tls13encryptiontest is an "internal" test. As with all the other internal
tests it should not be run on a shared native Windows build.
[extended tests]
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5266)
If TLSv1.3 is enabled and combined with other options that extend the
size of the ClientHello, then the clienthello test can sometimes fail
because the ClientHello has grown too large. Part of the purpose of the
test is to check that the padding extension works properly. This requires
the ClientHello size to be kept within certain bounds.
By restricting the number of ciphersuites sent we can reduce the size of
the ClientHello.
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5266)
It turns out that even if you successfully build the engine, it might
not load properly, so we cannot make the test program fail for it.
See the message in commit 25b9d11c00
This reverts commit 227a1e3f45.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5276)
If a module is disablable (i.e. can be configured with 'no-FOO'), the
resulting header file needs to be guarded with a check of the
corresponding OPENSSL_NO_FOO. While this seem fairly innocuous, it
has an impact on the information in util/*.num, generated by mkdef.pl.
Reviewed-by: Rich Salz <rsalz@openssl.org>
Reviewed-by: Tim Hudson <tjh@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5275)
The afalg engine was moved down from engines/afalg/ to engines/, but
the test wasn't changed accordingly. This was undetected because the
test program didn't fail when it couldn't load the engine.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5270)
If you know that there's no afalg engine, don't run this test.
test/recipes/30-test_afalg.t checks this correctly.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5270)
Remove the timer and TSC additional input code and instead provide a single
routine that attempts to use the "best" timer/counter available on the
system. It attempts to use TSC, then various OS dependent resources and
finally several tries to obtain the date. If any of these timer/counters
is successful, the rest are skipped.
No randomness is credited for this.
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
(Merged from https://github.com/openssl/openssl/pull/5231)
If such a timer/counter register is not available, the return value is always
zero. This matches the assembly implementations' behaviour.
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
(Merged from https://github.com/openssl/openssl/pull/5231)
Patch by @levitte.
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
(Merged from https://github.com/openssl/openssl/pull/5231)
Signed-off-by: Patrick Steuer <patrick.steuer@de.ibm.com>
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5230)
Signed-off-by: Patrick Steuer <patrick.steuer@de.ibm.com>
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5230)
This script kept its own database of disablable algorithms, which is a
maintenance problem, as it's not always perfectly in sync with what
Configure does. However, we do have all the data in configdata.pm,
produced by Configure, so let's use that instead.
Also, make sure to parse the *err.h header files, as they contain
function declarations that might not be present elsewhere.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5157)
The functions RAND_bytes() and RAND_priv_bytes() are now both based
on a common implementation using RAND_DRBG_bytes() (if the default
OpenSSL rand method is active). This not only simplifies the code
but also has the advantage that additional input from a high precision
timer is added on every generate call if the timer is available.
Reviewed-by: Kurt Roeckx <kurt@roeckx.be>
(Merged from https://github.com/openssl/openssl/pull/5251)
When comparing the implementations of drbg_bytes() and RAND_DRBG_bytes(),
it was noticed that the former split the buffer into chunks when calling
RAND_DRBG_generate() to circumvent the size limitation of the buffer
to outlen <= drb->max_request. This loop was missing in RAND_DRBG_bytes(),
so it was adopted from drbg_bytes().
Reviewed-by: Kurt Roeckx <kurt@roeckx.be>
(Merged from https://github.com/openssl/openssl/pull/5251)
This check not only prevented the automatic reinstantiation of the
DRBG, which is implemented in RAND_DRBG_generate(), but also prevented
an error message from being generated in the case of failure.
Reviewed-by: Kurt Roeckx <kurt@roeckx.be>
(Merged from https://github.com/openssl/openssl/pull/5251)
The assumption that the received buffer has to be NUL-terminated was
faulty.
Fault found in #5224
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5239)
BN_from_montgomery_word doesn't have a constant memory access pattern.
Replace the pointer trick with a constant-time select. There is, of
course, still the bn_correct_top leak pervasive in BIGNUM itself.
See also https://boringssl-review.googlesource.com/22904 from BoringSSL.
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Kurt Roeckx <kurt@roeckx.be>
(Merged from https://github.com/openssl/openssl/pull/5228)
The exponent here is one of d, dmp1, or dmq1 for RSA. This value and its
bit length are both secret. The only public upper bound is the bit width
of the corresponding modulus (RSA n, p, and q, respectively).
Although BN_num_bits is constant-time (sort of; see bn_correct_top notes
in preceding patch), this does not fix the root problem, which is that
the windows are based on the minimal bit width, not the upper bound. We
could use BN_num_bits(m), but BN_mod_exp_mont_consttime is public API
and may be called with larger exponents. Instead, use all top*BN_BITS2
bits in the BIGNUM. This is still sensitive to the long-standing
bn_correct_top leak, but we need to fix that regardless.
This may cause us to do a handful of extra multiplications for RSA keys
which are just above a whole number of words, but that is not a standard
RSA key size.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5154)
(This patch was written by Andy Polyakov. I only wrote the commit
message. Mistakes in the analysis are my fault.)
BN_num_bits, by way of BN_num_bits_word, currently leaks the
most-significant word of its argument via branching and memory access
pattern.
BN_num_bits is called on RSA prime factors in various places. These have
public bit lengths, but all bits beyond the high bit are secret. This
fully resolves those cases.
There are a few places where BN_num_bits is called on an input where the
bit length is also secret. This does *not* fully resolve those cases as
we still only look at the top word. Today, that is guaranteed to be
non-zero, but only because of the long-standing bn_correct_top timing
leak. Once that is fixed, a constant-time BN_num_bits on such inputs
must count bits on each word.
Instead, those cases should not call BN_num_bits at all. In particular,
BN_mod_exp_mont_consttime uses the exponent bit width to pick windows,
but it should be using the maximum bit width. The next patch will fix
this.
Thanks to Dinghao Wu, Danfeng Zhang, Shuai Wang, Pei Wang, and Xiao Liu
for reporting this issue.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5154)
added macro to create version number
use the macro to build OPENSSL_VERSION_AT_LEAST(maj,min,fix) so that
customers of libssl (such as ruby-openssl) do not need to be so aware of
openssl version numbers.
includes updates to ssl(7) and OPENSSL_VERSION_NUMBER(3) man page
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5212)
Add SSL_verify_client_post_handshake() for servers to initiate PHA
Add SSL_force_post_handshake_auth() for clients that don't have certificates
initially configured, but use a certificate callback.
Update SSL_CTX_set_verify()/SSL_set_verify() mode:
* Add SSL_VERIFY_POST_HANDSHAKE to postpone client authentication until after
the initial handshake.
* Update SSL_VERIFY_CLIENT_ONCE now only sends out one CertRequest regardless
of when the certificate authentication takes place; either initial handshake,
re-negotiation, or post-handshake authentication.
Add 'RequestPostHandshake' and 'RequirePostHandshake' SSL_CONF options that
add the SSL_VERIFY_POST_HANDSHAKE to the 'Request' and 'Require' options
Add support to s_client:
* Enabled automatically when cert is configured
* Can be forced enabled via -force_pha
Add support to s_server:
* Use 'c' to invoke PHA in s_server
* Remove some dead code
Update documentation
Update unit tests:
* Illegal use of PHA extension
* TLSv1.3 certificate tests
DTLS and TLS behave ever-so-slightly differently. So, when DTLS1.3 is
implemented, it's PHA support state machine may need to be different.
Add a TODO and a #error
Update handshake context to deal with PHA.
The handshake context for TLSv1.3 post-handshake auth is up through the
ClientFinish message, plus the CertificateRequest message. Subsequent
Certificate, CertificateVerify, and Finish messages are based on this
handshake context (not the Certificate message per se, but it's included
after the hash). KeyUpdate, NewSessionTicket, and prior Certificate
Request messages are not included in post-handshake authentication.
After the ClientFinished message is processed, save off the digest state
for future post-handshake authentication. When post-handshake auth occurs,
copy over the saved handshake context into the "main" handshake digest.
This effectively discards the any KeyUpdate or NewSessionTicket messages
and any prior post-handshake authentication.
This, of course, assumes that the ID-22 did not mean to include any
previous post-handshake authentication into the new handshake transcript.
This is implied by section 4.4.1 that lists messages only up to the
first ClientFinished.
Reviewed-by: Ben Kaduk <kaduk@mit.edu>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/4964)
The reason to do this is that some output might start with an 'ok',
which TAP catches and takes for TAP output. The TAP compatible way is
to make all output it shouldn't catch look like comments.
We do this by setting the environment variable HARNESS_OSSL_PREFIX
during tests. When that is set, apps/openssl uses BIO_f_linebuffer
and sets its prefix to the content of that environment variable.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5224)
This avoids having to enumerate specific modules in apps, or to have
to include them in libtestutil.a.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5222)
Most modules are direct implementations of openssl application
sub-commands, but some constitute a support library, which can be used
by more than one program (and is, incidently, by test/uitest).
For practical purposes, we place the support library modules in a
private, static library.
Finally, there are some modules that don't have direct references in
the rest of the apps code, but are still crucial. See them as some
kind of extra crt0 or similar for your platform.
Inspiration from David von Oheimb
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5222)
Everything in apps includes apps.h, because that one declares apps
internal library routines. However, progs.h doesn't declare library
routines, but rather the main commands and their options, and there's
no reason why the library modules should include it.
So, remove the inclusion of progs.h from apps.h and add that inclusion
in all command source files.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5222)