for "Return Of the Hidden Number Problem"
is arguably too expensive. While it has marginal impact on slower
curves, none to ~6%, optimized implementations suffer real penalties.
Most notably sign with P-256 went more than 2 times[!] slower. Instead,
just implement constant-time BN_mod_add_quick.
Reviewed-by: Rich Salz <rsalz@openssl.org>
Reviewed-by: David Benjamin <davidben@google.com>
(Merged from https://github.com/openssl/openssl/pull/6664)
It was false positive, but one can as well view it as readability issue.
Switch even to unsigned indices because % BN_BYTES takes 4-6 instructions
with signed dividend vs. 1 (one) with unsigned.
Reviewed-by: Rich Salz <rsalz@openssl.org>
"Computationally constant-time" means that it might still leak
information about input's length, but only in cases when input
is missing complete BN_ULONG limbs. But even then leak is possible
only if attacker can observe memory access pattern with limb
granularity.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5254)
Note that exported functions maintain original behaviour, so that
external callers won't observe difference. While internally we can
now perform Montogomery multiplication on fixed-length vectors, fixed
at modulus size. The new functions, bn_to_mont_fixed_top and
bn_mul_mont_fixed_top, are declared in bn_int.h, because one can use
them even outside bn, e.g. in RSA, DSA, ECDSA...
Reviewed-by: Rich Salz <rsalz@openssl.org>
Reviewed-by: David Benjamin <davidben@google.com>
(Merged from https://github.com/openssl/openssl/pull/6662)
The new flag marks vectors that were not treated with bn_correct_top,
in other words such vectors are permitted to be zero padded. For now
it's BN_DEBUG-only flag, as initial use case for zero-padded vectors
would be controlled Montgomery multiplication/exponentiation, not
general purpose. For general purpose use another type might be more
appropriate. Advantage of this suggestion is that it's possible to
back-port it...
bn/bn_div.c: fix memory sanitizer problem.
bn/bn_sqr.c: harmonize with BN_mul.
Reviewed-by: Rich Salz <rsalz@openssl.org>
Reviewed-by: David Benjamin <davidben@google.com>
(Merged from https://github.com/openssl/openssl/pull/6662)
Trouble is that addition is postponing expansion till carry is
calculated, and if addition carries, top word can be zero, which
triggers assertion in bn_check_top.
Reviewed-by: Rich Salz <rsalz@openssl.org>
Reviewed-by: David Benjamin <davidben@google.com>
(Merged from https://github.com/openssl/openssl/pull/6662)
These headers are internal and never exposed to a cpp compiler, hence no
need for the preamble.
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Rich Salz <rsalz@openssl.org>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
(Merged from https://github.com/openssl/openssl/pull/6554)