Add sparse array data type.

This commit adds a space and time efficient sparse array data structure.
The structure's raw API is wrapped by inline functions which provide type
safety.

Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Nicola Tuveri <nic.tuv@gmail.com>
(Merged from https://github.com/openssl/openssl/pull/8197)
This commit is contained in:
Pauli 2019-01-24 12:15:54 +10:00
parent dff298135b
commit a40f0f6475
8 changed files with 680 additions and 3 deletions

155
crypto/README.sparse_array Normal file
View File

@ -0,0 +1,155 @@
The sparse_array.c file contains an implementation of a sparse array that
attempts to be both space and time efficient.
The sparse array is represented using a tree structure. Each node in the
tree contains a block of pointers to either the user supplied leaf values or
to another node.
There are a number of parameters used to define the block size:
OPENSSL_SA_BLOCK_BITS Specifies the number of bits covered by each block
SA_BLOCK_MAX Specifies the number of pointers in each block
SA_BLOCK_MASK Specifies a bit mask to perform modulo block size
SA_BLOCK_MAX_LEVELS Indicates the maximum possible height of the tree
These constants are inter-related:
SA_BLOCK_MAX = 2 ^ OPENSSL_SA_BLOCK_BITS
SA_BLOCK_MASK = SA_BLOCK_MAX - 1
SA_BLOCK_MAX_LEVELS = number of bits in size_t divided by
OPENSSL_SA_BLOCK_BITS rounded up to the next multiple
of OPENSSL_SA_BLOCK_BITS
OPENSSL_SA_BLOCK_BITS can be defined at compile time and this overrides the
built in setting.
As a space and performance optimisation, the height of the tree is usually
less than the maximum possible height. Only sufficient height is allocated to
accommodate the largest index added to the data structure.
The largest index used to add a value to the array determines the tree height:
+----------------------+---------------------+
| Largest Added Index | Height of Tree |
+----------------------+---------------------+
| SA_BLOCK_MAX - 1 | 1 |
| SA_BLOCK_MAX ^ 2 - 1 | 2 |
| SA_BLOCK_MAX ^ 3 - 1 | 3 |
| ... | ... |
| size_t max | SA_BLOCK_MAX_LEVELS |
+----------------------+---------------------+
The tree height is dynamically increased as needed based on additions.
An empty tree is represented by a NULL root pointer. Inserting a value at
index 0 results in the allocation of a top level node full of null pointers
except for the single pointer to the user's data (N = SA_BLOCK_MAX for
breviety):
+----+
|Root|
|Node|
+-+--+
|
|
|
v
+-+-+---+---+---+---+
| 0 | 1 | 2 |...|N-1|
| |nil|nil|...|nil|
+-+-+---+---+---+---+
|
|
|
v
+-+--+
|User|
|Data|
+----+
Index 0
Inserting at element 2N+1 creates a new root node and pushes down the old root
node. It then creates a second second level node to hold the pointer to the
user's new data:
+----+
|Root|
|Node|
+-+--+
|
|
|
v
+-+-+---+---+---+---+
| 0 | 1 | 2 |...|N-1|
| |nil| |...|nil|
+-+-+---+-+-+---+---+
| |
| +------------------+
| |
v v
+-+-+---+---+---+---+ +-+-+---+---+---+---+
| 0 | 1 | 2 |...|N-1| | 0 | 1 | 2 |...|N-1|
|nil| |nil|...|nil| |nil| |nil|...|nil|
+-+-+---+---+---+---+ +---+-+-+---+---+---+
| |
| |
| |
v v
+-+--+ +-+--+
|User| |User|
|Data| |Data|
+----+ +----+
Index 0 Index 2N+1
The nodes themselves are allocated in a sparse manner. Only nodes which exist
along a path from the root of the tree to an added leaf will be allocated.
The complexity is hidden and nodes are allocated on an as needed basis.
Because the data is expected to be sparse this doesn't result in a large waste
of space.
Values can be removed from the sparse array by setting their index position to
NULL. The data structure does not attempt to reclaim nodes or reduce the
height of the tree on removal. For example, now setting index 0 to NULL would
result in:
+----+
|Root|
|Node|
+-+--+
|
|
|
v
+-+-+---+---+---+---+
| 0 | 1 | 2 |...|N-1|
| |nil| |...|nil|
+-+-+---+-+-+---+---+
| |
| +------------------+
| |
v v
+-+-+---+---+---+---+ +-+-+---+---+---+---+
| 0 | 1 | 2 |...|N-1| | 0 | 1 | 2 |...|N-1|
|nil|nil|nil|...|nil| |nil| |nil|...|nil|
+---+---+---+---+---+ +---+-+-+---+---+---+
|
|
|
v
+-+--+
|User|
|Data|
+----+
Index 2N+1
Accesses to elements in the sparse array take O(log n) time where n is the
largest element. The base of the logarithm is SA_BLOCK_MAX, so for moderately
small indices (e.g. NIDs), single level (constant time) access is achievable.
Space usage is O(minimum(m, n log(n)) where m is the number of elements in the
array.
Note: sparse arrays only include pointers to types. Thus, SPARSE_ARRAY_OF(char)
can be used to store a string.

View File

@ -12,8 +12,8 @@ SOURCE[../libcrypto]=\
cryptlib.c mem.c mem_dbg.c cversion.c ex_data.c cpt_err.c \
ebcdic.c uid.c o_time.c o_str.c o_dir.c o_fopen.c ctype.c \
threads_pthread.c threads_win.c threads_none.c getenv.c \
o_init.c o_fips.c mem_sec.c init.c {- $target{cpuid_asm_src} -} \
{- $target{uplink_aux_src} -}
o_init.c o_fips.c mem_sec.c init.c sparse_array.c \
{- $target{cpuid_asm_src} -} {- $target{uplink_aux_src} -}
DEPEND[cversion.o]=buildinf.h
GENERATE[buildinf.h]=../util/mkbuildinf.pl "$(CC) $(LIB_CFLAGS) $(CPPFLAGS_Q)" "$(PLATFORM)"

View File

@ -0,0 +1,78 @@
/*
* Copyright 2019 The OpenSSL Project Authors. All Rights Reserved.
* Copyright (c) 2019, Oracle and/or its affiliates. All rights reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#ifndef HEADER_SPARSE_ARRAY_H
# define HEADER_SPARSE_ARRAY_H
# ifdef __cplusplus
extern "C" {
# endif
# define SPARSE_ARRAY_OF(type) struct sparse_array_st_ ## type
# define DEFINE_SPARSE_ARRAY_OF(type) \
SPARSE_ARRAY_OF(type); \
static ossl_inline SPARSE_ARRAY_OF(type) * \
ossl_sa_##type##_new(void) \
{ \
return (SPARSE_ARRAY_OF(type) *)OPENSSL_SA_new(); \
} \
static ossl_inline void ossl_sa_##type##_free(SPARSE_ARRAY_OF(type) *sa) \
{ \
OPENSSL_SA_free((OPENSSL_SA *)sa); \
} \
static ossl_inline void ossl_sa_##type##_free_leaves(SPARSE_ARRAY_OF(type) *sa) \
{ \
OPENSSL_SA_free_leaves((OPENSSL_SA *)sa); \
} \
static ossl_inline size_t ossl_sa_##type##_num(const SPARSE_ARRAY_OF(type) *sa) \
{ \
return OPENSSL_SA_num((OPENSSL_SA *)sa); \
} \
static ossl_inline void ossl_sa_##type##_doall(const SPARSE_ARRAY_OF(type) *sa, \
void (*leaf)(type *)) \
{ \
OPENSSL_SA_doall((OPENSSL_SA *)sa, (void (*)(void *))leaf); \
} \
static ossl_inline void ossl_sa_##type##_doall_arg(const SPARSE_ARRAY_OF(type) *sa, \
void (*leaf)(type *, \
void *),\
void *arg) \
{ \
OPENSSL_SA_doall_arg((OPENSSL_SA *)sa, (void (*)(void *, void *))leaf, \
arg); \
} \
static ossl_inline type *ossl_sa_##type##_get(const SPARSE_ARRAY_OF(type) *sa, \
size_t n) \
{ \
return (type *)OPENSSL_SA_get((OPENSSL_SA *)sa, n); \
} \
static ossl_inline int ossl_sa_##type##_set(SPARSE_ARRAY_OF(type) *sa, \
size_t n, type *val) \
{ \
return OPENSSL_SA_set((OPENSSL_SA *)sa, n, (void *)val); \
} \
SPARSE_ARRAY_OF(type)
typedef struct sparse_array_st OPENSSL_SA;
OPENSSL_SA *OPENSSL_SA_new(void);
void OPENSSL_SA_free(OPENSSL_SA *sa);
void OPENSSL_SA_free_leaves(OPENSSL_SA *sa);
size_t OPENSSL_SA_num(const OPENSSL_SA *sa);
void OPENSSL_SA_doall(const OPENSSL_SA *sa, void (*leaf)(void *));
void OPENSSL_SA_doall_arg(const OPENSSL_SA *sa, void (*leaf)(void *, void *),
void *);
void *OPENSSL_SA_get(const OPENSSL_SA *sa, size_t n);
int OPENSSL_SA_set(OPENSSL_SA *sa, size_t n, void *val);
# ifdef __cplusplus
}
# endif
#endif

213
crypto/sparse_array.c Normal file
View File

@ -0,0 +1,213 @@
/*
* Copyright 2019 The OpenSSL Project Authors. All Rights Reserved.
* Copyright (c) 2019, Oracle and/or its affiliates. All rights reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <openssl/crypto.h>
#include "internal/sparse_array.h"
/*
* How many bits are used to index each level in the tree structre?
* This setting determines the number of pointers stored in each node of the
* tree used to represent the sparse array. Having more pointers reduces the
* depth of the tree but potentially wastes more memory. That is, this is a
* direct space versus time tradeoff.
*
* The large memory model uses twelve bits which means that the are 4096
* pointers in each tree node. This is more than sufficient to hold the
* largest defined NID (as of Feb 2019). This means that using a NID to
* index a sparse array becomes a constant time single array look up.
*
* The small memory model uses four bits which means the tree nodes contain
* sixteen pointers. This reduces the amount of unused space significantly
* at a cost in time.
*
* The library builder is also permitted to define other sizes in the closed
* interval [2, sizeof(size_t) * 8].
*/
#ifndef OPENSSL_SA_BLOCK_BITS
# ifdef OPENSSL_SMALL_FOOTPRINT
# define OPENSSL_SA_BLOCK_BITS 4
# else
# define OPENSSL_SA_BLOCK_BITS 12
# endif
#elif OPENSSL_SA_BLOCK_BITS < 2 || OPENSSL_SA_BLOCK_BITS > BN_BITS2
# error OPENSSL_SA_BLOCK_BITS is out of range
#endif
/*
* From the number of bits, work out:
* the number of pointers in a tree node;
* a bit mask to quickly extra an index and
* the maximum depth of the tree structure.
*/
#define SA_BLOCK_MAX (1 << OPENSSL_SA_BLOCK_BITS)
#define SA_BLOCK_MASK (SA_BLOCK_MAX - 1)
#define SA_BLOCK_MAX_LEVELS (((int)sizeof(size_t) * 8 \
+ OPENSSL_SA_BLOCK_BITS - 1) \
/ OPENSSL_SA_BLOCK_BITS)
struct sparse_array_st {
int levels;
size_t top;
size_t nelem;
void **nodes;
};
OPENSSL_SA *OPENSSL_SA_new(void)
{
OPENSSL_SA *res = OPENSSL_zalloc(sizeof(*res));
return res;
}
static void sa_doall(const OPENSSL_SA *sa, void (*node)(void **),
void (*leaf)(void *, void *), void *arg)
{
int i[SA_BLOCK_MAX_LEVELS];
void *nodes[SA_BLOCK_MAX_LEVELS];
int l = 0;
i[0] = 0;
nodes[0] = sa->nodes;
while (l >= 0) {
const int n = i[l];
void ** const p = nodes[l];
if (n >= SA_BLOCK_MAX) {
if (p != NULL && node != NULL)
(*node)(p);
l--;
} else {
i[l] = n + 1;
if (p != NULL && p[n] != NULL) {
if (l < sa->levels - 1) {
i[++l] = 0;
nodes[l] = p[n];
} else if (leaf != NULL) {
(*leaf)(p[n], arg);
}
}
}
}
}
static void sa_free_node(void **p)
{
OPENSSL_free(p);
}
static void sa_free_leaf(void *p, void *arg)
{
OPENSSL_free(p);
}
void OPENSSL_SA_free(OPENSSL_SA *sa)
{
sa_doall(sa, &sa_free_node, NULL, NULL);
OPENSSL_free(sa);
}
void OPENSSL_SA_free_leaves(OPENSSL_SA *sa)
{
sa_doall(sa, &sa_free_node, &sa_free_leaf, NULL);
OPENSSL_free(sa);
}
/* Wrap this in a structure to avoid compiler warnings */
struct trampoline_st {
void (*func)(void *);
};
static void trampoline(void *l, void *arg)
{
((const struct trampoline_st *)arg)->func(l);
}
void OPENSSL_SA_doall(const OPENSSL_SA *sa, void (*leaf)(void *))
{
struct trampoline_st tramp;
tramp.func = leaf;
if (sa != NULL)
sa_doall(sa, NULL, &trampoline, &tramp);
}
void OPENSSL_SA_doall_arg(const OPENSSL_SA *sa, void (*leaf)(void *, void *),
void *arg)
{
if (sa != NULL)
sa_doall(sa, NULL, leaf, arg);
}
size_t OPENSSL_SA_num(const OPENSSL_SA *sa)
{
return sa == NULL ? 0 : sa->nelem;
}
void *OPENSSL_SA_get(const OPENSSL_SA *sa, size_t n)
{
int level;
void **p, *r = NULL;
if (sa == NULL)
return NULL;
if (n <= sa->top) {
p = sa->nodes;
for (level = sa->levels - 1; p != NULL && level > 0; level--)
p = (void **)p[(n >> (OPENSSL_SA_BLOCK_BITS * level))
& SA_BLOCK_MASK];
r = p == NULL ? NULL : p[n & SA_BLOCK_MASK];
}
return r;
}
static ossl_inline void **alloc_node(void)
{
return OPENSSL_zalloc(SA_BLOCK_MAX * sizeof(void *));
}
int OPENSSL_SA_set(OPENSSL_SA *sa, size_t posn, void *val)
{
int i, level = 1;
size_t n = posn;
void **p;
if (sa == NULL)
return 0;
for (level = 1; level <= SA_BLOCK_MAX_LEVELS; level++)
if ((n >>= OPENSSL_SA_BLOCK_BITS) == 0)
break;
for (;sa->levels < level; sa->levels++) {
p = alloc_node();
if (p == NULL)
return 0;
p[0] = sa->nodes;
sa->nodes = p;
}
if (sa->top < posn)
sa->top = posn;
p = sa->nodes;
for (level = sa->levels - 1; level > 0; level--) {
i = (posn >> (OPENSSL_SA_BLOCK_BITS * level)) & SA_BLOCK_MASK;
if (p[i] == NULL && (p[i] = alloc_node()) == NULL)
return 0;
p = p[i];
}
p += posn & SA_BLOCK_MASK;
if (val == NULL && *p != NULL)
sa->nelem--;
else if (val != NULL && *p == NULL)
sa->nelem++;
*p = val;
return 1;
}

View File

@ -0,0 +1,112 @@
=pod
=head1 NAME
DEFINE_SPARSE_ARRAY_OF, ossl_sa_TYPE_new, ossl_sa_TYPE_free,
ossl_sa_TYPE_free_leaves, ossl_sa_TYPE_num, ossl_sa_TYPE_doall,
ossl_sa_TYPE_doall_arg, ossl_sa_TYPE_get, ossl_sa_TYPE_set
- sparse array container
=head1 SYNOPSIS
#include "internal/sparse_array.h"
typedef struct sparse_array_st OPENSSL_SA;
SPARSE_ARRAY_OF(TYPE)
DEFINE_SPARSE_ARRAY_OF(TYPE)
SPARSE_ARRAY_OF(TYPE) *ossl_sa_TYPE_new(void);
void ossl_sa_TYPE_free(const SPARSE_ARRAY_OF(TYPE) *sa);
void ossl_sa_TYPE_free_leaves(const SPARSE_ARRAY_OF(TYPE) *sa);
int ossl_sa_TYPE_num(const SPARSE_ARRAY_OF(TYPE) *sa);
void ossl_sa_TYPE_doall(const OPENSSL_SA *sa, void (*leaf)(void *));
void ossl_sa_TYPE_doall_arg(const OPENSSL_SA *sa, void (*leaf)(void *), void *arg);
TYPE *ossl_sa_TYPE_get(const SPARSE_ARRAY_OF(TYPE) *sa, size_t idx);
int ossl_sa_TYPE_set(SPARSE_ARRAY_OF(TYPE) *sa, size_t idx, TYPE *value);
=head1 DESCRIPTION
SPARSE_ARRAY_OF() returns the name for a sparse array of the specified
B<TYPE>. DEFINE_STACK_OF() creates set of functions for a sparse array of
B<TYPE>. This will mean that a pointer to type B<TYPE> is stored in each
element of a sparse array, the type is referenced by SPARSE_ARRAY_OF(TYPE) and
each function name begins with I<ossl_sa_TYPE_>. For example:
TYPE *ossl_sa_TYPE_get(SPARSE_ARRAY_OF(TYPE) *sa, size_t idx);
ossl_sa_TYPE_num() returns the number of elements in B<sa> or 0 if B<sa> is
B<NULL>.
ossl_sa_TYPE_get() returns element B<idx> in B<sa>, where B<idx> starts at
zero. If B<idx> refers to a value that has not been set then B<NULL> is
returned.
ossl_sa_TYPE_set() sets element B<idx> in B<sa> to B<value>, where B<idx>
starts at zero. The sparse array will be resized as required.
ossl_sa_TYPE_new() allocates a new empty sparse array.
ossl_sa_TYPE_free() frees up the B<sa> structure. It does B<not> free up any
elements of B<sa>. After this call B<sa> is no longer valid.
ossl_sa_TYPE_free_leaves() frees up the B<sa> structure and all of its
elements. After this call B<sa> is no longer valid.
ossl_sa_TYPE_doall() calls the function B<leaf> for each element in B<sa> in
ascending index order.
ossl_sa_TYPE_doall_arg() calls the function B<leaf> for each element in B<sa>
in ascending index order. The argument B<arg> is passed to each call of
B<leaf>.
=head1 NOTES
Sparse arrays are an internal data structure and should B<not> be used by user
applications.
Care should be taken when accessing sparse arrays in multi-threaded
environments. The ossl_sa_TYPE_set operation can cause the internal structure
of the sparse array to change which causes race conditions if the sparse array
is accessed in a different thread.
SPARSE_ARRAY_OF() and DEFINE_SPARSE_ARRAY_OF() are implemented as macros.
The underlying utility B<OPENSSL_SA_> API should not be used directly. It
defines these functions: OPENSSL_SA_doall, OPENSSL_SA_doall_arg,
OPENSSL_SA_free, OPENSSL_SA_free_leaves, OPENSSL_SA_get, OPENSSL_SA_new,
OPENSSL_SA_num and OPENSSL_SA_set.
=head1 RETURN VALUES
ossl_sa_TYPE_num() returns the number of elements in the sparse array or B<0>
if the passed sparse array is B<NULL>.
ossl_sa_TYPE_get() returns a pointer to a sparse array element or B<NULL> if
the element has not be set.
ossl_sa_TYPE_set() return B<1> on success and B<0> on error. In the latter
case, the elements of the sparse array remain unchanged, although the internal
structures might have.
ossl_sa_TYPE_new() returns an empty sparse array or B<NULL> if an error
occurs.
ossl_sa_TYPE_doall, ossl_sa_TYPE_doall_arg, ossl_sa_TYPE_free() and
ossl_sa_TYPE_free_leaves() do not return values.
=head1 HISTORY
This functionality was added to OpenSSL 3.0.0.
=head1 COPYRIGHT
Copyright 2019 The OpenSSL Project Authors. All Rights Reserved. Copyright
(c) 2019, Oracle and/or its affiliates. All rights reserved.
Licensed under the Apache License 2.0 (the "License"). You may not use this
file except in compliance with the License. You can obtain a copy in the file
LICENSE in the source distribution or at
L<https://www.openssl.org/source/license.html>.
=cut

View File

@ -30,7 +30,7 @@ IF[{- !$disabled{tests} -}]
dhtest enginetest casttest \
bftest ssltest_old dsatest dsa_no_digest_size_test exptest rsa_test \
evp_test evp_extra_test igetest v3nametest v3ext \
crltest danetest bad_dtls_test lhash_test \
crltest danetest bad_dtls_test lhash_test sparse_array_test \
conf_include_test \
constant_time_test verify_extra_test clienthellotest \
packettest asynctest secmemtest srptest memleaktest stack_test \
@ -488,6 +488,10 @@ IF[{- !$disabled{tests} -}]
INCLUDE[ctype_internal_test]=.. ../crypto/include ../include
DEPEND[ctype_internal_test]=../libcrypto.a libtestutil.a
SOURCE[sparse_array_test]=sparse_array_test.c
INCLUDE[sparse_array_test]=../crypto/include ../include
DEPEND[sparse_array_test]=../libcrypto.a libtestutil.a
SOURCE[siphash_internal_test]=siphash_internal_test.c
INCLUDE[siphash_internal_test]=.. ../include ../crypto/include
DEPEND[siphash_internal_test]=../libcrypto.a libtestutil.a

View File

@ -0,0 +1,12 @@
#! /usr/bin/env perl
# Copyright 2019 The OpenSSL Project Authors. All Rights Reserved.
# Copyright (c) 2019, Oracle and/or its affiliates. All rights reserved.
#
# Licensed under the Apache License 2.0 (the "License"). You may not use
# this file except in compliance with the License. You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html
use OpenSSL::Test::Simple;
simple_test("test_sparse_array", "sparse_array_test");

103
test/sparse_array_test.c Normal file
View File

@ -0,0 +1,103 @@
/*
* Copyright 2019 The OpenSSL Project Authors. All Rights Reserved.
* Copyright (c) 2019, Oracle and/or its affiliates. All rights reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdio.h>
#include <string.h>
#include <limits.h>
#include <openssl/crypto.h>
#include <internal/nelem.h>
#include "internal/sparse_array.h"
#include "testutil.h"
/* The macros below generate unused functions which error out one of the clang
* builds. We disable this check here.
*/
#ifdef __clang__
#pragma clang diagnostic ignored "-Wunused-function"
#endif
DEFINE_SPARSE_ARRAY_OF(char);
static int test_sparse_array(void)
{
static const struct {
size_t n;
char *v;
} cases[] = {
{ 22, "a" }, { 0, "z" }, { 1, "b" }, { 290, "c" },
{ INT_MAX, "m" }, { 6666666, "d" }, { (size_t)-1, "H" },
{ 99, "e" }
};
SPARSE_ARRAY_OF(char) *sa;
size_t i, j;
int res = 0;
if (!TEST_ptr(sa = ossl_sa_char_new())
|| !TEST_ptr_null(ossl_sa_char_get(sa, 3))
|| !TEST_ptr_null(ossl_sa_char_get(sa, 0))
|| !TEST_ptr_null(ossl_sa_char_get(sa, UINT_MAX)))
goto err;
for (i = 0; i < OSSL_NELEM(cases); i++) {
if (!TEST_true(ossl_sa_char_set(sa, cases[i].n, cases[i].v))) {
TEST_note("iteration %zu", i + 1);
goto err;
}
for (j = 0; j <= i; j++)
if (!TEST_str_eq(ossl_sa_char_get(sa, cases[j].n), cases[j].v)) {
TEST_note("iteration %zu / %zu", i + 1, j + 1);
goto err;
}
}
res = 1;
err:
ossl_sa_char_free(sa);
return res;
}
static int test_sparse_array_num(void)
{
static const struct {
size_t num;
size_t n;
char *v;
} cases[] = {
{ 1, 22, "a" }, { 2, 1021, "b" }, { 3, 3, "c" }, { 2, 22, NULL },
{ 2, 3, "d" }, { 3, 22, "e" }, { 3, 666, NULL }, { 4, 666, "f" },
{ 3, 3, NULL }, { 2, 22, NULL }, { 1, 666, NULL }, { 2, 64000, "g" },
{ 1, 1021, NULL }, { 0, 64000, NULL }, { 1, 23, "h" }, { 0, 23, NULL }
};
SPARSE_ARRAY_OF(char) *sa = NULL;
size_t i;
int res = 0;
if (!TEST_size_t_eq(ossl_sa_char_num(NULL), 0)
|| !TEST_ptr(sa = ossl_sa_char_new())
|| !TEST_size_t_eq(ossl_sa_char_num(sa), 0))
goto err;
for (i = 0; i < OSSL_NELEM(cases); i++)
if (!TEST_true(ossl_sa_char_set(sa, cases[i].n, cases[i].v))
|| !TEST_size_t_eq(ossl_sa_char_num(sa), cases[i].num))
goto err;
res = 1;
err:
ossl_sa_char_free(sa);
return res;
}
int setup_tests(void)
{
ADD_TEST(test_sparse_array);
ADD_TEST(test_sparse_array_num);
return 1;
}