mirror of
https://github.com/openssl/openssl.git
synced 2024-11-21 01:15:20 +08:00
Dual 1024-bit exponentiation optimization for Intel IceLake CPU
with AVX512_IFMA + AVX512_VL instructions, primarily for RSA CRT private key operations. It uses 256-bit registers to avoid CPU frequency scaling issues. The performance speedup for RSA2k signature on ICL is ~2x. Reviewed-by: Paul Dale <pauli@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/13750)
This commit is contained in:
parent
db89d8f04b
commit
c781eb1c63
@ -178,6 +178,11 @@ OpenSSL 3.0
|
||||
|
||||
*Tomáš Mráz*
|
||||
|
||||
* Parallel dual-prime 1024-bit modular exponentiation for AVX512_IFMA
|
||||
capable processors.
|
||||
|
||||
*Ilya Albrekht, Sergey Kirillov, Andrey Matyukov (Intel Corp)*
|
||||
|
||||
* Combining the Configure options no-ec and no-dh no longer disables TLSv1.3.
|
||||
Typically if OpenSSL has no EC or DH algorithms then it cannot support
|
||||
connections with TLSv1.3. However OpenSSL now supports "pluggable" groups
|
||||
|
743
crypto/bn/asm/rsaz-avx512.pl
Normal file
743
crypto/bn/asm/rsaz-avx512.pl
Normal file
@ -0,0 +1,743 @@
|
||||
# Copyright 2020 The OpenSSL Project Authors. All Rights Reserved.
|
||||
# Copyright (c) 2020, Intel Corporation. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License 2.0 (the "License"). You may not use
|
||||
# this file except in compliance with the License. You can obtain a copy
|
||||
# in the file LICENSE in the source distribution or at
|
||||
# https://www.openssl.org/source/license.html
|
||||
#
|
||||
#
|
||||
# Originally written by Ilya Albrekht, Sergey Kirillov and Andrey Matyukov
|
||||
# Intel Corporation
|
||||
#
|
||||
# December 2020
|
||||
#
|
||||
# Initial release.
|
||||
#
|
||||
# Implementation utilizes 256-bit (ymm) registers to avoid frequency scaling issues.
|
||||
#
|
||||
# IceLake-Client @ 1.3GHz
|
||||
# |---------+----------------------+--------------+-------------|
|
||||
# | | OpenSSL 3.0.0-alpha9 | this | Unit |
|
||||
# |---------+----------------------+--------------+-------------|
|
||||
# | rsa2048 | 2 127 659 | 1 015 625 | cycles/sign |
|
||||
# | | 611 | 1280 / +109% | sign/s |
|
||||
# |---------+----------------------+--------------+-------------|
|
||||
#
|
||||
|
||||
# $output is the last argument if it looks like a file (it has an extension)
|
||||
# $flavour is the first argument if it doesn't look like a file
|
||||
$output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef;
|
||||
$flavour = $#ARGV >= 0 && $ARGV[0] !~ m|\.| ? shift : undef;
|
||||
|
||||
$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
|
||||
$avx512ifma=0;
|
||||
|
||||
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
|
||||
( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
|
||||
( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
|
||||
die "can't locate x86_64-xlate.pl";
|
||||
|
||||
if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
|
||||
=~ /GNU assembler version ([2-9]\.[0-9]+)/) {
|
||||
$avx512ifma = ($1>=2.26);
|
||||
}
|
||||
|
||||
if (!$avx512 && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) &&
|
||||
`nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)(?:\.([0-9]+))?/) {
|
||||
$avx512ifma = ($1==2.11 && $2>=8) + ($1>=2.12);
|
||||
}
|
||||
|
||||
if (!$avx512 && `$ENV{CC} -v 2>&1` =~ /((?:clang|LLVM) version|.*based on LLVM) ([0-9]+\.[0-9]+)/) {
|
||||
$avx512ifma = ($2>=6.0);
|
||||
}
|
||||
|
||||
open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""
|
||||
or die "can't call $xlate: $!";
|
||||
*STDOUT=*OUT;
|
||||
|
||||
if ($avx512ifma>0) {{{
|
||||
@_6_args_universal_ABI = ("%rdi","%rsi","%rdx","%rcx","%r8","%r9");
|
||||
|
||||
$code.=<<___;
|
||||
.extern OPENSSL_ia32cap_P
|
||||
.globl rsaz_avx512ifma_eligible
|
||||
.type rsaz_avx512ifma_eligible,\@abi-omnipotent
|
||||
.align 32
|
||||
rsaz_avx512ifma_eligible:
|
||||
mov OPENSSL_ia32cap_P+8(%rip), %ecx
|
||||
xor %eax,%eax
|
||||
and \$`1<<31|1<<21|1<<17|1<<16`, %ecx # avx512vl + avx512ifma + avx512dq + avx512f
|
||||
cmp \$`1<<31|1<<21|1<<17|1<<16`, %ecx
|
||||
cmove %ecx,%eax
|
||||
ret
|
||||
.size rsaz_avx512ifma_eligible, .-rsaz_avx512ifma_eligible
|
||||
___
|
||||
|
||||
###############################################################################
|
||||
# Almost Montgomery Multiplication (AMM) for 20-digit number in radix 2^52.
|
||||
#
|
||||
# AMM is defined as presented in the paper
|
||||
# "Efficient Software Implementations of Modular Exponentiation" by Shay Gueron.
|
||||
#
|
||||
# The input and output are presented in 2^52 radix domain, i.e.
|
||||
# |res|, |a|, |b|, |m| are arrays of 20 64-bit qwords with 12 high bits zeroed.
|
||||
# |k0| is a Montgomery coefficient, which is here k0 = -1/m mod 2^64
|
||||
# (note, the implementation counts only 52 bits from it).
|
||||
#
|
||||
# NB: the AMM implementation does not perform "conditional" subtraction step as
|
||||
# specified in the original algorithm as according to the paper "Enhanced Montgomery
|
||||
# Multiplication" by Shay Gueron (see Lemma 1), the result will be always < 2*2^1024
|
||||
# and can be used as a direct input to the next AMM iteration.
|
||||
# This post-condition is true, provided the correct parameter |s| is choosen, i.e.
|
||||
# s >= n + 2 * k, which matches our case: 1040 > 1024 + 2 * 1.
|
||||
#
|
||||
# void RSAZ_amm52x20_x1_256(BN_ULONG *res,
|
||||
# const BN_ULONG *a,
|
||||
# const BN_ULONG *b,
|
||||
# const BN_ULONG *m,
|
||||
# BN_ULONG k0);
|
||||
###############################################################################
|
||||
{
|
||||
# input parameters ("%rdi","%rsi","%rdx","%rcx","%r8")
|
||||
my ($res,$a,$b,$m,$k0) = @_6_args_universal_ABI;
|
||||
|
||||
my $mask52 = "%rax";
|
||||
my $acc0_0 = "%r9";
|
||||
my $acc0_0_low = "%r9d";
|
||||
my $acc0_1 = "%r15";
|
||||
my $acc0_1_low = "%r15d";
|
||||
my $b_ptr = "%r11";
|
||||
|
||||
my $iter = "%ebx";
|
||||
|
||||
my $zero = "%ymm0";
|
||||
my ($R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0) = ("%ymm1", map("%ymm$_",(16..19)));
|
||||
my ($R0_1,$R0_1h,$R1_1,$R1_1h,$R2_1) = ("%ymm2", map("%ymm$_",(20..23)));
|
||||
my $Bi = "%ymm3";
|
||||
my $Yi = "%ymm4";
|
||||
|
||||
# Registers mapping for normalization.
|
||||
# We can reuse Bi, Yi registers here.
|
||||
my $TMP = $Bi;
|
||||
my $mask52x4 = $Yi;
|
||||
my ($T0,$T0h,$T1,$T1h,$T2) = map("%ymm$_", (24..28));
|
||||
|
||||
sub amm52x20_x1() {
|
||||
# _data_offset - offset in the |a| or |m| arrays pointing to the beginning
|
||||
# of data for corresponding AMM operation;
|
||||
# _b_offset - offset in the |b| array pointing to the next qword digit;
|
||||
my ($_data_offset,$_b_offset,$_acc,$_R0,$_R0h,$_R1,$_R1h,$_R2,$_k0) = @_;
|
||||
my $_R0_xmm = $_R0 =~ s/%y/%x/r;
|
||||
$code.=<<___;
|
||||
movq $_b_offset($b_ptr), %r13 # b[i]
|
||||
|
||||
vpbroadcastq %r13, $Bi # broadcast b[i]
|
||||
movq $_data_offset($a), %rdx
|
||||
mulx %r13, %r13, %r12 # a[0]*b[i] = (t0,t2)
|
||||
addq %r13, $_acc # acc += t0
|
||||
movq %r12, %r10
|
||||
adcq \$0, %r10 # t2 += CF
|
||||
|
||||
movq $_k0, %r13
|
||||
imulq $_acc, %r13 # acc * k0
|
||||
andq $mask52, %r13 # yi = (acc * k0) & mask52
|
||||
|
||||
vpbroadcastq %r13, $Yi # broadcast y[i]
|
||||
movq $_data_offset($m), %rdx
|
||||
mulx %r13, %r13, %r12 # yi * m[0] = (t0,t1)
|
||||
addq %r13, $_acc # acc += t0
|
||||
adcq %r12, %r10 # t2 += (t1 + CF)
|
||||
|
||||
shrq \$52, $_acc
|
||||
salq \$12, %r10
|
||||
or %r10, $_acc # acc = ((acc >> 52) | (t2 << 12))
|
||||
|
||||
vpmadd52luq `$_data_offset+64*0`($a), $Bi, $_R0
|
||||
vpmadd52luq `$_data_offset+64*0+32`($a), $Bi, $_R0h
|
||||
vpmadd52luq `$_data_offset+64*1`($a), $Bi, $_R1
|
||||
vpmadd52luq `$_data_offset+64*1+32`($a), $Bi, $_R1h
|
||||
vpmadd52luq `$_data_offset+64*2`($a), $Bi, $_R2
|
||||
|
||||
vpmadd52luq `$_data_offset+64*0`($m), $Yi, $_R0
|
||||
vpmadd52luq `$_data_offset+64*0+32`($m), $Yi, $_R0h
|
||||
vpmadd52luq `$_data_offset+64*1`($m), $Yi, $_R1
|
||||
vpmadd52luq `$_data_offset+64*1+32`($m), $Yi, $_R1h
|
||||
vpmadd52luq `$_data_offset+64*2`($m), $Yi, $_R2
|
||||
|
||||
# Shift accumulators right by 1 qword, zero extending the highest one
|
||||
valignq \$1, $_R0, $_R0h, $_R0
|
||||
valignq \$1, $_R0h, $_R1, $_R0h
|
||||
valignq \$1, $_R1, $_R1h, $_R1
|
||||
valignq \$1, $_R1h, $_R2, $_R1h
|
||||
valignq \$1, $_R2, $zero, $_R2
|
||||
|
||||
vmovq $_R0_xmm, %r13
|
||||
addq %r13, $_acc # acc += R0[0]
|
||||
|
||||
vpmadd52huq `$_data_offset+64*0`($a), $Bi, $_R0
|
||||
vpmadd52huq `$_data_offset+64*0+32`($a), $Bi, $_R0h
|
||||
vpmadd52huq `$_data_offset+64*1`($a), $Bi, $_R1
|
||||
vpmadd52huq `$_data_offset+64*1+32`($a), $Bi, $_R1h
|
||||
vpmadd52huq `$_data_offset+64*2`($a), $Bi, $_R2
|
||||
|
||||
vpmadd52huq `$_data_offset+64*0`($m), $Yi, $_R0
|
||||
vpmadd52huq `$_data_offset+64*0+32`($m), $Yi, $_R0h
|
||||
vpmadd52huq `$_data_offset+64*1`($m), $Yi, $_R1
|
||||
vpmadd52huq `$_data_offset+64*1+32`($m), $Yi, $_R1h
|
||||
vpmadd52huq `$_data_offset+64*2`($m), $Yi, $_R2
|
||||
___
|
||||
}
|
||||
|
||||
# Normalization routine: handles carry bits in R0..R2 QWs and
|
||||
# gets R0..R2 back to normalized 2^52 representation.
|
||||
#
|
||||
# Uses %r8-14,%e[bcd]x
|
||||
sub amm52x20_x1_norm {
|
||||
my ($_acc,$_R0,$_R0h,$_R1,$_R1h,$_R2) = @_;
|
||||
$code.=<<___;
|
||||
# Put accumulator to low qword in R0
|
||||
vpbroadcastq $_acc, $TMP
|
||||
vpblendd \$3, $TMP, $_R0, $_R0
|
||||
|
||||
# Extract "carries" (12 high bits) from each QW of R0..R2
|
||||
# Save them to LSB of QWs in T0..T2
|
||||
vpsrlq \$52, $_R0, $T0
|
||||
vpsrlq \$52, $_R0h, $T0h
|
||||
vpsrlq \$52, $_R1, $T1
|
||||
vpsrlq \$52, $_R1h, $T1h
|
||||
vpsrlq \$52, $_R2, $T2
|
||||
|
||||
# "Shift left" T0..T2 by 1 QW
|
||||
valignq \$3, $T1h, $T2, $T2
|
||||
valignq \$3, $T1, $T1h, $T1h
|
||||
valignq \$3, $T0h, $T1, $T1
|
||||
valignq \$3, $T0, $T0h, $T0h
|
||||
valignq \$3, $zero, $T0, $T0
|
||||
|
||||
# Drop "carries" from R0..R2 QWs
|
||||
vpandq $mask52x4, $_R0, $_R0
|
||||
vpandq $mask52x4, $_R0h, $_R0h
|
||||
vpandq $mask52x4, $_R1, $_R1
|
||||
vpandq $mask52x4, $_R1h, $_R1h
|
||||
vpandq $mask52x4, $_R2, $_R2
|
||||
|
||||
# Sum R0..R2 with corresponding adjusted carries
|
||||
vpaddq $T0, $_R0, $_R0
|
||||
vpaddq $T0h, $_R0h, $_R0h
|
||||
vpaddq $T1, $_R1, $_R1
|
||||
vpaddq $T1h, $_R1h, $_R1h
|
||||
vpaddq $T2, $_R2, $_R2
|
||||
|
||||
# Now handle carry bits from this addition
|
||||
# Get mask of QWs which 52-bit parts overflow...
|
||||
vpcmpuq \$1, $_R0, $mask52x4, %k1 # OP=lt
|
||||
vpcmpuq \$1, $_R0h, $mask52x4, %k2
|
||||
vpcmpuq \$1, $_R1, $mask52x4, %k3
|
||||
vpcmpuq \$1, $_R1h, $mask52x4, %k4
|
||||
vpcmpuq \$1, $_R2, $mask52x4, %k5
|
||||
kmovb %k1, %r14d # k1
|
||||
kmovb %k2, %r13d # k1h
|
||||
kmovb %k3, %r12d # k2
|
||||
kmovb %k4, %r11d # k2h
|
||||
kmovb %k5, %r10d # k3
|
||||
|
||||
# ...or saturated
|
||||
vpcmpuq \$0, $_R0, $mask52x4, %k1 # OP=eq
|
||||
vpcmpuq \$0, $_R0h, $mask52x4, %k2
|
||||
vpcmpuq \$0, $_R1, $mask52x4, %k3
|
||||
vpcmpuq \$0, $_R1h, $mask52x4, %k4
|
||||
vpcmpuq \$0, $_R2, $mask52x4, %k5
|
||||
kmovb %k1, %r9d # k4
|
||||
kmovb %k2, %r8d # k4h
|
||||
kmovb %k3, %ebx # k5
|
||||
kmovb %k4, %ecx # k5h
|
||||
kmovb %k5, %edx # k6
|
||||
|
||||
# Get mask of QWs where carries shall be propagated to.
|
||||
# Merge 4-bit masks to 8-bit values to use add with carry.
|
||||
shl \$4, %r13b
|
||||
or %r13b, %r14b
|
||||
shl \$4, %r11b
|
||||
or %r11b, %r12b
|
||||
|
||||
add %r14b, %r14b
|
||||
adc %r12b, %r12b
|
||||
adc %r10b, %r10b
|
||||
|
||||
shl \$4, %r8b
|
||||
or %r8b,%r9b
|
||||
shl \$4, %cl
|
||||
or %cl, %bl
|
||||
|
||||
add %r9b, %r14b
|
||||
adc %bl, %r12b
|
||||
adc %dl, %r10b
|
||||
|
||||
xor %r9b, %r14b
|
||||
xor %bl, %r12b
|
||||
xor %dl, %r10b
|
||||
|
||||
kmovb %r14d, %k1
|
||||
shr \$4, %r14b
|
||||
kmovb %r14d, %k2
|
||||
kmovb %r12d, %k3
|
||||
shr \$4, %r12b
|
||||
kmovb %r12d, %k4
|
||||
kmovb %r10d, %k5
|
||||
|
||||
# Add carries according to the obtained mask
|
||||
vpsubq $mask52x4, $_R0, ${_R0}{%k1}
|
||||
vpsubq $mask52x4, $_R0h, ${_R0h}{%k2}
|
||||
vpsubq $mask52x4, $_R1, ${_R1}{%k3}
|
||||
vpsubq $mask52x4, $_R1h, ${_R1h}{%k4}
|
||||
vpsubq $mask52x4, $_R2, ${_R2}{%k5}
|
||||
|
||||
vpandq $mask52x4, $_R0, $_R0
|
||||
vpandq $mask52x4, $_R0h, $_R0h
|
||||
vpandq $mask52x4, $_R1, $_R1
|
||||
vpandq $mask52x4, $_R1h, $_R1h
|
||||
vpandq $mask52x4, $_R2, $_R2
|
||||
___
|
||||
}
|
||||
|
||||
$code.=<<___;
|
||||
.text
|
||||
|
||||
.globl RSAZ_amm52x20_x1_256
|
||||
.type RSAZ_amm52x20_x1_256,\@function,5
|
||||
.align 32
|
||||
RSAZ_amm52x20_x1_256:
|
||||
.cfi_startproc
|
||||
endbranch
|
||||
push %rbx
|
||||
.cfi_push %rbx
|
||||
push %rbp
|
||||
.cfi_push %rbp
|
||||
push %r12
|
||||
.cfi_push %r12
|
||||
push %r13
|
||||
.cfi_push %r13
|
||||
push %r14
|
||||
.cfi_push %r14
|
||||
push %r15
|
||||
.cfi_push %r15
|
||||
.Lrsaz_amm52x20_x1_256_body:
|
||||
|
||||
# Zeroing accumulators
|
||||
vpxord $zero, $zero, $zero
|
||||
vmovdqa64 $zero, $R0_0
|
||||
vmovdqa64 $zero, $R0_0h
|
||||
vmovdqa64 $zero, $R1_0
|
||||
vmovdqa64 $zero, $R1_0h
|
||||
vmovdqa64 $zero, $R2_0
|
||||
|
||||
xorl $acc0_0_low, $acc0_0_low
|
||||
|
||||
movq $b, $b_ptr # backup address of b
|
||||
movq \$0xfffffffffffff, $mask52 # 52-bit mask
|
||||
|
||||
# Loop over 20 digits unrolled by 4
|
||||
mov \$5, $iter
|
||||
|
||||
.align 32
|
||||
.Lloop5:
|
||||
___
|
||||
foreach my $idx (0..3) {
|
||||
&amm52x20_x1(0,8*$idx,$acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$k0);
|
||||
}
|
||||
$code.=<<___;
|
||||
lea `4*8`($b_ptr), $b_ptr
|
||||
dec $iter
|
||||
jne .Lloop5
|
||||
|
||||
vmovdqa64 .Lmask52x4(%rip), $mask52x4
|
||||
___
|
||||
&amm52x20_x1_norm($acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0);
|
||||
$code.=<<___;
|
||||
|
||||
vmovdqu64 $R0_0, ($res)
|
||||
vmovdqu64 $R0_0h, 32($res)
|
||||
vmovdqu64 $R1_0, 64($res)
|
||||
vmovdqu64 $R1_0h, 96($res)
|
||||
vmovdqu64 $R2_0, 128($res)
|
||||
|
||||
vzeroupper
|
||||
mov 0(%rsp),%r15
|
||||
.cfi_restore %r15
|
||||
mov 8(%rsp),%r14
|
||||
.cfi_restore %r14
|
||||
mov 16(%rsp),%r13
|
||||
.cfi_restore %r13
|
||||
mov 24(%rsp),%r12
|
||||
.cfi_restore %r12
|
||||
mov 32(%rsp),%rbp
|
||||
.cfi_restore %rbp
|
||||
mov 40(%rsp),%rbx
|
||||
.cfi_restore %rbx
|
||||
lea 48(%rsp),%rsp
|
||||
.cfi_adjust_cfa_offset -48
|
||||
.Lrsaz_amm52x20_x1_256_epilogue:
|
||||
ret
|
||||
.cfi_endproc
|
||||
.size RSAZ_amm52x20_x1_256, .-RSAZ_amm52x20_x1_256
|
||||
___
|
||||
|
||||
$code.=<<___;
|
||||
.data
|
||||
.align 32
|
||||
.Lmask52x4:
|
||||
.quad 0xfffffffffffff
|
||||
.quad 0xfffffffffffff
|
||||
.quad 0xfffffffffffff
|
||||
.quad 0xfffffffffffff
|
||||
___
|
||||
|
||||
###############################################################################
|
||||
# Dual Almost Montgomery Multiplication for 20-digit number in radix 2^52
|
||||
#
|
||||
# See description of RSAZ_amm52x20_x1_256() above for details about Almost
|
||||
# Montgomery Multiplication algorithm and function input parameters description.
|
||||
#
|
||||
# This function does two AMMs for two independent inputs, hence dual.
|
||||
#
|
||||
# void RSAZ_amm52x20_x2_256(BN_ULONG out[2][20],
|
||||
# const BN_ULONG a[2][20],
|
||||
# const BN_ULONG b[2][20],
|
||||
# const BN_ULONG m[2][20],
|
||||
# const BN_ULONG k0[2]);
|
||||
###############################################################################
|
||||
|
||||
$code.=<<___;
|
||||
.text
|
||||
|
||||
.globl RSAZ_amm52x20_x2_256
|
||||
.type RSAZ_amm52x20_x2_256,\@function,5
|
||||
.align 32
|
||||
RSAZ_amm52x20_x2_256:
|
||||
.cfi_startproc
|
||||
endbranch
|
||||
push %rbx
|
||||
.cfi_push %rbx
|
||||
push %rbp
|
||||
.cfi_push %rbp
|
||||
push %r12
|
||||
.cfi_push %r12
|
||||
push %r13
|
||||
.cfi_push %r13
|
||||
push %r14
|
||||
.cfi_push %r14
|
||||
push %r15
|
||||
.cfi_push %r15
|
||||
.Lrsaz_amm52x20_x2_256_body:
|
||||
|
||||
# Zeroing accumulators
|
||||
vpxord $zero, $zero, $zero
|
||||
vmovdqa64 $zero, $R0_0
|
||||
vmovdqa64 $zero, $R0_0h
|
||||
vmovdqa64 $zero, $R1_0
|
||||
vmovdqa64 $zero, $R1_0h
|
||||
vmovdqa64 $zero, $R2_0
|
||||
vmovdqa64 $zero, $R0_1
|
||||
vmovdqa64 $zero, $R0_1h
|
||||
vmovdqa64 $zero, $R1_1
|
||||
vmovdqa64 $zero, $R1_1h
|
||||
vmovdqa64 $zero, $R2_1
|
||||
|
||||
xorl $acc0_0_low, $acc0_0_low
|
||||
xorl $acc0_1_low, $acc0_1_low
|
||||
|
||||
movq $b, $b_ptr # backup address of b
|
||||
movq \$0xfffffffffffff, $mask52 # 52-bit mask
|
||||
|
||||
mov \$20, $iter
|
||||
|
||||
.align 32
|
||||
.Lloop20:
|
||||
___
|
||||
&amm52x20_x1( 0, 0,$acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,"($k0)");
|
||||
# 20*8 = offset of the next dimension in two-dimension array
|
||||
&amm52x20_x1(20*8,20*8,$acc0_1,$R0_1,$R0_1h,$R1_1,$R1_1h,$R2_1,"8($k0)");
|
||||
$code.=<<___;
|
||||
lea 8($b_ptr), $b_ptr
|
||||
dec $iter
|
||||
jne .Lloop20
|
||||
|
||||
vmovdqa64 .Lmask52x4(%rip), $mask52x4
|
||||
___
|
||||
&amm52x20_x1_norm($acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0);
|
||||
&amm52x20_x1_norm($acc0_1,$R0_1,$R0_1h,$R1_1,$R1_1h,$R2_1);
|
||||
$code.=<<___;
|
||||
|
||||
vmovdqu64 $R0_0, ($res)
|
||||
vmovdqu64 $R0_0h, 32($res)
|
||||
vmovdqu64 $R1_0, 64($res)
|
||||
vmovdqu64 $R1_0h, 96($res)
|
||||
vmovdqu64 $R2_0, 128($res)
|
||||
|
||||
vmovdqu64 $R0_1, 160($res)
|
||||
vmovdqu64 $R0_1h, 192($res)
|
||||
vmovdqu64 $R1_1, 224($res)
|
||||
vmovdqu64 $R1_1h, 256($res)
|
||||
vmovdqu64 $R2_1, 288($res)
|
||||
|
||||
vzeroupper
|
||||
mov 0(%rsp),%r15
|
||||
.cfi_restore %r15
|
||||
mov 8(%rsp),%r14
|
||||
.cfi_restore %r14
|
||||
mov 16(%rsp),%r13
|
||||
.cfi_restore %r13
|
||||
mov 24(%rsp),%r12
|
||||
.cfi_restore %r12
|
||||
mov 32(%rsp),%rbp
|
||||
.cfi_restore %rbp
|
||||
mov 40(%rsp),%rbx
|
||||
.cfi_restore %rbx
|
||||
lea 48(%rsp),%rsp
|
||||
.cfi_adjust_cfa_offset -48
|
||||
.Lrsaz_amm52x20_x2_256_epilogue:
|
||||
ret
|
||||
.cfi_endproc
|
||||
.size RSAZ_amm52x20_x2_256, .-RSAZ_amm52x20_x2_256
|
||||
___
|
||||
}
|
||||
|
||||
###############################################################################
|
||||
# Constant time extraction from the precomputed table of powers base^i, where
|
||||
# i = 0..2^EXP_WIN_SIZE-1
|
||||
#
|
||||
# The input |red_table| contains precomputations for two independent base values,
|
||||
# so the |tbl_idx| indicates for which base shall we extract the value.
|
||||
# |red_table_idx| is a power index.
|
||||
#
|
||||
# Extracted value (output) is 20 digit number in 2^52 radix.
|
||||
#
|
||||
# void extract_multiplier_2x20_win5(BN_ULONG *red_Y,
|
||||
# const BN_ULONG red_table[1 << EXP_WIN_SIZE][2][20],
|
||||
# int red_table_idx,
|
||||
# int tbl_idx); # 0 or 1
|
||||
#
|
||||
# EXP_WIN_SIZE = 5
|
||||
###############################################################################
|
||||
{
|
||||
# input parameters
|
||||
my ($out,$red_tbl,$red_tbl_idx,$tbl_idx) = @_6_args_universal_ABI;
|
||||
|
||||
my ($t0,$t1,$t2,$t3,$t4) = map("%ymm$_", (0..4));
|
||||
my $t4xmm = $t4 =~ s/%y/%x/r;
|
||||
my ($tmp0,$tmp1,$tmp2,$tmp3,$tmp4) = map("%ymm$_", (16..20));
|
||||
my ($cur_idx,$idx,$ones) = map("%ymm$_", (21..23));
|
||||
|
||||
$code.=<<___;
|
||||
.text
|
||||
|
||||
.align 32
|
||||
.globl extract_multiplier_2x20_win5
|
||||
.type extract_multiplier_2x20_win5,\@function,4
|
||||
extract_multiplier_2x20_win5:
|
||||
.cfi_startproc
|
||||
endbranch
|
||||
leaq ($tbl_idx,$tbl_idx,4), %rax
|
||||
salq \$5, %rax
|
||||
addq %rax, $red_tbl
|
||||
|
||||
vmovdqa64 .Lones(%rip), $ones # broadcast ones
|
||||
vpbroadcastq $red_tbl_idx, $idx
|
||||
leaq `(1<<5)*2*20*8`($red_tbl), %rax # holds end of the tbl
|
||||
|
||||
vpxor $t4xmm, $t4xmm, $t4xmm
|
||||
vmovdqa64 $t4, $t3 # zeroing t0..4, cur_idx
|
||||
vmovdqa64 $t4, $t2
|
||||
vmovdqa64 $t4, $t1
|
||||
vmovdqa64 $t4, $t0
|
||||
vmovdqa64 $t4, $cur_idx
|
||||
|
||||
.align 32
|
||||
.Lloop:
|
||||
vpcmpq \$0, $cur_idx, $idx, %k1 # mask of (idx == cur_idx)
|
||||
addq \$320, $red_tbl # 320 = 2 * 20 digits * 8 bytes
|
||||
vpaddq $ones, $cur_idx, $cur_idx # increment cur_idx
|
||||
vmovdqu64 -320($red_tbl), $tmp0 # load data from red_tbl
|
||||
vmovdqu64 -288($red_tbl), $tmp1
|
||||
vmovdqu64 -256($red_tbl), $tmp2
|
||||
vmovdqu64 -224($red_tbl), $tmp3
|
||||
vmovdqu64 -192($red_tbl), $tmp4
|
||||
vpblendmq $tmp0, $t0, ${t0}{%k1} # extract data when mask is not zero
|
||||
vpblendmq $tmp1, $t1, ${t1}{%k1}
|
||||
vpblendmq $tmp2, $t2, ${t2}{%k1}
|
||||
vpblendmq $tmp3, $t3, ${t3}{%k1}
|
||||
vpblendmq $tmp4, $t4, ${t4}{%k1}
|
||||
cmpq $red_tbl, %rax
|
||||
jne .Lloop
|
||||
|
||||
vmovdqu64 $t0, ($out) # store t0..4
|
||||
vmovdqu64 $t1, 32($out)
|
||||
vmovdqu64 $t2, 64($out)
|
||||
vmovdqu64 $t3, 96($out)
|
||||
vmovdqu64 $t4, 128($out)
|
||||
|
||||
ret
|
||||
.cfi_endproc
|
||||
.size extract_multiplier_2x20_win5, .-extract_multiplier_2x20_win5
|
||||
___
|
||||
$code.=<<___;
|
||||
.data
|
||||
.align 32
|
||||
.Lones:
|
||||
.quad 1,1,1,1
|
||||
___
|
||||
}
|
||||
|
||||
if ($win64) {
|
||||
$rec="%rcx";
|
||||
$frame="%rdx";
|
||||
$context="%r8";
|
||||
$disp="%r9";
|
||||
|
||||
$code.=<<___
|
||||
.extern __imp_RtlVirtualUnwind
|
||||
.type rsaz_def_handler,\@abi-omnipotent
|
||||
.align 16
|
||||
rsaz_def_handler:
|
||||
push %rsi
|
||||
push %rdi
|
||||
push %rbx
|
||||
push %rbp
|
||||
push %r12
|
||||
push %r13
|
||||
push %r14
|
||||
push %r15
|
||||
pushfq
|
||||
sub \$64,%rsp
|
||||
|
||||
mov 120($context),%rax # pull context->Rax
|
||||
mov 248($context),%rbx # pull context->Rip
|
||||
|
||||
mov 8($disp),%rsi # disp->ImageBase
|
||||
mov 56($disp),%r11 # disp->HandlerData
|
||||
|
||||
mov 0(%r11),%r10d # HandlerData[0]
|
||||
lea (%rsi,%r10),%r10 # prologue label
|
||||
cmp %r10,%rbx # context->Rip<.Lprologue
|
||||
jb .Lcommon_seh_tail
|
||||
|
||||
mov 152($context),%rax # pull context->Rsp
|
||||
|
||||
mov 4(%r11),%r10d # HandlerData[1]
|
||||
lea (%rsi,%r10),%r10 # epilogue label
|
||||
cmp %r10,%rbx # context->Rip>=.Lepilogue
|
||||
jae .Lcommon_seh_tail
|
||||
|
||||
lea 48(%rax),%rax
|
||||
|
||||
mov -8(%rax),%rbx
|
||||
mov -16(%rax),%rbp
|
||||
mov -24(%rax),%r12
|
||||
mov -32(%rax),%r13
|
||||
mov -40(%rax),%r14
|
||||
mov -48(%rax),%r15
|
||||
mov %rbx,144($context) # restore context->Rbx
|
||||
mov %rbp,160($context) # restore context->Rbp
|
||||
mov %r12,216($context) # restore context->R12
|
||||
mov %r13,224($context) # restore context->R13
|
||||
mov %r14,232($context) # restore context->R14
|
||||
mov %r15,240($context) # restore context->R14
|
||||
|
||||
.Lcommon_seh_tail:
|
||||
mov 8(%rax),%rdi
|
||||
mov 16(%rax),%rsi
|
||||
mov %rax,152($context) # restore context->Rsp
|
||||
mov %rsi,168($context) # restore context->Rsi
|
||||
mov %rdi,176($context) # restore context->Rdi
|
||||
|
||||
mov 40($disp),%rdi # disp->ContextRecord
|
||||
mov $context,%rsi # context
|
||||
mov \$154,%ecx # sizeof(CONTEXT)
|
||||
.long 0xa548f3fc # cld; rep movsq
|
||||
|
||||
mov $disp,%rsi
|
||||
xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
|
||||
mov 8(%rsi),%rdx # arg2, disp->ImageBase
|
||||
mov 0(%rsi),%r8 # arg3, disp->ControlPc
|
||||
mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
|
||||
mov 40(%rsi),%r10 # disp->ContextRecord
|
||||
lea 56(%rsi),%r11 # &disp->HandlerData
|
||||
lea 24(%rsi),%r12 # &disp->EstablisherFrame
|
||||
mov %r10,32(%rsp) # arg5
|
||||
mov %r11,40(%rsp) # arg6
|
||||
mov %r12,48(%rsp) # arg7
|
||||
mov %rcx,56(%rsp) # arg8, (NULL)
|
||||
call *__imp_RtlVirtualUnwind(%rip)
|
||||
|
||||
mov \$1,%eax # ExceptionContinueSearch
|
||||
add \$64,%rsp
|
||||
popfq
|
||||
pop %r15
|
||||
pop %r14
|
||||
pop %r13
|
||||
pop %r12
|
||||
pop %rbp
|
||||
pop %rbx
|
||||
pop %rdi
|
||||
pop %rsi
|
||||
ret
|
||||
.size rsaz_def_handler,.-rsaz_def_handler
|
||||
|
||||
.section .pdata
|
||||
.align 4
|
||||
.rva .LSEH_begin_RSAZ_amm52x20_x1_256
|
||||
.rva .LSEH_end_RSAZ_amm52x20_x1_256
|
||||
.rva .LSEH_info_RSAZ_amm52x20_x1_256
|
||||
|
||||
.rva .LSEH_begin_extract_multiplier_2x20_win5
|
||||
.rva .LSEH_end_extract_multiplier_2x20_win5
|
||||
.rva .LSEH_info_extract_multiplier_2x20_win5
|
||||
|
||||
.rva .LSEH_begin_RSAZ_amm52x20_x2_256
|
||||
.rva .LSEH_end_RSAZ_amm52x20_x2_256
|
||||
.rva .LSEH_info_RSAZ_amm52x20_x2_256
|
||||
|
||||
.section .xdata
|
||||
.align 8
|
||||
.LSEH_info_RSAZ_amm52x20_x1_256:
|
||||
.byte 9,0,0,0
|
||||
.rva rsaz_def_handler
|
||||
.rva .Lrsaz_amm52x20_x1_256_body,.Lrsaz_amm52x20_x1_256_epilogue
|
||||
.LSEH_info_extract_multiplier_2x20_win5:
|
||||
.byte 9,0,0,0
|
||||
.rva rsaz_def_handler
|
||||
.rva .LSEH_begin_extract_multiplier_2x20_win5,.LSEH_begin_extract_multiplier_2x20_win5
|
||||
.LSEH_info_RSAZ_amm52x20_x2_256:
|
||||
.byte 9,0,0,0
|
||||
.rva rsaz_def_handler
|
||||
.rva .Lrsaz_amm52x20_x2_256_body,.Lrsaz_amm52x20_x2_256_epilogue
|
||||
___
|
||||
}
|
||||
}}} else {{{ # fallback for old assembler
|
||||
$code.=<<___;
|
||||
.text
|
||||
|
||||
.globl rsaz_avx512ifma_eligible
|
||||
.type rsaz_avx512ifma_eligible,\@abi-omnipotent
|
||||
rsaz_avx512ifma_eligible:
|
||||
xor %eax,%eax
|
||||
ret
|
||||
.size rsaz_avx512ifma_eligible, .-rsaz_avx512ifma_eligible
|
||||
|
||||
.globl RSAZ_amm52x20_x1_256
|
||||
.globl RSAZ_amm52x20_x2_256
|
||||
.globl extract_multiplier_2x20_win5
|
||||
.type RSAZ_amm52x20_x1_256,\@abi-omnipotent
|
||||
RSAZ_amm52x20_x1_256:
|
||||
RSAZ_amm52x20_x2_256:
|
||||
extract_multiplier_2x20_win5:
|
||||
.byte 0x0f,0x0b # ud2
|
||||
ret
|
||||
.size RSAZ_amm52x20_x1_256, .-RSAZ_amm52x20_x1_256
|
||||
___
|
||||
}}}
|
||||
|
||||
$code =~ s/\`([^\`]*)\`/eval $1/gem;
|
||||
print $code;
|
||||
close STDOUT or die "error closing STDOUT: $!";
|
@ -1390,3 +1390,85 @@ int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
|
||||
bn_check_top(r);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* This is a variant of modular exponentiation optimization that does
|
||||
* parallel 2-primes exponentiation using 256-bit (AVX512VL) AVX512_IFMA ISA
|
||||
* in 52-bit binary redundant representation.
|
||||
* If such instructions are not available, or input data size is not supported,
|
||||
* it falls back to two BN_mod_exp_mont_consttime() calls.
|
||||
*/
|
||||
int BN_mod_exp_mont_consttime_x2(BIGNUM *rr1, const BIGNUM *a1, const BIGNUM *p1,
|
||||
const BIGNUM *m1, BN_MONT_CTX *in_mont1,
|
||||
BIGNUM *rr2, const BIGNUM *a2, const BIGNUM *p2,
|
||||
const BIGNUM *m2, BN_MONT_CTX *in_mont2,
|
||||
BN_CTX *ctx)
|
||||
{
|
||||
int ret = 0;
|
||||
|
||||
#ifdef RSAZ_ENABLED
|
||||
BN_MONT_CTX *mont1 = NULL;
|
||||
BN_MONT_CTX *mont2 = NULL;
|
||||
|
||||
if (rsaz_avx512ifma_eligible() &&
|
||||
((a1->top == 16) && (p1->top == 16) && (BN_num_bits(m1) == 1024) &&
|
||||
(a2->top == 16) && (p2->top == 16) && (BN_num_bits(m2) == 1024))) {
|
||||
|
||||
if (bn_wexpand(rr1, 16) == NULL)
|
||||
goto err;
|
||||
if (bn_wexpand(rr2, 16) == NULL)
|
||||
goto err;
|
||||
|
||||
/* Ensure that montgomery contexts are initialized */
|
||||
if (in_mont1 != NULL) {
|
||||
mont1 = in_mont1;
|
||||
} else {
|
||||
if ((mont1 = BN_MONT_CTX_new()) == NULL)
|
||||
goto err;
|
||||
if (!BN_MONT_CTX_set(mont1, m1, ctx))
|
||||
goto err;
|
||||
}
|
||||
if (in_mont2 != NULL) {
|
||||
mont2 = in_mont2;
|
||||
} else {
|
||||
if ((mont2 = BN_MONT_CTX_new()) == NULL)
|
||||
goto err;
|
||||
if (!BN_MONT_CTX_set(mont2, m2, ctx))
|
||||
goto err;
|
||||
}
|
||||
|
||||
ret = RSAZ_mod_exp_avx512_x2(rr1->d, a1->d, p1->d, m1->d, mont1->RR.d,
|
||||
mont1->n0[0],
|
||||
rr2->d, a2->d, p2->d, m2->d, mont2->RR.d,
|
||||
mont2->n0[0],
|
||||
1024 /* factor bit size */);
|
||||
|
||||
rr1->top = 16;
|
||||
rr1->neg = 0;
|
||||
bn_correct_top(rr1);
|
||||
bn_check_top(rr1);
|
||||
|
||||
rr2->top = 16;
|
||||
rr2->neg = 0;
|
||||
bn_correct_top(rr2);
|
||||
bn_check_top(rr2);
|
||||
|
||||
goto err;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* rr1 = a1^p1 mod m1 */
|
||||
ret = BN_mod_exp_mont_consttime(rr1, a1, p1, m1, ctx, in_mont1);
|
||||
/* rr2 = a2^p2 mod m2 */
|
||||
ret &= BN_mod_exp_mont_consttime(rr2, a2, p2, m2, ctx, in_mont2);
|
||||
|
||||
#ifdef RSAZ_ENABLED
|
||||
err:
|
||||
if (in_mont2 == NULL)
|
||||
BN_MONT_CTX_free(mont2);
|
||||
if (in_mont1 == NULL)
|
||||
BN_MONT_CTX_free(mont1);
|
||||
#endif
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
@ -24,7 +24,7 @@ IF[{- !$disabled{asm} -}]
|
||||
|
||||
$BNASM_x86_64=\
|
||||
x86_64-mont.s x86_64-mont5.s x86_64-gf2m.s rsaz_exp.c rsaz-x86_64.s \
|
||||
rsaz-avx2.s
|
||||
rsaz-avx2.s rsaz_exp_x2.c rsaz-avx512.s
|
||||
IF[{- $config{target} !~ /^VC/ -}]
|
||||
$BNASM_x86_64=asm/x86_64-gcc.c $BNASM_x86_64
|
||||
ELSE
|
||||
@ -154,6 +154,7 @@ GENERATE[x86_64-mont5.s]=asm/x86_64-mont5.pl
|
||||
GENERATE[x86_64-gf2m.s]=asm/x86_64-gf2m.pl
|
||||
GENERATE[rsaz-x86_64.s]=asm/rsaz-x86_64.pl
|
||||
GENERATE[rsaz-avx2.s]=asm/rsaz-avx2.pl
|
||||
GENERATE[rsaz-avx512.s]=asm/rsaz-avx512.pl
|
||||
|
||||
GENERATE[bn-ia64.s]=asm/ia64.S
|
||||
GENERATE[ia64-mont.s]=asm/ia64-mont.pl
|
||||
|
@ -1,6 +1,6 @@
|
||||
/*
|
||||
* Copyright 2013-2018 The OpenSSL Project Authors. All Rights Reserved.
|
||||
* Copyright (c) 2012, Intel Corporation. All Rights Reserved.
|
||||
* Copyright 2013-2020 The OpenSSL Project Authors. All Rights Reserved.
|
||||
* Copyright (c) 2020, Intel Corporation. All Rights Reserved.
|
||||
*
|
||||
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
||||
* this file except in compliance with the License. You can obtain a copy
|
||||
@ -35,6 +35,23 @@ void RSAZ_512_mod_exp(BN_ULONG result[8],
|
||||
const BN_ULONG m_norm[8], BN_ULONG k0,
|
||||
const BN_ULONG RR[8]);
|
||||
|
||||
|
||||
int rsaz_avx512ifma_eligible(void);
|
||||
|
||||
int RSAZ_mod_exp_avx512_x2(BN_ULONG *res1,
|
||||
const BN_ULONG *base1,
|
||||
const BN_ULONG *exponent1,
|
||||
const BN_ULONG *m1,
|
||||
const BN_ULONG *RR1,
|
||||
BN_ULONG k0_1,
|
||||
BN_ULONG *res2,
|
||||
const BN_ULONG *base2,
|
||||
const BN_ULONG *exponent2,
|
||||
const BN_ULONG *m2,
|
||||
const BN_ULONG *RR2,
|
||||
BN_ULONG k0_2,
|
||||
int factor_size);
|
||||
|
||||
# endif
|
||||
|
||||
#endif
|
||||
|
542
crypto/bn/rsaz_exp_x2.c
Normal file
542
crypto/bn/rsaz_exp_x2.c
Normal file
@ -0,0 +1,542 @@
|
||||
/*
|
||||
* Copyright 2020 The OpenSSL Project Authors. All Rights Reserved.
|
||||
* Copyright (c) 2020, Intel Corporation. All Rights Reserved.
|
||||
*
|
||||
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
||||
* this file except in compliance with the License. You can obtain a copy
|
||||
* in the file LICENSE in the source distribution or at
|
||||
* https://www.openssl.org/source/license.html
|
||||
*
|
||||
*
|
||||
* Originally written by Ilya Albrekht, Sergey Kirillov and Andrey Matyukov
|
||||
* Intel Corporation
|
||||
*
|
||||
*/
|
||||
|
||||
#include <openssl/opensslconf.h>
|
||||
#include "rsaz_exp.h"
|
||||
|
||||
#ifndef RSAZ_ENABLED
|
||||
NON_EMPTY_TRANSLATION_UNIT
|
||||
#else
|
||||
# include <assert.h>
|
||||
# include <string.h>
|
||||
|
||||
# if defined(__GNUC__)
|
||||
# define ALIGN64 __attribute__((aligned(64)))
|
||||
# elif defined(_MSC_VER)
|
||||
# define ALIGN64 __declspec(align(64))
|
||||
# else
|
||||
# define ALIGN64
|
||||
# endif
|
||||
|
||||
# define ALIGN_OF(ptr, boundary) \
|
||||
((unsigned char *)(ptr) + (boundary - (((size_t)(ptr)) & (boundary - 1))))
|
||||
|
||||
/* Internal radix */
|
||||
# define DIGIT_SIZE (52)
|
||||
/* 52-bit mask */
|
||||
# define DIGIT_MASK ((uint64_t)0xFFFFFFFFFFFFF)
|
||||
|
||||
# define BITS2WORD8_SIZE(x) (((x) + 7) >> 3)
|
||||
# define BITS2WORD64_SIZE(x) (((x) + 63) >> 6)
|
||||
|
||||
static ossl_inline uint64_t get_digit52(const uint8_t *in, int in_len);
|
||||
static ossl_inline void put_digit52(uint8_t *out, int out_len, uint64_t digit);
|
||||
static void to_words52(BN_ULONG *out, int out_len, const BN_ULONG *in,
|
||||
int in_bitsize);
|
||||
static void from_words52(BN_ULONG *bn_out, int out_bitsize, const BN_ULONG *in);
|
||||
static ossl_inline void set_bit(BN_ULONG *a, int idx);
|
||||
|
||||
/* Number of |digit_size|-bit digits in |bitsize|-bit value */
|
||||
static ossl_inline int number_of_digits(int bitsize, int digit_size)
|
||||
{
|
||||
return (bitsize + digit_size - 1) / digit_size;
|
||||
}
|
||||
|
||||
typedef void (*AMM52)(BN_ULONG *res, const BN_ULONG *base,
|
||||
const BN_ULONG *exp, const BN_ULONG *m, BN_ULONG k0);
|
||||
typedef void (*EXP52_x2)(BN_ULONG *res, const BN_ULONG *base,
|
||||
const BN_ULONG *exp[2], const BN_ULONG *m,
|
||||
const BN_ULONG *rr, const BN_ULONG k0[2]);
|
||||
|
||||
/*
|
||||
* For details of the methods declared below please refer to
|
||||
* crypto/bn/asm/rsaz-avx512.pl
|
||||
*
|
||||
* Naming notes:
|
||||
* amm = Almost Montgomery Multiplication
|
||||
* ams = Almost Montgomery Squaring
|
||||
* 52x20 - data represented as array of 20 digits in 52-bit radix
|
||||
* _x1_/_x2_ - 1 or 2 independent inputs/outputs
|
||||
* _256 suffix - uses 256-bit (AVX512VL) registers
|
||||
*/
|
||||
|
||||
/*AMM = Almost Montgomery Multiplication. */
|
||||
void RSAZ_amm52x20_x1_256(BN_ULONG *res, const BN_ULONG *base,
|
||||
const BN_ULONG *exp, const BN_ULONG *m,
|
||||
BN_ULONG k0);
|
||||
void RSAZ_exp52x20_x2_256(BN_ULONG *res, const BN_ULONG *base,
|
||||
const BN_ULONG *exp[2], const BN_ULONG *m,
|
||||
const BN_ULONG *rr, const BN_ULONG k0[2]);
|
||||
void RSAZ_amm52x20_x2_256(BN_ULONG *out, const BN_ULONG *a,
|
||||
const BN_ULONG *b, const BN_ULONG *m,
|
||||
const BN_ULONG k0[2]);
|
||||
void extract_multiplier_2x20_win5(BN_ULONG *red_Y,
|
||||
const BN_ULONG *red_table,
|
||||
int red_table_idx, int tbl_idx);
|
||||
|
||||
/*
|
||||
* Dual Montgomery modular exponentiation using prime moduli of the
|
||||
* same bit size, optimized with AVX512 ISA.
|
||||
*
|
||||
* Input and output parameters for each exponentiation are independent and
|
||||
* denoted here by index |i|, i = 1..2.
|
||||
*
|
||||
* Input and output are all in regular 2^64 radix.
|
||||
*
|
||||
* Each moduli shall be |factor_size| bit size.
|
||||
*
|
||||
* NOTE: currently only 2x1024 case is supported.
|
||||
*
|
||||
* [out] res|i| - result of modular exponentiation: array of qword values
|
||||
* in regular (2^64) radix. Size of array shall be enough
|
||||
* to hold |factor_size| bits.
|
||||
* [in] base|i| - base
|
||||
* [in] exp|i| - exponent
|
||||
* [in] m|i| - moduli
|
||||
* [in] rr|i| - Montgomery parameter RR = R^2 mod m|i|
|
||||
* [in] k0_|i| - Montgomery parameter k0 = -1/m|i| mod 2^64
|
||||
* [in] factor_size - moduli bit size
|
||||
*
|
||||
* \return 0 in case of failure,
|
||||
* 1 in case of success.
|
||||
*/
|
||||
int RSAZ_mod_exp_avx512_x2(BN_ULONG *res1,
|
||||
const BN_ULONG *base1,
|
||||
const BN_ULONG *exp1,
|
||||
const BN_ULONG *m1,
|
||||
const BN_ULONG *rr1,
|
||||
BN_ULONG k0_1,
|
||||
BN_ULONG *res2,
|
||||
const BN_ULONG *base2,
|
||||
const BN_ULONG *exp2,
|
||||
const BN_ULONG *m2,
|
||||
const BN_ULONG *rr2,
|
||||
BN_ULONG k0_2,
|
||||
int factor_size)
|
||||
{
|
||||
int ret = 0;
|
||||
|
||||
/*
|
||||
* Number of word-size (BN_ULONG) digits to store exponent in redundant
|
||||
* representation.
|
||||
*/
|
||||
int exp_digits = number_of_digits(factor_size + 2, DIGIT_SIZE);
|
||||
int coeff_pow = 4 * (DIGIT_SIZE * exp_digits - factor_size);
|
||||
BN_ULONG *base1_red, *m1_red, *rr1_red;
|
||||
BN_ULONG *base2_red, *m2_red, *rr2_red;
|
||||
BN_ULONG *coeff_red;
|
||||
BN_ULONG *storage = NULL;
|
||||
BN_ULONG *storage_aligned = NULL;
|
||||
BN_ULONG storage_len_bytes = 7 * exp_digits * sizeof(BN_ULONG);
|
||||
|
||||
/* AMM = Almost Montgomery Multiplication */
|
||||
AMM52 amm = NULL;
|
||||
/* Dual (2-exps in parallel) exponentiation */
|
||||
EXP52_x2 exp_x2 = NULL;
|
||||
|
||||
const BN_ULONG *exp[2] = {0};
|
||||
BN_ULONG k0[2] = {0};
|
||||
|
||||
/* Only 1024-bit factor size is supported now */
|
||||
switch (factor_size) {
|
||||
case 1024:
|
||||
amm = RSAZ_amm52x20_x1_256;
|
||||
exp_x2 = RSAZ_exp52x20_x2_256;
|
||||
break;
|
||||
default:
|
||||
goto err;
|
||||
}
|
||||
|
||||
storage = (BN_ULONG *)OPENSSL_malloc(storage_len_bytes + 64);
|
||||
if (storage == NULL)
|
||||
goto err;
|
||||
storage_aligned = (BN_ULONG *)ALIGN_OF(storage, 64);
|
||||
|
||||
/* Memory layout for red(undant) representations */
|
||||
base1_red = storage_aligned;
|
||||
base2_red = storage_aligned + 1 * exp_digits;
|
||||
m1_red = storage_aligned + 2 * exp_digits;
|
||||
m2_red = storage_aligned + 3 * exp_digits;
|
||||
rr1_red = storage_aligned + 4 * exp_digits;
|
||||
rr2_red = storage_aligned + 5 * exp_digits;
|
||||
coeff_red = storage_aligned + 6 * exp_digits;
|
||||
|
||||
/* Convert base_i, m_i, rr_i, from regular to 52-bit radix */
|
||||
to_words52(base1_red, exp_digits, base1, factor_size);
|
||||
to_words52(base2_red, exp_digits, base2, factor_size);
|
||||
to_words52(m1_red, exp_digits, m1, factor_size);
|
||||
to_words52(m2_red, exp_digits, m2, factor_size);
|
||||
to_words52(rr1_red, exp_digits, rr1, factor_size);
|
||||
to_words52(rr2_red, exp_digits, rr2, factor_size);
|
||||
|
||||
/*
|
||||
* Compute target domain Montgomery converters RR' for each modulus
|
||||
* based on precomputed original domain's RR.
|
||||
*
|
||||
* RR -> RR' transformation steps:
|
||||
* (1) coeff = 2^k
|
||||
* (2) t = AMM(RR,RR) = RR^2 / R' mod m
|
||||
* (3) RR' = AMM(t, coeff) = RR^2 * 2^k / R'^2 mod m
|
||||
* where
|
||||
* k = 4 * (52 * digits52 - modlen)
|
||||
* R = 2^(64 * ceil(modlen/64)) mod m
|
||||
* RR = R^2 mod M
|
||||
* R' = 2^(52 * ceil(modlen/52)) mod m
|
||||
*
|
||||
* modlen = 1024: k = 64, RR = 2^2048 mod m, RR' = 2^2080 mod m
|
||||
*/
|
||||
memset(coeff_red, 0, exp_digits * sizeof(BN_ULONG));
|
||||
/* (1) in reduced domain representation */
|
||||
set_bit(coeff_red, 64 * (int)(coeff_pow / 52) + coeff_pow % 52);
|
||||
|
||||
amm(rr1_red, rr1_red, rr1_red, m1_red, k0_1); /* (2) for m1 */
|
||||
amm(rr1_red, rr1_red, coeff_red, m1_red, k0_1); /* (3) for m1 */
|
||||
|
||||
amm(rr2_red, rr2_red, rr2_red, m2_red, k0_2); /* (2) for m2 */
|
||||
amm(rr2_red, rr2_red, coeff_red, m2_red, k0_2); /* (3) for m2 */
|
||||
|
||||
exp[0] = exp1;
|
||||
exp[1] = exp2;
|
||||
|
||||
k0[0] = k0_1;
|
||||
k0[1] = k0_2;
|
||||
|
||||
exp_x2(rr1_red, base1_red, exp, m1_red, rr1_red, k0);
|
||||
|
||||
/* Convert rr_i back to regular radix */
|
||||
from_words52(res1, factor_size, rr1_red);
|
||||
from_words52(res2, factor_size, rr2_red);
|
||||
|
||||
ret = 1;
|
||||
err:
|
||||
if (storage != NULL) {
|
||||
OPENSSL_cleanse(storage, storage_len_bytes);
|
||||
OPENSSL_free(storage);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Dual 1024-bit w-ary modular exponentiation using prime moduli of the same
|
||||
* bit size using Almost Montgomery Multiplication, optimized with AVX512_IFMA
|
||||
* ISA.
|
||||
*
|
||||
* The parameter w (window size) = 5.
|
||||
*
|
||||
* [out] res - result of modular exponentiation: 2x20 qword
|
||||
* values in 2^52 radix.
|
||||
* [in] base - base (2x20 qword values in 2^52 radix)
|
||||
* [in] exp - array of 2 pointers to 16 qword values in 2^64 radix.
|
||||
* Exponent is not converted to redundant representation.
|
||||
* [in] m - moduli (2x20 qword values in 2^52 radix)
|
||||
* [in] rr - Montgomery parameter for 2 moduli: RR = 2^2080 mod m.
|
||||
* (2x20 qword values in 2^52 radix)
|
||||
* [in] k0 - Montgomery parameter for 2 moduli: k0 = -1/m mod 2^64
|
||||
*
|
||||
* \return (void).
|
||||
*/
|
||||
void RSAZ_exp52x20_x2_256(BN_ULONG *out, /* [2][20] */
|
||||
const BN_ULONG *base, /* [2][20] */
|
||||
const BN_ULONG *exp[2], /* 2x16 */
|
||||
const BN_ULONG *m, /* [2][20] */
|
||||
const BN_ULONG *rr, /* [2][20] */
|
||||
const BN_ULONG k0[2])
|
||||
{
|
||||
# define BITSIZE_MODULUS (1024)
|
||||
# define EXP_WIN_SIZE (5)
|
||||
# define EXP_WIN_MASK ((1U << EXP_WIN_SIZE) - 1)
|
||||
/*
|
||||
* Number of digits (64-bit words) in redundant representation to handle
|
||||
* modulus bits
|
||||
*/
|
||||
# define RED_DIGITS (20)
|
||||
# define EXP_DIGITS (16)
|
||||
# define DAMM RSAZ_amm52x20_x2_256
|
||||
/*
|
||||
* Squaring is done using multiplication now. That can be a subject of
|
||||
* optimization in future.
|
||||
*/
|
||||
# define DAMS(r,a,m,k0) \
|
||||
RSAZ_amm52x20_x2_256((r),(a),(a),(m),(k0))
|
||||
|
||||
/* Allocate stack for red(undant) result Y and multiplier X */
|
||||
ALIGN64 BN_ULONG red_Y[2][RED_DIGITS];
|
||||
ALIGN64 BN_ULONG red_X[2][RED_DIGITS];
|
||||
|
||||
/* Allocate expanded exponent */
|
||||
ALIGN64 BN_ULONG expz[2][EXP_DIGITS + 1];
|
||||
|
||||
/* Pre-computed table of base powers */
|
||||
ALIGN64 BN_ULONG red_table[1U << EXP_WIN_SIZE][2][RED_DIGITS];
|
||||
|
||||
int idx;
|
||||
|
||||
memset(red_Y, 0, sizeof(red_Y));
|
||||
memset(red_table, 0, sizeof(red_table));
|
||||
memset(red_X, 0, sizeof(red_X));
|
||||
|
||||
/*
|
||||
* Compute table of powers base^i, i = 0, ..., (2^EXP_WIN_SIZE) - 1
|
||||
* table[0] = mont(x^0) = mont(1)
|
||||
* table[1] = mont(x^1) = mont(x)
|
||||
*/
|
||||
red_X[0][0] = 1;
|
||||
red_X[1][0] = 1;
|
||||
DAMM(red_table[0][0], (const BN_ULONG*)red_X, rr, m, k0);
|
||||
DAMM(red_table[1][0], base, rr, m, k0);
|
||||
|
||||
for (idx = 1; idx < (int)((1U << EXP_WIN_SIZE) / 2); idx++) {
|
||||
DAMS(red_table[2 * idx + 0][0], red_table[1 * idx][0], m, k0);
|
||||
DAMM(red_table[2 * idx + 1][0], red_table[2 * idx][0], red_table[1][0], m, k0);
|
||||
}
|
||||
|
||||
/* Copy and expand exponents */
|
||||
memcpy(expz[0], exp[0], EXP_DIGITS * sizeof(BN_ULONG));
|
||||
expz[0][EXP_DIGITS] = 0;
|
||||
memcpy(expz[1], exp[1], EXP_DIGITS * sizeof(BN_ULONG));
|
||||
expz[1][EXP_DIGITS] = 0;
|
||||
|
||||
/* Exponentiation */
|
||||
{
|
||||
int rem = BITSIZE_MODULUS % EXP_WIN_SIZE;
|
||||
int delta = rem ? rem : EXP_WIN_SIZE;
|
||||
BN_ULONG table_idx_mask = EXP_WIN_MASK;
|
||||
|
||||
int exp_bit_no = BITSIZE_MODULUS - delta;
|
||||
int exp_chunk_no = exp_bit_no / 64;
|
||||
int exp_chunk_shift = exp_bit_no % 64;
|
||||
|
||||
/* Process 1-st exp window - just init result */
|
||||
BN_ULONG red_table_idx_0 = expz[0][exp_chunk_no];
|
||||
BN_ULONG red_table_idx_1 = expz[1][exp_chunk_no];
|
||||
/*
|
||||
* The function operates with fixed moduli sizes divisible by 64,
|
||||
* thus table index here is always in supported range [0, EXP_WIN_SIZE).
|
||||
*/
|
||||
red_table_idx_0 >>= exp_chunk_shift;
|
||||
red_table_idx_1 >>= exp_chunk_shift;
|
||||
|
||||
extract_multiplier_2x20_win5(red_Y[0], (const BN_ULONG*)red_table, (int)red_table_idx_0, 0);
|
||||
extract_multiplier_2x20_win5(red_Y[1], (const BN_ULONG*)red_table, (int)red_table_idx_1, 1);
|
||||
|
||||
/* Process other exp windows */
|
||||
for (exp_bit_no -= EXP_WIN_SIZE; exp_bit_no >= 0; exp_bit_no -= EXP_WIN_SIZE) {
|
||||
/* Extract pre-computed multiplier from the table */
|
||||
{
|
||||
BN_ULONG T;
|
||||
|
||||
exp_chunk_no = exp_bit_no / 64;
|
||||
exp_chunk_shift = exp_bit_no % 64;
|
||||
{
|
||||
red_table_idx_0 = expz[0][exp_chunk_no];
|
||||
T = expz[0][exp_chunk_no + 1];
|
||||
|
||||
red_table_idx_0 >>= exp_chunk_shift;
|
||||
/*
|
||||
* Get additional bits from then next quadword
|
||||
* when 64-bit boundaries are crossed.
|
||||
*/
|
||||
if (exp_chunk_shift > 64 - EXP_WIN_SIZE) {
|
||||
T <<= (64 - exp_chunk_shift);
|
||||
red_table_idx_0 ^= T;
|
||||
}
|
||||
red_table_idx_0 &= table_idx_mask;
|
||||
|
||||
extract_multiplier_2x20_win5(red_X[0], (const BN_ULONG*)red_table, (int)red_table_idx_0, 0);
|
||||
}
|
||||
{
|
||||
red_table_idx_1 = expz[1][exp_chunk_no];
|
||||
T = expz[1][exp_chunk_no + 1];
|
||||
|
||||
red_table_idx_1 >>= exp_chunk_shift;
|
||||
/*
|
||||
* Get additional bits from then next quadword
|
||||
* when 64-bit boundaries are crossed.
|
||||
*/
|
||||
if (exp_chunk_shift > 64 - EXP_WIN_SIZE) {
|
||||
T <<= (64 - exp_chunk_shift);
|
||||
red_table_idx_1 ^= T;
|
||||
}
|
||||
red_table_idx_1 &= table_idx_mask;
|
||||
|
||||
extract_multiplier_2x20_win5(red_X[1], (const BN_ULONG*)red_table, (int)red_table_idx_1, 1);
|
||||
}
|
||||
}
|
||||
|
||||
/* Series of squaring */
|
||||
DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
|
||||
DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
|
||||
DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
|
||||
DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
|
||||
DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
|
||||
|
||||
DAMM((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, (const BN_ULONG*)red_X, m, k0);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
*
|
||||
* NB: After the last AMM of exponentiation in Montgomery domain, the result
|
||||
* may be 1025-bit, but the conversion out of Montgomery domain performs an
|
||||
* AMM(x,1) which guarantees that the final result is less than |m|, so no
|
||||
* conditional subtraction is needed here. See "Efficient Software
|
||||
* Implementations of Modular Exponentiation" (by Shay Gueron) paper for details.
|
||||
*/
|
||||
|
||||
/* Convert result back in regular 2^52 domain */
|
||||
memset(red_X, 0, sizeof(red_X));
|
||||
red_X[0][0] = 1;
|
||||
red_X[1][0] = 1;
|
||||
DAMM(out, (const BN_ULONG*)red_Y, (const BN_ULONG*)red_X, m, k0);
|
||||
|
||||
/* Clear exponents */
|
||||
OPENSSL_cleanse(expz, sizeof(expz));
|
||||
OPENSSL_cleanse(red_Y, sizeof(red_Y));
|
||||
|
||||
# undef DAMS
|
||||
# undef DAMM
|
||||
# undef EXP_DIGITS
|
||||
# undef RED_DIGITS
|
||||
# undef EXP_WIN_MASK
|
||||
# undef EXP_WIN_SIZE
|
||||
# undef BITSIZE_MODULUS
|
||||
}
|
||||
|
||||
static ossl_inline uint64_t get_digit52(const uint8_t *in, int in_len)
|
||||
{
|
||||
uint64_t digit = 0;
|
||||
|
||||
assert(in != NULL);
|
||||
|
||||
for (; in_len > 0; in_len--) {
|
||||
digit <<= 8;
|
||||
digit += (uint64_t)(in[in_len - 1]);
|
||||
}
|
||||
return digit;
|
||||
}
|
||||
|
||||
/*
|
||||
* Convert array of words in regular (base=2^64) representation to array of
|
||||
* words in redundant (base=2^52) one.
|
||||
*/
|
||||
static void to_words52(BN_ULONG *out, int out_len,
|
||||
const BN_ULONG *in, int in_bitsize)
|
||||
{
|
||||
uint8_t *in_str = NULL;
|
||||
|
||||
assert(out != NULL);
|
||||
assert(in != NULL);
|
||||
/* Check destination buffer capacity */
|
||||
assert(out_len >= number_of_digits(in_bitsize, DIGIT_SIZE));
|
||||
|
||||
in_str = (uint8_t *)in;
|
||||
|
||||
for (; in_bitsize >= (2 * DIGIT_SIZE); in_bitsize -= (2 * DIGIT_SIZE), out += 2) {
|
||||
out[0] = (*(uint64_t *)in_str) & DIGIT_MASK;
|
||||
in_str += 6;
|
||||
out[1] = ((*(uint64_t *)in_str) >> 4) & DIGIT_MASK;
|
||||
in_str += 7;
|
||||
out_len -= 2;
|
||||
}
|
||||
|
||||
if (in_bitsize > DIGIT_SIZE) {
|
||||
uint64_t digit = get_digit52(in_str, 7);
|
||||
|
||||
out[0] = digit & DIGIT_MASK;
|
||||
in_str += 6;
|
||||
in_bitsize -= DIGIT_SIZE;
|
||||
digit = get_digit52(in_str, BITS2WORD8_SIZE(in_bitsize));
|
||||
out[1] = digit >> 4;
|
||||
out += 2;
|
||||
out_len -= 2;
|
||||
} else if (in_bitsize > 0) {
|
||||
out[0] = get_digit52(in_str, BITS2WORD8_SIZE(in_bitsize));
|
||||
out++;
|
||||
out_len--;
|
||||
}
|
||||
|
||||
while (out_len > 0) {
|
||||
*out = 0;
|
||||
out_len--;
|
||||
out++;
|
||||
}
|
||||
}
|
||||
|
||||
static ossl_inline void put_digit52(uint8_t *pStr, int strLen, uint64_t digit)
|
||||
{
|
||||
assert(pStr != NULL);
|
||||
|
||||
for (; strLen > 0; strLen--) {
|
||||
*pStr++ = (uint8_t)(digit & 0xFF);
|
||||
digit >>= 8;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Convert array of words in redundant (base=2^52) representation to array of
|
||||
* words in regular (base=2^64) one.
|
||||
*/
|
||||
static void from_words52(BN_ULONG *out, int out_bitsize, const BN_ULONG *in)
|
||||
{
|
||||
int i;
|
||||
int out_len = BITS2WORD64_SIZE(out_bitsize);
|
||||
|
||||
assert(out != NULL);
|
||||
assert(in != NULL);
|
||||
|
||||
for (i = 0; i < out_len; i++)
|
||||
out[i] = 0;
|
||||
|
||||
{
|
||||
uint8_t *out_str = (uint8_t *)out;
|
||||
|
||||
for (; out_bitsize >= (2 * DIGIT_SIZE); out_bitsize -= (2 * DIGIT_SIZE), in += 2) {
|
||||
(*(uint64_t *)out_str) = in[0];
|
||||
out_str += 6;
|
||||
(*(uint64_t *)out_str) ^= in[1] << 4;
|
||||
out_str += 7;
|
||||
}
|
||||
|
||||
if (out_bitsize > DIGIT_SIZE) {
|
||||
put_digit52(out_str, 7, in[0]);
|
||||
out_str += 6;
|
||||
out_bitsize -= DIGIT_SIZE;
|
||||
put_digit52(out_str, BITS2WORD8_SIZE(out_bitsize),
|
||||
(in[1] << 4 | in[0] >> 48));
|
||||
} else if (out_bitsize) {
|
||||
put_digit52(out_str, BITS2WORD8_SIZE(out_bitsize), in[0]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Set bit at index |idx| in the words array |a|.
|
||||
* It does not do any boundaries checks, make sure the index is valid before
|
||||
* calling the function.
|
||||
*/
|
||||
static ossl_inline void set_bit(BN_ULONG *a, int idx)
|
||||
{
|
||||
assert(a != NULL);
|
||||
|
||||
{
|
||||
int i, j;
|
||||
|
||||
i = idx / BN_BITS2;
|
||||
j = idx % BN_BITS2;
|
||||
a[i] |= (((BN_ULONG)1) << j);
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
@ -688,15 +688,20 @@ static int rsa_ossl_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx)
|
||||
if (/* m1 = I moq q */
|
||||
!bn_from_mont_fixed_top(m1, I, rsa->_method_mod_q, ctx)
|
||||
|| !bn_to_mont_fixed_top(m1, m1, rsa->_method_mod_q, ctx)
|
||||
/* m1 = m1^dmq1 mod q */
|
||||
|| !BN_mod_exp_mont_consttime(m1, m1, rsa->dmq1, rsa->q, ctx,
|
||||
rsa->_method_mod_q)
|
||||
/* r1 = I mod p */
|
||||
|| !bn_from_mont_fixed_top(r1, I, rsa->_method_mod_p, ctx)
|
||||
|| !bn_to_mont_fixed_top(r1, r1, rsa->_method_mod_p, ctx)
|
||||
/* r1 = r1^dmp1 mod p */
|
||||
|| !BN_mod_exp_mont_consttime(r1, r1, rsa->dmp1, rsa->p, ctx,
|
||||
rsa->_method_mod_p)
|
||||
/*
|
||||
* Use parallel exponentiations optimization if possible,
|
||||
* otherwise fallback to two sequential exponentiations:
|
||||
* m1 = m1^dmq1 mod q
|
||||
* r1 = r1^dmp1 mod p
|
||||
*/
|
||||
|| !BN_mod_exp_mont_consttime_x2(m1, m1, rsa->dmq1, rsa->q,
|
||||
rsa->_method_mod_q,
|
||||
r1, r1, rsa->dmp1, rsa->p,
|
||||
rsa->_method_mod_p,
|
||||
ctx)
|
||||
/* r1 = (r1 - m1) mod p */
|
||||
/*
|
||||
* bn_mod_sub_fixed_top is not regular modular subtraction,
|
||||
|
@ -215,7 +215,7 @@ OPENSSL_ia32_cpuid:
|
||||
cmp \$0xe6,%eax
|
||||
je .Ldone
|
||||
andl \$0x3fdeffff,8(%rdi) # ~(1<<31|1<<30|1<<21|1<<16)
|
||||
# clear AVX512F+BW+VL+FIMA, all of
|
||||
# clear AVX512F+BW+VL+IFMA, all of
|
||||
# them are EVEX-encoded, which requires
|
||||
# ZMM state support even if one uses
|
||||
# only XMM and YMM :-(
|
||||
|
@ -698,6 +698,10 @@ DEPEND[html/man3/BN_generate_prime.html]=man3/BN_generate_prime.pod
|
||||
GENERATE[html/man3/BN_generate_prime.html]=man3/BN_generate_prime.pod
|
||||
DEPEND[man/man3/BN_generate_prime.3]=man3/BN_generate_prime.pod
|
||||
GENERATE[man/man3/BN_generate_prime.3]=man3/BN_generate_prime.pod
|
||||
DEPEND[html/man3/BN_mod_exp_mont.html]=man3/BN_mod_exp_mont.pod
|
||||
GENERATE[html/man3/BN_mod_exp_mont.html]=man3/BN_mod_exp_mont.pod
|
||||
DEPEND[man/man3/BN_mod_exp_mont.3]=man3/BN_mod_exp_mont.pod
|
||||
GENERATE[man/man3/BN_mod_exp_mont.3]=man3/BN_mod_exp_mont.pod
|
||||
DEPEND[html/man3/BN_mod_inverse.html]=man3/BN_mod_inverse.pod
|
||||
GENERATE[html/man3/BN_mod_inverse.html]=man3/BN_mod_inverse.pod
|
||||
DEPEND[man/man3/BN_mod_inverse.3]=man3/BN_mod_inverse.pod
|
||||
@ -2808,6 +2812,7 @@ html/man3/BN_bn2bin.html \
|
||||
html/man3/BN_cmp.html \
|
||||
html/man3/BN_copy.html \
|
||||
html/man3/BN_generate_prime.html \
|
||||
html/man3/BN_mod_exp_mont.html \
|
||||
html/man3/BN_mod_inverse.html \
|
||||
html/man3/BN_mod_mul_montgomery.html \
|
||||
html/man3/BN_mod_mul_reciprocal.html \
|
||||
@ -3379,6 +3384,7 @@ man/man3/BN_bn2bin.3 \
|
||||
man/man3/BN_cmp.3 \
|
||||
man/man3/BN_copy.3 \
|
||||
man/man3/BN_generate_prime.3 \
|
||||
man/man3/BN_mod_exp_mont.3 \
|
||||
man/man3/BN_mod_inverse.3 \
|
||||
man/man3/BN_mod_mul_montgomery.3 \
|
||||
man/man3/BN_mod_mul_reciprocal.3 \
|
||||
|
65
doc/man3/BN_mod_exp_mont.pod
Normal file
65
doc/man3/BN_mod_exp_mont.pod
Normal file
@ -0,0 +1,65 @@
|
||||
=pod
|
||||
|
||||
=head1 NAME
|
||||
|
||||
BN_mod_exp_mont, BN_mod_exp_mont_consttime, BN_mod_exp_mont_consttime_x2 -
|
||||
Montgomery exponentiation
|
||||
|
||||
=head1 SYNOPSIS
|
||||
|
||||
#include <openssl/bn.h>
|
||||
|
||||
int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
|
||||
const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont);
|
||||
|
||||
int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
|
||||
const BIGNUM *m, BN_CTX *ctx,
|
||||
BN_MONT_CTX *in_mont);
|
||||
|
||||
int BN_mod_exp_mont_consttime_x2(BIGNUM *rr1, const BIGNUM *a1,
|
||||
const BIGNUM *p1, const BIGNUM *m1,
|
||||
BN_MONT_CTX *in_mont1, BIGNUM *rr2,
|
||||
const BIGNUM *a2, const BIGNUM *p2,
|
||||
const BIGNUM *m2, BN_MONT_CTX *in_mont2,
|
||||
BN_CTX *ctx);
|
||||
|
||||
=head1 DESCRIPTION
|
||||
|
||||
BN_mod_exp_mont() computes I<a> to the I<p>-th power modulo I<m> (C<rr=a^p % m>)
|
||||
using Montgomery multiplication. I<in_mont> is a Montgomery context and can be
|
||||
NULL. In the case I<in_mont> is NULL, it will be initialized within the
|
||||
function, so you can save time on initialization if you provide it in advance.
|
||||
|
||||
BN_mod_exp_mont_consttime() computes I<a> to the I<p>-th power modulo I<m>
|
||||
(C<rr=a^p % m>) using Montgomery multiplication. It is a variant of
|
||||
L<BN_mod_exp_mont(3)> that uses fixed windows and the special precomputation
|
||||
memory layout to limit data-dependency to a minimum to protect secret exponents.
|
||||
It is called automatically when L<BN_mod_exp_mont(3)> is called with parameters
|
||||
I<a>, I<p>, I<m>, any of which have B<BN_FLG_CONSTTIME> flag.
|
||||
|
||||
BN_mod_exp_mont_consttime_x2() computes two independent exponentiations I<a1> to
|
||||
the I<p1>-th power modulo I<m1> (C<rr1=a1^p1 % m1>) and I<a2> to the I<p2>-th
|
||||
power modulo I<m2> (C<rr2=a2^p2 % m2>) using Montgomery multiplication. For some
|
||||
fixed and equal modulus sizes I<m1> and I<m2> it uses optimizations that allow
|
||||
to speedup two exponentiations. In all other cases the function reduces to two
|
||||
calls of L<BN_mod_exp_mont_consttime(3)>.
|
||||
|
||||
=head1 RETURN VALUES
|
||||
|
||||
For all functions 1 is returned for success, 0 on error.
|
||||
The error codes can be obtained by L<ERR_get_error(3)>.
|
||||
|
||||
=head1 SEE ALSO
|
||||
|
||||
L<ERR_get_error(3)>, L<BN_mod_exp_mont(3)>
|
||||
|
||||
=head1 COPYRIGHT
|
||||
|
||||
Copyright 2000-2020 The OpenSSL Project Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License 2.0 (the "License"). You may not use
|
||||
this file except in compliance with the License. You can obtain a copy
|
||||
in the file LICENSE in the source distribution or at
|
||||
L<https://www.openssl.org/source/license.html>.
|
||||
|
||||
=cut
|
@ -312,6 +312,11 @@ int BN_mod_exp2_mont(BIGNUM *r, const BIGNUM *a1, const BIGNUM *p1,
|
||||
BN_CTX *ctx, BN_MONT_CTX *m_ctx);
|
||||
int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
|
||||
const BIGNUM *m, BN_CTX *ctx);
|
||||
int BN_mod_exp_mont_consttime_x2(BIGNUM *rr1, const BIGNUM *a1, const BIGNUM *p1,
|
||||
const BIGNUM *m1, BN_MONT_CTX *in_mont1,
|
||||
BIGNUM *rr2, const BIGNUM *a2, const BIGNUM *p2,
|
||||
const BIGNUM *m2, BN_MONT_CTX *in_mont2,
|
||||
BN_CTX *ctx);
|
||||
|
||||
int BN_mask_bits(BIGNUM *a, int n);
|
||||
# ifndef OPENSSL_NO_STDIO
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved.
|
||||
* Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
|
||||
*
|
||||
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
||||
* this file except in compliance with the License. You can obtain a copy
|
||||
@ -198,9 +198,102 @@ static int test_mod_exp(int round)
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int test_mod_exp_x2(int idx)
|
||||
{
|
||||
BN_CTX *ctx;
|
||||
int ret = 0;
|
||||
BIGNUM *r_mont_const_x2_1 = NULL;
|
||||
BIGNUM *r_mont_const_x2_2 = NULL;
|
||||
BIGNUM *r_simple1 = NULL;
|
||||
BIGNUM *r_simple2 = NULL;
|
||||
BIGNUM *a1 = NULL;
|
||||
BIGNUM *b1 = NULL;
|
||||
BIGNUM *m1 = NULL;
|
||||
BIGNUM *a2 = NULL;
|
||||
BIGNUM *b2 = NULL;
|
||||
BIGNUM *m2 = NULL;
|
||||
int factor_size = 0;
|
||||
|
||||
/*
|
||||
* Currently only 1024-bit factor size is supported.
|
||||
*/
|
||||
if (idx <= 100)
|
||||
factor_size = 1024;
|
||||
|
||||
if (!TEST_ptr(ctx = BN_CTX_new()))
|
||||
goto err;
|
||||
|
||||
if (!TEST_ptr(r_mont_const_x2_1 = BN_new())
|
||||
|| !TEST_ptr(r_mont_const_x2_2 = BN_new())
|
||||
|| !TEST_ptr(r_simple1 = BN_new())
|
||||
|| !TEST_ptr(r_simple2 = BN_new())
|
||||
|| !TEST_ptr(a1 = BN_new())
|
||||
|| !TEST_ptr(b1 = BN_new())
|
||||
|| !TEST_ptr(m1 = BN_new())
|
||||
|| !TEST_ptr(a2 = BN_new())
|
||||
|| !TEST_ptr(b2 = BN_new())
|
||||
|| !TEST_ptr(m2 = BN_new()))
|
||||
goto err;
|
||||
|
||||
BN_rand(a1, factor_size, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY);
|
||||
BN_rand(b1, factor_size, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY);
|
||||
BN_rand(m1, factor_size, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD);
|
||||
BN_rand(a2, factor_size, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY);
|
||||
BN_rand(b2, factor_size, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY);
|
||||
BN_rand(m2, factor_size, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD);
|
||||
|
||||
if (!TEST_true(BN_mod(a1, a1, m1, ctx))
|
||||
|| !TEST_true(BN_mod(b1, b1, m1, ctx))
|
||||
|| !TEST_true(BN_mod(a2, a2, m2, ctx))
|
||||
|| !TEST_true(BN_mod(b2, b2, m2, ctx))
|
||||
|| !TEST_true(BN_mod_exp_simple(r_simple1, a1, b1, m1, ctx))
|
||||
|| !TEST_true(BN_mod_exp_simple(r_simple2, a2, b2, m2, ctx))
|
||||
|| !TEST_true(BN_mod_exp_mont_consttime_x2(r_mont_const_x2_1, a1, b1, m1, NULL,
|
||||
r_mont_const_x2_2, a2, b2, m2, NULL,
|
||||
ctx)))
|
||||
goto err;
|
||||
|
||||
if (!TEST_BN_eq(r_simple1, r_mont_const_x2_1)
|
||||
|| !TEST_BN_eq(r_simple2, r_mont_const_x2_2)) {
|
||||
if (BN_cmp(r_simple1, r_mont_const_x2_1) != 0)
|
||||
TEST_info("simple and mont const time x2 (#1) results differ");
|
||||
if (BN_cmp(r_simple2, r_mont_const_x2_2) != 0)
|
||||
TEST_info("simple and mont const time x2 (#2) results differ");
|
||||
|
||||
BN_print_var(a1);
|
||||
BN_print_var(b1);
|
||||
BN_print_var(m1);
|
||||
BN_print_var(a2);
|
||||
BN_print_var(b2);
|
||||
BN_print_var(m2);
|
||||
BN_print_var(r_simple1);
|
||||
BN_print_var(r_simple2);
|
||||
BN_print_var(r_mont_const_x2_1);
|
||||
BN_print_var(r_mont_const_x2_2);
|
||||
goto err;
|
||||
}
|
||||
|
||||
ret = 1;
|
||||
err:
|
||||
BN_free(r_mont_const_x2_1);
|
||||
BN_free(r_mont_const_x2_2);
|
||||
BN_free(r_simple1);
|
||||
BN_free(r_simple2);
|
||||
BN_free(a1);
|
||||
BN_free(b1);
|
||||
BN_free(m1);
|
||||
BN_free(a2);
|
||||
BN_free(b2);
|
||||
BN_free(m2);
|
||||
BN_CTX_free(ctx);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
int setup_tests(void)
|
||||
{
|
||||
ADD_TEST(test_mod_exp_zero);
|
||||
ADD_ALL_TESTS(test_mod_exp, 200);
|
||||
ADD_ALL_TESTS(test_mod_exp_x2, 100);
|
||||
return 1;
|
||||
}
|
||||
|
@ -5313,6 +5313,7 @@ EVP_RAND_CTX_gettable_params ? 3_0_0 EXIST::FUNCTION:
|
||||
EVP_RAND_CTX_settable_params ? 3_0_0 EXIST::FUNCTION:
|
||||
RAND_set_DRBG_type ? 3_0_0 EXIST::FUNCTION:
|
||||
RAND_set_seed_source_type ? 3_0_0 EXIST::FUNCTION:
|
||||
BN_mod_exp_mont_consttime_x2 ? 3_0_0 EXIST::FUNCTION:
|
||||
BIO_f_readbuffer ? 3_0_0 EXIST::FUNCTION:
|
||||
EVP_DigestInit_ex2 ? 3_0_0 EXIST::FUNCTION:
|
||||
EVP_EncryptInit_ex2 ? 3_0_0 EXIST::FUNCTION:
|
||||
|
@ -261,8 +261,6 @@ BN_is_negative(3)
|
||||
BN_kronecker(3)
|
||||
BN_mod_add_quick(3)
|
||||
BN_mod_exp2_mont(3)
|
||||
BN_mod_exp_mont(3)
|
||||
BN_mod_exp_mont_consttime(3)
|
||||
BN_mod_exp_mont_word(3)
|
||||
BN_mod_exp_recp(3)
|
||||
BN_mod_exp_simple(3)
|
||||
|
Loading…
Reference in New Issue
Block a user