gcm128.c: commentary and formatting updates.

This commit is contained in:
Andy Polyakov 2010-04-10 14:02:26 +00:00
parent 67a315b60b
commit a595baff9f

View File

@ -117,20 +117,27 @@ typedef struct { u64 hi,lo; } u128;
#define PUTU32(p,v) ((p)[0]=(u8)((v)>>24),(p)[1]=(u8)((v)>>16),(p)[2]=(u8)((v)>>8),(p)[3]=(u8)(v))
#endif
#define PACK(s) ((size_t)(s)<<(sizeof(size_t)*8-16))
#if 0
#define PACK(s) ((size_t)(s)<<(sizeof(size_t)*8-16))
#ifdef TABLE_BITS
#undef TABLE_BITS
#endif
/*
* Under ideal conditions 8-bit version should be twice as fast as
* 4-bit one. But world is far from ideal. For gcc-generated x86 code,
* 8-bit was observed to run "only" ~50% faster. On x86_64 observed
* Even though permitted values for TABLE_BITS are 8, 4 and 1, it should
* never be set to 8. 8 is effectively reserved for testing purposes.
* Under ideal conditions "8-bit" version should be twice as fast as
* "4-bit" one. But world is far from ideal. For gcc-generated x86 code,
* "8-bit" was observed to run only ~50% faster. On x86_64 observed
* improvement was ~75%, much closer to optimal, but the fact of
* deviation means that references to pre-computed tables end up on
* critical path and as tables are pretty big, 4KB per key+1KB shared,
* execution time is sensitive to cache trashing. It's not actually
* execution time is sensitive to cache timing. It's not actually
* proven, but 4-bit procedure is believed to provide adequate
* all-round performance...
*/
#define TABLE_BITS 4
#if TABLE_BITS==8
static void gcm_init_8bit(u128 Htable[256], u64 H[2])
{
int i, j;
@ -150,7 +157,7 @@ static void gcm_init_8bit(u128 Htable[256], u64 H[2])
else {
u32 T = 0xe1000000U & (0-(u32)(V.lo&1));
V.lo = (V.hi<<63)|(V.lo>>1);
V.hi = (V.hi>>1) ^((u64)T<<32);
V.hi = (V.hi>>1 )^((u64)T<<32);
}
Htable[i] = V;
}
@ -271,11 +278,10 @@ static void gcm_gmult_8bit(u64 Xi[2], u128 Htable[256])
Xi[1] = Z.lo;
}
}
#endif
#define GCM_MUL(ctx,Xi) gcm_gmult_8bit(ctx->Xi.u,ctx->Htable)
#define _4BIT 1 /* change to 0 to switch to 1-bit multiplication */
#elif TABLE_BITS==4
#if _4BIT
static void gcm_init_4bit(u128 Htable[16], u64 H[2])
{
int i;
@ -326,7 +332,7 @@ static void gcm_init_4bit(u128 Htable[16], u64 H[2])
#endif
}
#ifndef GMULT_ASM
#ifndef GHASH_ASM
static const size_t rem_4bit[16] = {
PACK(0x0000), PACK(0x1C20), PACK(0x3840), PACK(0x2460),
PACK(0x7080), PACK(0x6CA0), PACK(0x48C0), PACK(0x54E0),
@ -399,9 +405,10 @@ static void gcm_gmult_4bit(u64 Xi[2], u128 Htable[16])
#if !defined(OPENSSL_SMALL_FOOTPRINT)
/*
* Streamed gcm_mult_4bit, see CRYPTO_gcm128_[en|de]crypt for
* details... It doesn't give any performance improvement, at least
* not on x86[_64]. It's here mostly as a placeholder for possible
* future non-trivial optimization[s]...
* details... Compiler-generated code doesn't seem to give any
* performance improvement, at least not on x86[_64]. It's here
* mostly as reference and a placeholder for possible future
* non-trivial optimization[s]...
*/
static void gcm_ghash_4bit(const u8 *inp,size_t len,u64 Xi[2], u128 Htable[16])
{
@ -477,10 +484,15 @@ void gcm_ghash_4bit(const u8 *inp,size_t len,u64 Xi[2],u128 Htable[16]);
#endif
#define GCM_MUL(ctx,Xi) gcm_gmult_4bit(ctx->Xi.u,ctx->Htable)
#define GHASH(in,len,ctx) gcm_ghash_4bit(in,len,ctx->Xi.u,ctx->Htable)
#if defined(GHASH_ASM) || !defined(OPENSSL_SMALL_FOOTPRINT)
#define GHASH(in,len,ctx) gcm_ghash_4bit(in,len,(ctx)->Xi.u,(ctx)->Htable)
/* GHASH_CHUNK is "stride parameter" missioned to mitigate cache
* trashing effect. In other words idea is to hash data while it's
* still in L1 cache after encryption pass... */
#define GHASH_CHUNK 1024
#endif
#else /* !_4BIT */
#else /* TABLE_BITS */
static void gcm_gmult_1bit(u64 Xi[2],const u64 H[2])
{
@ -549,6 +561,7 @@ static void gcm_gmult_1bit(u64 Xi[2],const u64 H[2])
}
}
#define GCM_MUL(ctx,Xi) gcm_gmult_1bit(ctx->Xi.u,ctx->H.u)
#endif
typedef struct {
@ -556,8 +569,12 @@ typedef struct {
union { u64 u[2]; u32 d[4]; u8 c[16]; } Yi,EKi,EK0,
Xi,H,
len;
/* Pre-computed table used by gcm_gmult_4bit */
/* Pre-computed table used by gcm_gmult_* */
#if TABLE_BITS==8
u128 Htable[256];
#else
u128 Htable[16];
#endif
unsigned int res, ctr;
block128_f block;
void *key;
@ -588,7 +605,11 @@ void CRYPTO_gcm128_init(GCM128_CONTEXT *ctx,void *key,block128_f block)
#endif
}
#if TABLE_BITS==8
gcm_init_8bit(ctx->Htable,ctx->H.u);
#elif TABLE_BITS==4
gcm_init_4bit(ctx->Htable,ctx->H.u);
#endif
}
void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx,const unsigned char *iv,size_t len)
@ -676,7 +697,6 @@ void CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx,const unsigned char *aad,size_t len)
len -= 16;
}
#endif
if (len) {
for (i=0; i<len; ++i) ctx->Xi.c[i] ^= aad[i];
GCM_MUL(ctx,Xi);
@ -713,7 +733,7 @@ void CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx,
if (((size_t)in|(size_t)out)%sizeof(size_t) != 0)
break;
#endif
#ifdef GHASH
#if defined(GHASH) && defined(GHASH_CHUNK)
while (len>=GHASH_CHUNK) {
size_t j=GHASH_CHUNK;
@ -840,7 +860,7 @@ void CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx,
if (((size_t)in|(size_t)out)%sizeof(size_t) != 0)
break;
#endif
#ifdef GHASH
#if defined(GHASH) && defined(GHASH_CHUNK)
while (len>=GHASH_CHUNK) {
size_t j=GHASH_CHUNK;
@ -982,6 +1002,7 @@ static const u8 K1[16],
IV1[12],
*C1=NULL,
T1[]= {0x58,0xe2,0xfc,0xce,0xfa,0x7e,0x30,0x61,0x36,0x7f,0x1d,0x57,0xa4,0xe7,0x45,0x5a};
/* Test Case 2 */
#define K2 K1
#define A2 A1
@ -1030,6 +1051,7 @@ static const u8 A5[]= {0xfe,0xed,0xfa,0xce,0xde,0xad,0xbe,0xef,0xfe,0xed,0xfa,0
0x73,0x80,0x69,0x00,0xe4,0x9f,0x24,0xb2,0x2b,0x09,0x75,0x44,0xd4,0x89,0x6b,0x42,
0x49,0x89,0xb5,0xe1,0xeb,0xac,0x0f,0x07,0xc2,0x3f,0x45,0x98},
T5[]= {0x36,0x12,0xd2,0xe7,0x9e,0x3b,0x07,0x85,0x56,0x1b,0xe1,0x4a,0xac,0xa2,0xfc,0xcb};
/* Test Case 6 */
#define K6 K5
#define P6 P5
@ -1229,10 +1251,10 @@ int main()
TEST_CASE(17);
TEST_CASE(18);
#ifdef OPENSSL_CPUID_OBJ
{
size_t start,stop,gcm_t,ctr_t,OPENSSL_rdtsc();
union { u64 u; u8 c[1024]; } buf;
int i;
AES_set_encrypt_key(K1,sizeof(K1)*8,&key);
CRYPTO_gcm128_init(&ctx,&key,(block128_f)AES_encrypt);
@ -1248,15 +1270,23 @@ int main()
(block128_f)AES_encrypt);
start = OPENSSL_rdtsc();
CRYPTO_ctr128_encrypt(buf.c,buf.c,sizeof(buf),
&key,ctx.Yi.c,ctx.EKi.c,&ctx.res,
(block128_f)AES_encrypt);
&key,ctx.Yi.c,ctx.EKi.c,&ctx.res,
(block128_f)AES_encrypt);
ctr_t = OPENSSL_rdtsc() - start;
printf("%.2f-%.2f=%.2f\n",
gcm_t/(double)sizeof(buf),
ctr_t/(double)sizeof(buf),
(gcm_t-ctr_t)/(double)sizeof(buf));
#ifdef GHASH
GHASH(buf.c,sizeof(buf),&ctx);
start = OPENSSL_rdtsc();
GHASH(buf.c,sizeof(buf),&ctx);
gcm_t = OPENSSL_rdtsc() - start;
printf("%.2f\n",gcm_t/(double)sizeof(buf));
#endif
}
#endif
return ret;
}