Now that ACVP test vectors exist, support has been added for this mode.
See https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1.pdf
Note that the test vectors used fairly large values for the input key
and the context, so the contraints for these has been increased from
256 to 512 bytes.
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/19916)
Building with
./config -DFUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION \
-DPEDANTIC -Wall -Werror -pedantic
fails since the following test cases are excluded when
FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION is defined:
- test_validate_msg_signature_srvcert_missing
- test_validate_msg_mac_alg_protection_wrong
- test_validate_msg_mac_alg_protection_missing
Guard the test cases by the corresponding preprocessor conditionals.
Signed-off-by: Čestmír Kalina <ckalina@redhat.com>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Hugo Landau <hlandau@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/19868)
Since the fips provider version isn't frozen at 3.0.0, and the first
planned release with the fix in the fips provider is in 3.2.0,
we need to skip all the tests that expect implicit rejection
in all versions below 3.2.0
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Dmitry Belyavskiy <beldmit@gmail.com>
Reviewed-by: Paul Dale <pauli@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/19890)
We already permit this in crypto/objects/objects.txt, but not programatically,
although being able to do so programatically would be beneficial.
Reviewed-by: Dmitry Belyavskiy <beldmit@gmail.com>
Reviewed-by: Paul Dale <pauli@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/19876)
Fixes#19858
During decryption, the last ciphertext is not fed to next block
correctly when the number of input blocks is exactly 4. Fix this
and add the corresponding test cases.
Thanks xu-yi-zhou for reporting this issue and proposing the fix.
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/19872)
Reviewed-by: Dmitry Belyavskiy <beldmit@gmail.com>
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/13817)
since the 3.0.0 FIPS provider doesn't implement the Bleichenbacher
workaround, the decryption fails instead of providing a synthetic
plaintext, so skip them then
Reviewed-by: Dmitry Belyavskiy <beldmit@gmail.com>
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/13817)
Reviewed-by: Dmitry Belyavskiy <beldmit@gmail.com>
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/13817)
The RSA decryption as implemented before required very careful handling
of both the exit code returned by OpenSSL and the potentially returned
ciphertext. Looking at the recent security vulnerabilities
(CVE-2020-25659 and CVE-2020-25657) it is unlikely that most users of
OpenSSL do it correctly.
Given that correct code requires side channel secure programming in
application code, we can classify the existing RSA decryption methods
as CWE-676, which in turn likely causes CWE-208 and CWE-385 in
application code.
To prevent that, we can use a technique called "implicit rejection".
For that we generate a random message to be returned in case the
padding check fails. We generate the message based on static secret
data (the private exponent) and the provided ciphertext (so that the
attacker cannot determine that the returned value is randomly generated
instead of result of decryption and de-padding). We return it in case
any part of padding check fails.
The upshot of this approach is that then not only is the length of the
returned message useless as the Bleichenbacher oracle, so are the
actual bytes of the returned message. So application code doesn't have
to perform any operations on the returned message in side-channel free
way to remain secure against Bleichenbacher attacks.
Note: this patch implements a specific algorithm, shared with Mozilla
NSS, so that the attacker cannot use one library as an oracle against the
other in heterogeneous environments.
Reviewed-by: Dmitry Belyavskiy <beldmit@gmail.com>
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/13817)
The KTLS test uses a TLSv1.2 cipher that uses ECDHE
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/19841)
FIPS 186-4 section 5 "The RSA Digital Signature Algorithm", subsection
5.5 "PKCS #1" says: "For RSASSA-PSS […] the length (in bytes) of the
salt (sLen) shall satisfy 0 <= sLen <= hLen, where hLen is the length of
the hash function output block (in bytes)."
Introduce a new option RSA_PSS_SALTLEN_AUTO_DIGEST_MAX and make it the
default. The new value will behave like RSA_PSS_SALTLEN_AUTO, but will
not use more than the digest length when signing, so that FIPS 186-4 is
not violated. This value has two advantages when compared with
RSA_PSS_SALTLEN_DIGEST: (1) It will continue to do auto-detection when
verifying signatures for maximum compatibility, where
RSA_PSS_SALTLEN_DIGEST would fail for other digest sizes. (2) It will
work for combinations where the maximum salt length is smaller than the
digest size, which typically happens with large digest sizes (e.g.,
SHA-512) and small RSA keys.
J.-S. Coron shows in "Optimal Security Proofs for PSS and Other
Signature Schemes. Advances in Cryptology – Eurocrypt 2002, volume 2332
of Lecture Notes in Computer Science, pp. 272 – 287. Springer Verlag,
2002." that longer salts than the output size of modern hash functions
do not increase security: "For example,for an application in which at
most one billion signatures will be generated, k0 = 30 bits of random
salt are actually sufficient to guarantee the same level of security as
RSA, and taking a larger salt does not increase the security level."
Signed-off-by: Clemens Lang <cllang@redhat.com>
Reviewed-by: Dmitry Belyavskiy <beldmit@gmail.com>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/19724)
Rather than computing the PSS salt length again in core using
ossl_rsa_ctx_to_pss_string, which calls rsa_ctx_to_pss and computes the
salt length, obtain it from the provider using the
OSSL_SIGNATURE_PARAM_ALGORITHM_ID param to handle the case where the
interpretation of the magic constants in the provider differs from that
of OpenSSL core.
Add tests that verify that the rsa_pss_saltlen:max,
rsa_pss_saltlen:<integer> and rsa_pss_saltlen:digest options work and
put the computed digest length into the CMS_ContentInfo struct when
using CMS. Do not add a test for the salt length generated by a provider
when no specific rsa_pss_saltlen option is defined, since that number
could change between providers and provider versions, and we want to
preserve compatibility with older providers.
Signed-off-by: Clemens Lang <cllang@redhat.com>
Reviewed-by: Dmitry Belyavskiy <beldmit@gmail.com>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/19724)
Do not accept password-based if expected signature-based and no secret is available and
do not accept signature-based if expected password-based and no trust anchors available.
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
Reviewed-by: David von Oheimb <david.von.oheimb@siemens.com>
(Merged from https://github.com/openssl/openssl/pull/19729)
Fixes openssl#19771
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
Reviewed-by: Paul Dale <pauli@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/19787)
A spurious printf was added to evp_test.c - probably for debugging
purposes. This actually causes runtime errors in some cases because the
name being printed can be NULL.
Fixes#19814
Reviewed-by: Hugo Landau <hlandau@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/19820)
Fetch the EVP_CIPHER for aead in OSSL_HPKE_CTX_new()
to avoid re-fetching on each aead operation.
Save kem/kdf/aead_info in OSSL_HPKE_CTX.
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/19784)
This is a follow-up of #19205, adding test cases as requested.
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
Reviewed-by: David von Oheimb <david.von.oheimb@siemens.com>
(Merged from https://github.com/openssl/openssl/pull/19760)
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
Reviewed-by: Hugo Landau <hlandau@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/18809)
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
Reviewed-by: Hugo Landau <hlandau@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/18809)
This PR is based off the contributions in PR #9223 by Jemmy1228.
It has been modified and reworked to:
(1) Work with providers
(2) Support ECDSA and DSA
(3) Add a KDF HMAC_DRBG implementation that shares code with the RAND HMAC_DRBG.
A nonce_type is passed around inside the Signing API's, in order to support any
future deterministic algorithms.
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
Reviewed-by: Hugo Landau <hlandau@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/18809)
Originally the code to im/export the EC pubkey was meant to be consumed
only by the im/export functions when crossing the provider boundary.
Having our providers exporting to a COMPRESSED format octet string made
sense to avoid memory waste, as it wasn't exposed outside the provider
API, and providers had all tools available to convert across the three
formats.
Later on, with #13139 deprecating the `EC_KEY_*` functions, more state
was added among the params imported/exported on an EC provider-native
key (including `OSSL_PKEY_PARAM_EC_POINT_CONVERSION_FORMAT`, although it
did not affect the format used to export `OSSL_PKEY_PARAM_PUB_KEY`).
Finally, in #14800, `EVP_PKEY_todata()` was introduced and prominently
exposed directly to users outside the provider API, and the choice of
COMPRESSED over UNCOMPRESSED as the default became less sensible in
light of usability, given the latter is more often needed by
applications and protocols.
This commit fixes it, by using `EC_KEY_get_conv_form()` to get the
point format from the internal state (an `EC_KEY` under the hood) of the
provider-side object, and using it on
`EVP_PKEY_export()`/`EVP_PKEY_todata()` to format
`OSSL_PKEY_PARAM_PUB_KEY`.
The default for an `EC_KEY` was already UNCOMPRESSED, and it is altered
if the user sets `OSSL_PKEY_PARAM_EC_POINT_CONVERSION_FORMAT` via
`EVP_PKEY_fromdata()`, `EVP_PKEY_set_params()`, or one of the
more specialized methods.
For symmetry, this commit also alters `ec_pkey_export_to()` in
`crypto/ec/ec_ameth.c`, part of the `EVP_PKEY_ASN1_METHOD` for legacy EC
keys: it exclusively used COMPRESSED format, and now it honors the
conversion format specified in the EC_KEY object being exported to a
provider when this function is called.
Expand documentation about `OSSL_PKEY_PARAM_PUB_KEY` and mention the
3.1 change in behavior for our providers.
Fixes#16595
Reviewed-by: Hugo Landau <hlandau@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/19681)
(cherry picked from commit 926db476bc)
CID 1517043 and 1517038: (Forward NULL) - Removed redundant check that is already
done by the caller. It was complaining that it checked for ctlen == NULL
and then did a goto that used this *ctlen.
CID 1517042 and 1517041: (Forward NULL) - Similar to above for ptlen in
hpke_aead_dec()
CID 1517040: Remove unneeded logging. This gets rid of the warning
related to taking the sizeof(&)
CID 1517039: Check returned value of RAND_bytes_ex() in hpke_test
CID 1517038: Check return result of KEM_INFO_find() in
OSSL_HPKE_get_recomended_ikmelen. Even though this is a false positive,
it should not rely on the internals of other function calls.
Changed some goto's into returns to match OpenSSL coding guidelines.
Removed Raises from calls to _new which fail from malloc calls.
Reviewed-by: Paul Dale <pauli@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/19774)
Fixes#18631
The store lock does not prevent concurrent access to the
property cache, because there are multiple stores.
We drop the newly created entry and use the exisiting one
if there is one already.
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/19762)
Reviewed-by: Paul Dale <pauli@openssl.org>
Reviewed-by: Dmitry Belyavskiy <beldmit@gmail.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Hugo Landau <hlandau@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/19739)
Test for #19736
Reviewed-by: Hugo Landau <hlandau@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/19761)
This supports all the modes, suites and export mechanisms defined
in RFC9180 and should be relatively easily extensible if/as new
suites are added. The APIs are based on the pseudo-code from the
RFC, e.g. OSS_HPKE_encap() roughly maps to SetupBaseS(). External
APIs are defined in include/openssl/hpke.h and documented in
doc/man3/OSSL_HPKE_CTX_new.pod. Tests (test/hpke_test.c) include
verifying a number of the test vectors from the RFC as well as
round-tripping for all the modes and suites. We have demonstrated
interoperability with other HPKE implementations via a fork [1]
that implements TLS Encrypted ClientHello (ECH) which uses HPKE.
@slontis provided huge help in getting this done and this makes
extensive use of the KEM handling code from his PR#19068.
[1] https://github.com/sftcd/openssl/tree/ECH-draft-13c
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/17172)
Otherwise, further OSSL_CMP_exec_GENM_ses() calls will go wrong.
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
Reviewed-by: David von Oheimb <david.von.oheimb@siemens.com>
(Merged from https://github.com/openssl/openssl/pull/19216)
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Dmitry Belyavskiy <beldmit@gmail.com>
Reviewed-by: David von Oheimb <david.von.oheimb@siemens.com>
(Merged from https://github.com/openssl/openssl/pull/19230)
TLS device offload allows to perform zerocopy sendfile transmissions.
FreeBSD provides this feature by default, and Linux 5.19 introduced it
as an opt-in. Zerocopy improves the TX rate significantly, but has a
side effect: if the underlying file is changed while being transmitted,
and a TCP retransmission happens, the receiver may get a TLS record
containing both new and old data, which leads to an authentication
failure and termination of connection. This effect is the reason Linux
makes a copy on sendfile by default.
This commit adds support for TLS zerocopy sendfile on Linux disabled by
default to avoid any unlikely backward compatibility issues on Linux,
although sacrificing consistency in OpenSSL's behavior on Linux and
FreeBSD. A new option called KTLSTxZerocopySendfile is added to enable
the new zerocopy behavior on Linux. This option should be used when the
the application guarantees that the file is not modified during
transmission, or it doesn't care about breaking the connection.
The related documentation is also added in this commit. The unit test
added doesn't test the actual functionality (it would require specific
hardware and a non-local peer), but solely checks that it's possible to
set the new option flag.
Signed-off-by: Maxim Mikityanskiy <maximmi@nvidia.com>
Reviewed-by: Tariq Toukan <tariqt@nvidia.com>
Reviewed-by: Boris Pismenny <borisp@nvidia.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Todd Short <todd.short@me.com>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/18650)
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/19346)
And so clean a few useless includes
Reviewed-by: Paul Dale <pauli@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/19721)
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
Reviewed-by: David von Oheimb <david.von.oheimb@siemens.com>
(Merged from https://github.com/openssl/openssl/pull/19715)
This test had commands that assumes that runner_loop() is used to perform
the tests. These tests still run fine because Unix accepts braces in file
names, but other operating systems might not.
Reviewed-by: Dmitry Belyavskiy <beldmit@gmail.com>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/19731)
(cherry picked from commit 20d3731006)
FIPS 186-4 has 5 different algorithms for key generation,
and all of them rely on testing GCD(a,n) == 1 many times.
Cachegrind was showing that during a RSA keygen operation,
the function BN_gcd() was taking a considerable percentage
of the total cycles.
The default provider uses multiprime keygen, which seemed to
be much faster. This is because it uses BN_mod_inverse()
instead.
For a 4096 bit key, the entropy of a key that was taking a
long time to generate was recorded and fed back into subsequent
runs. Roughly 40% of the cycle time was BN_gcd() with most of the
remainder in the prime testing. Changing to use the inverse
resulted in the cycle count being 96% in the prime testing.
Reviewed-by: Paul Dale <pauli@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/19578)
A previous change was only half done. To avoid such mistakes again, we
switch to using the OPENSSL_SYS_ macros, as the are clearer than having
to check a pile of very platform and compiler specific macros.
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Dmitry Belyavskiy <beldmit@gmail.com>
(Merged from https://github.com/openssl/openssl/pull/19720)