mirror of
https://github.com/openssl/openssl.git
synced 2025-01-18 13:44:20 +08:00
EC2M Lopez-Dahab ladder implementation
This commit uses the new ladder scaffold to implement a specialized ladder step based on differential addition-and-doubling in mixed Lopez-Dahab projective coordinates, modified to independently blind the operands. The arithmetic in `ladder_pre`, `ladder_step` and `ladder_post` is auto generated with tooling: - see, e.g., "Guide to ECC" Alg 3.40 for reference about the `ladder_pre` implementation; - see https://www.hyperelliptic.org/EFD/g12o/auto-code/shortw/xz/ladder/mladd-2003-s.op3 for the differential addition-and-doubling formulas implemented in `ladder_step`; - see, e.g., "Fast Multiplication on Elliptic Curves over GF(2**m) without Precomputation" (Lopez and Dahab, CHES 1999) Appendix Alg Mxy for the `ladder_post` implementation to recover the `(x,y)` result in affine coordinates. Co-authored-by: Billy Brumley <bbrumley@gmail.com> Co-authored-by: Sohaib ul Hassan <soh.19.hassan@gmail.com> Reviewed-by: Andy Polyakov <appro@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/6690)
This commit is contained in:
parent
66b0bca887
commit
f45846f500
6
CHANGES
6
CHANGES
@ -9,6 +9,12 @@
|
|||||||
|
|
||||||
Changes between 1.1.0h and 1.1.1 [xx XXX xxxx]
|
Changes between 1.1.0h and 1.1.1 [xx XXX xxxx]
|
||||||
|
|
||||||
|
*) Use the new ec_scalar_mul_ladder scaffold to implement a specialized ladder
|
||||||
|
step for binary curves. The new implementation is based on formulas from
|
||||||
|
differential addition-and-doubling in mixed Lopez-Dahab projective
|
||||||
|
coordinates, modified to independently blind the operands.
|
||||||
|
[Billy Bob Brumley, Sohaib ul Hassan, Nicola Tuveri]
|
||||||
|
|
||||||
*) Add a scaffold to optionally enhance the Montgomery ladder implementation
|
*) Add a scaffold to optionally enhance the Montgomery ladder implementation
|
||||||
for `ec_scalar_mul_ladder` (formerly `ec_mul_consttime`) allowing
|
for `ec_scalar_mul_ladder` (formerly `ec_mul_consttime`) allowing
|
||||||
EC_METHODs to implement their own specialized "ladder step", to take
|
EC_METHODs to implement their own specialized "ladder step", to take
|
||||||
|
@ -15,66 +15,6 @@
|
|||||||
|
|
||||||
#ifndef OPENSSL_NO_EC2M
|
#ifndef OPENSSL_NO_EC2M
|
||||||
|
|
||||||
const EC_METHOD *EC_GF2m_simple_method(void)
|
|
||||||
{
|
|
||||||
static const EC_METHOD ret = {
|
|
||||||
EC_FLAGS_DEFAULT_OCT,
|
|
||||||
NID_X9_62_characteristic_two_field,
|
|
||||||
ec_GF2m_simple_group_init,
|
|
||||||
ec_GF2m_simple_group_finish,
|
|
||||||
ec_GF2m_simple_group_clear_finish,
|
|
||||||
ec_GF2m_simple_group_copy,
|
|
||||||
ec_GF2m_simple_group_set_curve,
|
|
||||||
ec_GF2m_simple_group_get_curve,
|
|
||||||
ec_GF2m_simple_group_get_degree,
|
|
||||||
ec_group_simple_order_bits,
|
|
||||||
ec_GF2m_simple_group_check_discriminant,
|
|
||||||
ec_GF2m_simple_point_init,
|
|
||||||
ec_GF2m_simple_point_finish,
|
|
||||||
ec_GF2m_simple_point_clear_finish,
|
|
||||||
ec_GF2m_simple_point_copy,
|
|
||||||
ec_GF2m_simple_point_set_to_infinity,
|
|
||||||
0 /* set_Jprojective_coordinates_GFp */ ,
|
|
||||||
0 /* get_Jprojective_coordinates_GFp */ ,
|
|
||||||
ec_GF2m_simple_point_set_affine_coordinates,
|
|
||||||
ec_GF2m_simple_point_get_affine_coordinates,
|
|
||||||
0, 0, 0,
|
|
||||||
ec_GF2m_simple_add,
|
|
||||||
ec_GF2m_simple_dbl,
|
|
||||||
ec_GF2m_simple_invert,
|
|
||||||
ec_GF2m_simple_is_at_infinity,
|
|
||||||
ec_GF2m_simple_is_on_curve,
|
|
||||||
ec_GF2m_simple_cmp,
|
|
||||||
ec_GF2m_simple_make_affine,
|
|
||||||
ec_GF2m_simple_points_make_affine,
|
|
||||||
0 /* mul */,
|
|
||||||
0 /* precompute_mul */,
|
|
||||||
0 /* have_precompute_mul */,
|
|
||||||
ec_GF2m_simple_field_mul,
|
|
||||||
ec_GF2m_simple_field_sqr,
|
|
||||||
ec_GF2m_simple_field_div,
|
|
||||||
0 /* field_encode */ ,
|
|
||||||
0 /* field_decode */ ,
|
|
||||||
0, /* field_set_to_one */
|
|
||||||
ec_key_simple_priv2oct,
|
|
||||||
ec_key_simple_oct2priv,
|
|
||||||
0, /* set private */
|
|
||||||
ec_key_simple_generate_key,
|
|
||||||
ec_key_simple_check_key,
|
|
||||||
ec_key_simple_generate_public_key,
|
|
||||||
0, /* keycopy */
|
|
||||||
0, /* keyfinish */
|
|
||||||
ecdh_simple_compute_key,
|
|
||||||
0, /* field_inverse_mod_ord */
|
|
||||||
0, /* blind_coordinates */
|
|
||||||
0, /* ladder_pre */
|
|
||||||
0, /* ladder_step */
|
|
||||||
0 /* ladder_post */
|
|
||||||
};
|
|
||||||
|
|
||||||
return &ret;
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* Initialize a GF(2^m)-based EC_GROUP structure. Note that all other members
|
* Initialize a GF(2^m)-based EC_GROUP structure. Note that all other members
|
||||||
* are handled by EC_GROUP_new.
|
* are handled by EC_GROUP_new.
|
||||||
@ -740,4 +680,218 @@ int ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r,
|
|||||||
return BN_GF2m_mod_div(r, a, b, group->field, ctx);
|
return BN_GF2m_mod_div(r, a, b, group->field, ctx);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/*-
|
||||||
|
* Lopez-Dahab ladder, pre step.
|
||||||
|
* See e.g. "Guide to ECC" Alg 3.40.
|
||||||
|
* Modified to blind s and r independently.
|
||||||
|
* s:= p, r := 2p
|
||||||
|
*/
|
||||||
|
static
|
||||||
|
int ec_GF2m_simple_ladder_pre(const EC_GROUP *group,
|
||||||
|
EC_POINT *r, EC_POINT *s,
|
||||||
|
EC_POINT *p, BN_CTX *ctx)
|
||||||
|
{
|
||||||
|
/* if p is not affine, something is wrong */
|
||||||
|
if (p->Z_is_one == 0)
|
||||||
|
return 0;
|
||||||
|
|
||||||
|
/* s blinding: make sure lambda (s->Z here) is not zero */
|
||||||
|
do {
|
||||||
|
if (!BN_priv_rand(s->Z, BN_num_bits(group->field) - 1,
|
||||||
|
BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY)) {
|
||||||
|
ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_PRE, ERR_R_BN_LIB);
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
} while (BN_is_zero(s->Z));
|
||||||
|
|
||||||
|
/* if field_encode defined convert between representations */
|
||||||
|
if ((group->meth->field_encode != NULL
|
||||||
|
&& !group->meth->field_encode(group, s->Z, s->Z, ctx))
|
||||||
|
|| !group->meth->field_mul(group, s->X, p->X, s->Z, ctx))
|
||||||
|
return 0;
|
||||||
|
|
||||||
|
/* r blinding: make sure lambda (r->Y here for storage) is not zero */
|
||||||
|
do {
|
||||||
|
if (!BN_priv_rand(r->Y, BN_num_bits(group->field) - 1,
|
||||||
|
BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY)) {
|
||||||
|
ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_PRE, ERR_R_BN_LIB);
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
} while (BN_is_zero(r->Y));
|
||||||
|
|
||||||
|
if ((group->meth->field_encode != NULL
|
||||||
|
&& !group->meth->field_encode(group, r->Y, r->Y, ctx))
|
||||||
|
|| !group->meth->field_sqr(group, r->Z, p->X, ctx)
|
||||||
|
|| !group->meth->field_sqr(group, r->X, r->Z, ctx)
|
||||||
|
|| !BN_GF2m_add(r->X, r->X, group->b)
|
||||||
|
|| !group->meth->field_mul(group, r->Z, r->Z, r->Y, ctx)
|
||||||
|
|| !group->meth->field_mul(group, r->X, r->X, r->Y, ctx))
|
||||||
|
return 0;
|
||||||
|
|
||||||
|
s->Z_is_one = 0;
|
||||||
|
r->Z_is_one = 0;
|
||||||
|
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
/*-
|
||||||
|
* Ladder step: differential addition-and-doubling, mixed Lopez-Dahab coords.
|
||||||
|
* http://www.hyperelliptic.org/EFD/g12o/auto-code/shortw/xz/ladder/mladd-2003-s.op3
|
||||||
|
* s := r + s, r := 2r
|
||||||
|
*/
|
||||||
|
static
|
||||||
|
int ec_GF2m_simple_ladder_step(const EC_GROUP *group,
|
||||||
|
EC_POINT *r, EC_POINT *s,
|
||||||
|
EC_POINT *p, BN_CTX *ctx)
|
||||||
|
{
|
||||||
|
if (!group->meth->field_mul(group, r->Y, r->Z, s->X, ctx)
|
||||||
|
|| !group->meth->field_mul(group, s->X, r->X, s->Z, ctx)
|
||||||
|
|| !group->meth->field_sqr(group, s->Y, r->Z, ctx)
|
||||||
|
|| !group->meth->field_sqr(group, r->Z, r->X, ctx)
|
||||||
|
|| !BN_GF2m_add(s->Z, r->Y, s->X)
|
||||||
|
|| !group->meth->field_sqr(group, s->Z, s->Z, ctx)
|
||||||
|
|| !group->meth->field_mul(group, s->X, r->Y, s->X, ctx)
|
||||||
|
|| !group->meth->field_mul(group, r->Y, s->Z, p->X, ctx)
|
||||||
|
|| !BN_GF2m_add(s->X, s->X, r->Y)
|
||||||
|
|| !group->meth->field_sqr(group, r->Y, r->Z, ctx)
|
||||||
|
|| !group->meth->field_mul(group, r->Z, r->Z, s->Y, ctx)
|
||||||
|
|| !group->meth->field_sqr(group, s->Y, s->Y, ctx)
|
||||||
|
|| !group->meth->field_mul(group, s->Y, s->Y, group->b, ctx)
|
||||||
|
|| !BN_GF2m_add(r->X, r->Y, s->Y))
|
||||||
|
return 0;
|
||||||
|
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
/*-
|
||||||
|
* Recover affine (x,y) result from Lopez-Dahab r and s, affine p.
|
||||||
|
* See e.g. "Fast Multiplication on Elliptic Curves over GF(2**m)
|
||||||
|
* without Precomputation" (Lopez and Dahab, CHES 1999),
|
||||||
|
* Appendix Alg Mxy.
|
||||||
|
*/
|
||||||
|
static
|
||||||
|
int ec_GF2m_simple_ladder_post(const EC_GROUP *group,
|
||||||
|
EC_POINT *r, EC_POINT *s,
|
||||||
|
EC_POINT *p, BN_CTX *ctx)
|
||||||
|
{
|
||||||
|
int ret = 0;
|
||||||
|
BIGNUM *t0, *t1, *t2 = NULL;
|
||||||
|
|
||||||
|
if (BN_is_zero(r->Z))
|
||||||
|
return EC_POINT_set_to_infinity(group, r);
|
||||||
|
|
||||||
|
if (BN_is_zero(s->Z)) {
|
||||||
|
if (!EC_POINT_copy(r, p)
|
||||||
|
|| !EC_POINT_invert(group, r, ctx)) {
|
||||||
|
ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_POST, ERR_R_EC_LIB);
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
BN_CTX_start(ctx);
|
||||||
|
t0 = BN_CTX_get(ctx);
|
||||||
|
t1 = BN_CTX_get(ctx);
|
||||||
|
t2 = BN_CTX_get(ctx);
|
||||||
|
if (t2 == NULL) {
|
||||||
|
ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_POST, ERR_R_MALLOC_FAILURE);
|
||||||
|
goto err;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (!group->meth->field_mul(group, t0, r->Z, s->Z, ctx)
|
||||||
|
|| !group->meth->field_mul(group, t1, p->X, r->Z, ctx)
|
||||||
|
|| !BN_GF2m_add(t1, r->X, t1)
|
||||||
|
|| !group->meth->field_mul(group, t2, p->X, s->Z, ctx)
|
||||||
|
|| !group->meth->field_mul(group, r->Z, r->X, t2, ctx)
|
||||||
|
|| !BN_GF2m_add(t2, t2, s->X)
|
||||||
|
|| !group->meth->field_mul(group, t1, t1, t2, ctx)
|
||||||
|
|| !group->meth->field_sqr(group, t2, p->X, ctx)
|
||||||
|
|| !BN_GF2m_add(t2, p->Y, t2)
|
||||||
|
|| !group->meth->field_mul(group, t2, t2, t0, ctx)
|
||||||
|
|| !BN_GF2m_add(t1, t2, t1)
|
||||||
|
|| !group->meth->field_mul(group, t2, p->X, t0, ctx)
|
||||||
|
|| !BN_GF2m_mod_inv(t2, t2, group->field, ctx)
|
||||||
|
|| !group->meth->field_mul(group, t1, t1, t2, ctx)
|
||||||
|
|| !group->meth->field_mul(group, r->X, r->Z, t2, ctx)
|
||||||
|
|| !BN_GF2m_add(t2, p->X, r->X)
|
||||||
|
|| !group->meth->field_mul(group, t2, t2, t1, ctx)
|
||||||
|
|| !BN_GF2m_add(r->Y, p->Y, t2)
|
||||||
|
|| !BN_one(r->Z))
|
||||||
|
goto err;
|
||||||
|
|
||||||
|
r->Z_is_one = 1;
|
||||||
|
|
||||||
|
/* GF(2^m) field elements should always have BIGNUM::neg = 0 */
|
||||||
|
BN_set_negative(r->X, 0);
|
||||||
|
BN_set_negative(r->Y, 0);
|
||||||
|
|
||||||
|
ret = 1;
|
||||||
|
|
||||||
|
err:
|
||||||
|
BN_CTX_end(ctx);
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
const EC_METHOD *EC_GF2m_simple_method(void)
|
||||||
|
{
|
||||||
|
static const EC_METHOD ret = {
|
||||||
|
EC_FLAGS_DEFAULT_OCT,
|
||||||
|
NID_X9_62_characteristic_two_field,
|
||||||
|
ec_GF2m_simple_group_init,
|
||||||
|
ec_GF2m_simple_group_finish,
|
||||||
|
ec_GF2m_simple_group_clear_finish,
|
||||||
|
ec_GF2m_simple_group_copy,
|
||||||
|
ec_GF2m_simple_group_set_curve,
|
||||||
|
ec_GF2m_simple_group_get_curve,
|
||||||
|
ec_GF2m_simple_group_get_degree,
|
||||||
|
ec_group_simple_order_bits,
|
||||||
|
ec_GF2m_simple_group_check_discriminant,
|
||||||
|
ec_GF2m_simple_point_init,
|
||||||
|
ec_GF2m_simple_point_finish,
|
||||||
|
ec_GF2m_simple_point_clear_finish,
|
||||||
|
ec_GF2m_simple_point_copy,
|
||||||
|
ec_GF2m_simple_point_set_to_infinity,
|
||||||
|
0, /* set_Jprojective_coordinates_GFp */
|
||||||
|
0, /* get_Jprojective_coordinates_GFp */
|
||||||
|
ec_GF2m_simple_point_set_affine_coordinates,
|
||||||
|
ec_GF2m_simple_point_get_affine_coordinates,
|
||||||
|
0, /* point_set_compressed_coordinates */
|
||||||
|
0, /* point2oct */
|
||||||
|
0, /* oct2point */
|
||||||
|
ec_GF2m_simple_add,
|
||||||
|
ec_GF2m_simple_dbl,
|
||||||
|
ec_GF2m_simple_invert,
|
||||||
|
ec_GF2m_simple_is_at_infinity,
|
||||||
|
ec_GF2m_simple_is_on_curve,
|
||||||
|
ec_GF2m_simple_cmp,
|
||||||
|
ec_GF2m_simple_make_affine,
|
||||||
|
ec_GF2m_simple_points_make_affine,
|
||||||
|
0, /* mul */
|
||||||
|
0, /* precompute_mult */
|
||||||
|
0, /* have_precompute_mult */
|
||||||
|
ec_GF2m_simple_field_mul,
|
||||||
|
ec_GF2m_simple_field_sqr,
|
||||||
|
ec_GF2m_simple_field_div,
|
||||||
|
0, /* field_encode */
|
||||||
|
0, /* field_decode */
|
||||||
|
0, /* field_set_to_one */
|
||||||
|
ec_key_simple_priv2oct,
|
||||||
|
ec_key_simple_oct2priv,
|
||||||
|
0, /* set private */
|
||||||
|
ec_key_simple_generate_key,
|
||||||
|
ec_key_simple_check_key,
|
||||||
|
ec_key_simple_generate_public_key,
|
||||||
|
0, /* keycopy */
|
||||||
|
0, /* keyfinish */
|
||||||
|
ecdh_simple_compute_key,
|
||||||
|
0, /* field_inverse_mod_ord */
|
||||||
|
0, /* blind_coordinates */
|
||||||
|
ec_GF2m_simple_ladder_pre,
|
||||||
|
ec_GF2m_simple_ladder_step,
|
||||||
|
ec_GF2m_simple_ladder_post
|
||||||
|
};
|
||||||
|
|
||||||
|
return &ret;
|
||||||
|
}
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
@ -70,6 +70,10 @@ static const ERR_STRING_DATA EC_str_functs[] = {
|
|||||||
"ec_GF2m_simple_group_check_discriminant"},
|
"ec_GF2m_simple_group_check_discriminant"},
|
||||||
{ERR_PACK(ERR_LIB_EC, EC_F_EC_GF2M_SIMPLE_GROUP_SET_CURVE, 0),
|
{ERR_PACK(ERR_LIB_EC, EC_F_EC_GF2M_SIMPLE_GROUP_SET_CURVE, 0),
|
||||||
"ec_GF2m_simple_group_set_curve"},
|
"ec_GF2m_simple_group_set_curve"},
|
||||||
|
{ERR_PACK(ERR_LIB_EC, EC_F_EC_GF2M_SIMPLE_LADDER_POST, 0),
|
||||||
|
"ec_GF2m_simple_ladder_post"},
|
||||||
|
{ERR_PACK(ERR_LIB_EC, EC_F_EC_GF2M_SIMPLE_LADDER_PRE, 0),
|
||||||
|
"ec_GF2m_simple_ladder_pre"},
|
||||||
{ERR_PACK(ERR_LIB_EC, EC_F_EC_GF2M_SIMPLE_OCT2POINT, 0),
|
{ERR_PACK(ERR_LIB_EC, EC_F_EC_GF2M_SIMPLE_OCT2POINT, 0),
|
||||||
"ec_GF2m_simple_oct2point"},
|
"ec_GF2m_simple_oct2point"},
|
||||||
{ERR_PACK(ERR_LIB_EC, EC_F_EC_GF2M_SIMPLE_POINT2OCT, 0),
|
{ERR_PACK(ERR_LIB_EC, EC_F_EC_GF2M_SIMPLE_POINT2OCT, 0),
|
||||||
|
@ -521,6 +521,8 @@ EC_F_EC_GF2M_MONTGOMERY_POINT_MULTIPLY:208:ec_GF2m_montgomery_point_multiply
|
|||||||
EC_F_EC_GF2M_SIMPLE_GROUP_CHECK_DISCRIMINANT:159:\
|
EC_F_EC_GF2M_SIMPLE_GROUP_CHECK_DISCRIMINANT:159:\
|
||||||
ec_GF2m_simple_group_check_discriminant
|
ec_GF2m_simple_group_check_discriminant
|
||||||
EC_F_EC_GF2M_SIMPLE_GROUP_SET_CURVE:195:ec_GF2m_simple_group_set_curve
|
EC_F_EC_GF2M_SIMPLE_GROUP_SET_CURVE:195:ec_GF2m_simple_group_set_curve
|
||||||
|
EC_F_EC_GF2M_SIMPLE_LADDER_POST:285:ec_GF2m_simple_ladder_post
|
||||||
|
EC_F_EC_GF2M_SIMPLE_LADDER_PRE:288:ec_GF2m_simple_ladder_pre
|
||||||
EC_F_EC_GF2M_SIMPLE_OCT2POINT:160:ec_GF2m_simple_oct2point
|
EC_F_EC_GF2M_SIMPLE_OCT2POINT:160:ec_GF2m_simple_oct2point
|
||||||
EC_F_EC_GF2M_SIMPLE_POINT2OCT:161:ec_GF2m_simple_point2oct
|
EC_F_EC_GF2M_SIMPLE_POINT2OCT:161:ec_GF2m_simple_point2oct
|
||||||
EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES:162:\
|
EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES:162:\
|
||||||
|
@ -64,6 +64,8 @@ int ERR_load_EC_strings(void);
|
|||||||
# define EC_F_EC_GF2M_MONTGOMERY_POINT_MULTIPLY 208
|
# define EC_F_EC_GF2M_MONTGOMERY_POINT_MULTIPLY 208
|
||||||
# define EC_F_EC_GF2M_SIMPLE_GROUP_CHECK_DISCRIMINANT 159
|
# define EC_F_EC_GF2M_SIMPLE_GROUP_CHECK_DISCRIMINANT 159
|
||||||
# define EC_F_EC_GF2M_SIMPLE_GROUP_SET_CURVE 195
|
# define EC_F_EC_GF2M_SIMPLE_GROUP_SET_CURVE 195
|
||||||
|
# define EC_F_EC_GF2M_SIMPLE_LADDER_POST 285
|
||||||
|
# define EC_F_EC_GF2M_SIMPLE_LADDER_PRE 288
|
||||||
# define EC_F_EC_GF2M_SIMPLE_OCT2POINT 160
|
# define EC_F_EC_GF2M_SIMPLE_OCT2POINT 160
|
||||||
# define EC_F_EC_GF2M_SIMPLE_POINT2OCT 161
|
# define EC_F_EC_GF2M_SIMPLE_POINT2OCT 161
|
||||||
# define EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES 162
|
# define EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES 162
|
||||||
|
Loading…
Reference in New Issue
Block a user