Expand OPENSS_ia32cap to 64 bits.

This commit is contained in:
Andy Polyakov 2009-04-26 17:49:41 +00:00
parent d2617165ad
commit e303f55fc7
6 changed files with 43 additions and 26 deletions

View File

@ -659,30 +659,40 @@ const char *CRYPTO_get_lock_name(int type)
#if defined(__i386) || defined(__i386__) || defined(_M_IX86) || \
defined(__INTEL__) || \
defined(__x86_64) || defined(__x86_64__) || defined(_M_AMD64)
defined(__x86_64) || defined(__x86_64__) || defined(_M_AMD64) || defined(_M_X64)
unsigned long OPENSSL_ia32cap_P=0;
unsigned long *OPENSSL_ia32cap_loc(void) { return &OPENSSL_ia32cap_P; }
unsigned int OPENSSL_ia32cap_P[2];
unsigned int *OPENSSL_ia32cap_loc(void) { return OPENSSL_ia32cap_P; }
#if defined(OPENSSL_CPUID_OBJ) && !defined(OPENSSL_NO_ASM) && !defined(I386_ONLY)
#define OPENSSL_CPUID_SETUP
#if defined(_WIN32)
typedef unsigned __int64 IA32CAP;
#define strtoull _strtoui64
#else
typedef unsigned long long IA32CAP;
#endif
void OPENSSL_cpuid_setup(void)
{ static int trigger=0;
unsigned long OPENSSL_ia32_cpuid(void);
IA32CAP OPENSSL_ia32_cpuid(void);
IA32CAP vec;
char *env;
if (trigger) return;
trigger=1;
if ((env=getenv("OPENSSL_ia32cap")))
OPENSSL_ia32cap_P = strtoul(env,NULL,0)|(1<<10);
vec = strtoull(env,NULL,0);
else
OPENSSL_ia32cap_P = OPENSSL_ia32_cpuid()|(1<<10);
vec = OPENSSL_ia32_cpuid();
/*
* |(1<<10) sets a reserved bit to signal that variable
* was initialized already... This is to avoid interference
* with cpuid snippets in ELF .init segment.
*/
OPENSSL_ia32cap_P[0] = (unsigned int)vec|(1<<10);
OPENSSL_ia32cap_P[1] = (unsigned int)(vec>>32);
}
#endif

View File

@ -99,7 +99,7 @@ extern "C" {
#define HEX_SIZE(type) (sizeof(type)*2)
void OPENSSL_cpuid_setup(void);
extern unsigned long OPENSSL_ia32cap_P;
extern unsigned int OPENSSL_ia32cap_P[];
void OPENSSL_showfatal(const char *,...);
void *OPENSSL_stderr(void);
extern int OPENSSL_NONPIC_relocated;

View File

@ -150,7 +150,7 @@ sub ::public_label
sub ::file_end
{ if (grep {/\b${nmdecor}OPENSSL_ia32cap_P\b/i} @out) {
my $tmp=".comm\t${nmdecor}OPENSSL_ia32cap_P,4";
my $tmp=".comm\t${nmdecor}OPENSSL_ia32cap_P,8";
if ($::elf) { push (@out,"$tmp,4\n"); }
else { push (@out,"$tmp\n"); }
}

View File

@ -127,7 +127,7 @@ ___
if (grep {/\b${nmdecor}OPENSSL_ia32cap_P\b/i} @out)
{ my $comm=<<___;
.bss SEGMENT
COMM ${nmdecor}OPENSSL_ia32cap_P:DWORD
COMM ${nmdecor}OPENSSL_ia32cap_P:QWORD
.bss ENDS
___
# comment out OPENSSL_ia32cap_P declarations

View File

@ -114,7 +114,7 @@ sub ::file_end
{ if (grep {/\b${nmdecor}OPENSSL_ia32cap_P\b/i} @out)
{ my $comm=<<___;
${drdecor}segment .bss
${drdecor}common ${nmdecor}OPENSSL_ia32cap_P 4
${drdecor}common ${nmdecor}OPENSSL_ia32cap_P 8
___
# comment out OPENSSL_ia32cap_P declarations
grep {s/(^extern\s+${nmdecor}OPENSSL_ia32cap_P)/\;$1/} @out;

View File

@ -6,28 +6,29 @@ OPENSSL_ia32cap - finding the IA-32 processor capabilities
=head1 SYNOPSIS
unsigned long *OPENSSL_ia32cap_loc(void);
#define OPENSSL_ia32cap (*(OPENSSL_ia32cap_loc()))
unsigned int *OPENSSL_ia32cap_loc(void);
#define OPENSSL_ia32cap ((OPENSSL_ia32cap_loc())[0])
=head1 DESCRIPTION
Value returned by OPENSSL_ia32cap_loc() is address of a variable
containing IA-32 processor capabilities bit vector as it appears in EDX
register after executing CPUID instruction with EAX=1 input value (see
Intel Application Note #241618). Naturally it's meaningful on IA-32[E]
platforms only. The variable is normally set up automatically upon
toolkit initialization, but can be manipulated afterwards to modify
crypto library behaviour. For the moment of this writing six bits are
significant, namely:
containing IA-32 processor capabilities bit vector as it appears in
EDX:ECX register pair after executing CPUID instruction with EAX=1
input value (see Intel Application Note #241618). Naturally it's
meaningful on x86 and x86_64 platforms only. The variable is normally
set up automatically upon toolkit initialization, but can be
manipulated afterwards to modify crypto library behaviour. For the
moment of this writing seven bits are significant, namely:
1. bit #28 denoting Hyperthreading, which is used to distiguish
1. bit #4 denoting presence of Time-Stamp Counter.
2. bit #20, reserved by Intel, is used to choose between RC4 code
paths;
3. bit #23 denoting MMX support;
4. bit #25 denoting SSE support;
5. bit #26 denoting SSE2 support;
6. bit #28 denoting Hyperthreading, which is used to distiguish
cores with shared cache;
2. bit #26 denoting SSE2 support;
3. bit #25 denoting SSE support;
4. bit #23 denoting MMX support;
5. bit #20, reserved by Intel, is used to choose between RC4 code
pathes;
6. bit #4 denoting presence of Time-Stamp Counter.
7. bit #57 denoting Intel AES instruction set extension;
For example, clearing bit #26 at run-time disables high-performance
SSE2 code present in the crypto library. You might have to do this if
@ -40,4 +41,10 @@ OPENSSL_ia32cap=0x12900010 apps/openssl', to achieve same effect
without modifying the application source code. Alternatively you can
reconfigure the toolkit with no-sse2 option and recompile.
Less intuituve is clearing bit #28. The truth is that it's not copied
from CPUID output verbatim, but is adjusted to reflect whether or not
the data cache is actually shared between logical cores. This in turn
affects the decision on whether or not expensive countermeasures
against cache-timing attacks are applied, most notably in AES assembler
module.
=cut