mirror of
https://github.com/openssl/openssl.git
synced 2025-01-18 13:44:20 +08:00
[crypto/ec] disable SCA mitigations for curves with incomplete parameters
Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/6648)
This commit is contained in:
parent
a97d19f7ce
commit
de72274d62
@ -389,30 +389,32 @@ int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
|
||||
return EC_POINT_set_to_infinity(group, r);
|
||||
}
|
||||
|
||||
/*-
|
||||
* Handle the common cases where the scalar is secret, enforcing a constant
|
||||
* time scalar multiplication algorithm.
|
||||
*/
|
||||
if ((scalar != NULL) && (num == 0)) {
|
||||
if (!BN_is_zero(group->order) && !BN_is_zero(group->cofactor)) {
|
||||
/*-
|
||||
* In this case we want to compute scalar * GeneratorPoint: this
|
||||
* codepath is reached most prominently by (ephemeral) key generation
|
||||
* of EC cryptosystems (i.e. ECDSA keygen and sign setup, ECDH
|
||||
* keygen/first half), where the scalar is always secret. This is why
|
||||
* we ignore if BN_FLG_CONSTTIME is actually set and we always call the
|
||||
* constant time version.
|
||||
* Handle the common cases where the scalar is secret, enforcing a constant
|
||||
* time scalar multiplication algorithm.
|
||||
*/
|
||||
return ec_mul_consttime(group, r, scalar, NULL, ctx);
|
||||
}
|
||||
if ((scalar == NULL) && (num == 1)) {
|
||||
/*-
|
||||
* In this case we want to compute scalar * GenericPoint: this codepath
|
||||
* is reached most prominently by the second half of ECDH, where the
|
||||
* secret scalar is multiplied by the peer's public point. To protect
|
||||
* the secret scalar, we ignore if BN_FLG_CONSTTIME is actually set and
|
||||
* we always call the constant time version.
|
||||
*/
|
||||
return ec_mul_consttime(group, r, scalars[0], points[0], ctx);
|
||||
if ((scalar != NULL) && (num == 0)) {
|
||||
/*-
|
||||
* In this case we want to compute scalar * GeneratorPoint: this
|
||||
* codepath is reached most prominently by (ephemeral) key generation
|
||||
* of EC cryptosystems (i.e. ECDSA keygen and sign setup, ECDH
|
||||
* keygen/first half), where the scalar is always secret. This is why
|
||||
* we ignore if BN_FLG_CONSTTIME is actually set and we always call the
|
||||
* constant time version.
|
||||
*/
|
||||
return ec_mul_consttime(group, r, scalar, NULL, ctx);
|
||||
}
|
||||
if ((scalar == NULL) && (num == 1)) {
|
||||
/*-
|
||||
* In this case we want to compute scalar * GenericPoint: this codepath
|
||||
* is reached most prominently by the second half of ECDH, where the
|
||||
* secret scalar is multiplied by the peer's public point. To protect
|
||||
* the secret scalar, we ignore if BN_FLG_CONSTTIME is actually set and
|
||||
* we always call the constant time version.
|
||||
*/
|
||||
return ec_mul_consttime(group, r, scalars[0], points[0], ctx);
|
||||
}
|
||||
}
|
||||
|
||||
for (i = 0; i < num; i++) {
|
||||
|
Loading…
Reference in New Issue
Block a user