aes: avoid accessing key length field directly

Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/17543)
This commit is contained in:
Pauli 2022-01-27 12:51:13 +11:00
parent d5f9166bac
commit 80ce874a09
2 changed files with 224 additions and 104 deletions

View File

@ -146,20 +146,21 @@ static int aesni_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
{ {
int ret, mode; int ret, mode;
EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
const int keylen = EVP_CIPHER_CTX_get_key_length(ctx) * 8;
if (keylen <= 0) {
ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
return 0;
}
mode = EVP_CIPHER_CTX_get_mode(ctx); mode = EVP_CIPHER_CTX_get_mode(ctx);
if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)
&& !enc) { && !enc) {
ret = aesni_set_decrypt_key(key, ret = aesni_set_decrypt_key(key, keylen, &dat->ks.ks);
EVP_CIPHER_CTX_get_key_length(ctx) * 8,
&dat->ks.ks);
dat->block = (block128_f) aesni_decrypt; dat->block = (block128_f) aesni_decrypt;
dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
(cbc128_f) aesni_cbc_encrypt : NULL; (cbc128_f) aesni_cbc_encrypt : NULL;
} else { } else {
ret = aesni_set_encrypt_key(key, ret = aesni_set_encrypt_key(key, keylen, &dat->ks.ks);
EVP_CIPHER_CTX_get_key_length(ctx) * 8,
&dat->ks.ks);
dat->block = (block128_f) aesni_encrypt; dat->block = (block128_f) aesni_encrypt;
if (mode == EVP_CIPH_CBC_MODE) if (mode == EVP_CIPH_CBC_MODE)
dat->stream.cbc = (cbc128_f) aesni_cbc_encrypt; dat->stream.cbc = (cbc128_f) aesni_cbc_encrypt;
@ -223,12 +224,19 @@ static int aesni_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
static int aesni_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, static int aesni_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc) const unsigned char *iv, int enc)
{ {
EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx); EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX, ctx);
if (!iv && !key)
if (iv == NULL && key == NULL)
return 1; return 1;
if (key) { if (key) {
aesni_set_encrypt_key(key, EVP_CIPHER_CTX_get_key_length(ctx) * 8, const int keylen = EVP_CIPHER_CTX_get_key_length(ctx) * 8;
&gctx->ks.ks);
if (keylen <= 0) {
ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
return 0;
}
aesni_set_encrypt_key(key, keylen, &gctx->ks.ks);
CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f) aesni_encrypt); CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f) aesni_encrypt);
gctx->ctr = (ctr128_f) aesni_ctr32_encrypt_blocks; gctx->ctr = (ctr128_f) aesni_ctr32_encrypt_blocks;
/* /*
@ -262,14 +270,19 @@ static int aesni_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
{ {
EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx); EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx);
if (!iv && !key) if (iv == NULL && key == NULL)
return 1; return 1;
if (key) { if (key) {
/* The key is two half length keys in reality */ /* The key is two half length keys in reality */
const int bytes = EVP_CIPHER_CTX_get_key_length(ctx) / 2; const int keylen = EVP_CIPHER_CTX_get_key_length(ctx);
const int bytes = keylen / 2;
const int bits = bytes * 8; const int bits = bytes * 8;
if (keylen <= 0) {
ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
return 0;
}
/* /*
* Verify that the two keys are different. * Verify that the two keys are different.
* *
@ -315,11 +328,18 @@ static int aesni_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc) const unsigned char *iv, int enc)
{ {
EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx); EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
if (!iv && !key)
if (iv == NULL && key == NULL)
return 1; return 1;
if (key) {
aesni_set_encrypt_key(key, EVP_CIPHER_CTX_get_key_length(ctx) * 8, if (key != NULL) {
&cctx->ks.ks); const int keylen = EVP_CIPHER_CTX_get_key_length(ctx) * 8;
if (keylen <= 0) {
ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
return 0;
}
aesni_set_encrypt_key(key, keylen, &cctx->ks.ks);
CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
&cctx->ks, (block128_f) aesni_encrypt); &cctx->ks, (block128_f) aesni_encrypt);
cctx->str = enc ? (ccm128_f) aesni_ccm64_encrypt_blocks : cctx->str = enc ? (ccm128_f) aesni_ccm64_encrypt_blocks :
@ -342,19 +362,25 @@ static int aesni_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc) const unsigned char *iv, int enc)
{ {
EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx); EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx);
if (!iv && !key)
if (iv == NULL && key == NULL)
return 1; return 1;
if (key) {
if (key != NULL) {
const int keylen = EVP_CIPHER_CTX_get_key_length(ctx) * 8;
if (keylen <= 0) {
ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
return 0;
}
do { do {
/* /*
* We set both the encrypt and decrypt key here because decrypt * We set both the encrypt and decrypt key here because decrypt
* needs both. We could possibly optimise to remove setting the * needs both. We could possibly optimise to remove setting the
* decrypt for an encryption operation. * decrypt for an encryption operation.
*/ */
aesni_set_encrypt_key(key, EVP_CIPHER_CTX_get_key_length(ctx) * 8, aesni_set_encrypt_key(key, keylen, &octx->ksenc.ks);
&octx->ksenc.ks); aesni_set_decrypt_key(key, keylen, &octx->ksdec.ks);
aesni_set_decrypt_key(key, EVP_CIPHER_CTX_get_key_length(ctx) * 8,
&octx->ksdec.ks);
if (!CRYPTO_ocb128_init(&octx->ocb, if (!CRYPTO_ocb128_init(&octx->ocb,
&octx->ksenc.ks, &octx->ksdec.ks, &octx->ksenc.ks, &octx->ksdec.ks,
(block128_f) aesni_encrypt, (block128_f) aesni_encrypt,
@ -452,6 +478,10 @@ static int aes_t4_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
mode = EVP_CIPHER_CTX_get_mode(ctx); mode = EVP_CIPHER_CTX_get_mode(ctx);
bits = EVP_CIPHER_CTX_get_key_length(ctx) * 8; bits = EVP_CIPHER_CTX_get_key_length(ctx) * 8;
if (bits <= 0) {
ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
return 0;
}
if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)
&& !enc) { && !enc) {
ret = 0; ret = 0;
@ -547,10 +577,16 @@ static int aes_t4_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc) const unsigned char *iv, int enc)
{ {
EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx); EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);
if (!iv && !key)
if (iv == NULL && key == NULL)
return 1; return 1;
if (key) { if (key) {
int bits = EVP_CIPHER_CTX_get_key_length(ctx) * 8; const int bits = EVP_CIPHER_CTX_get_key_length(ctx) * 8;
if (bits <= 0) {
ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
return 0;
}
aes_t4_set_encrypt_key(key, bits, &gctx->ks.ks); aes_t4_set_encrypt_key(key, bits, &gctx->ks.ks);
CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
(block128_f) aes_t4_encrypt); (block128_f) aes_t4_encrypt);
@ -603,9 +639,14 @@ static int aes_t4_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
if (key) { if (key) {
/* The key is two half length keys in reality */ /* The key is two half length keys in reality */
const int bytes = EVP_CIPHER_CTX_get_key_length(ctx) / 2; const int keylen = EVP_CIPHER_CTX_get_key_length(ctx);
const int bytes = keylen / 2;
const int bits = bytes * 8; const int bits = bytes * 8;
if (keylen <= 0) {
ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
return 0;
}
/* /*
* Verify that the two keys are different. * Verify that the two keys are different.
* *
@ -670,10 +711,17 @@ static int aes_t4_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc) const unsigned char *iv, int enc)
{ {
EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx); EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
if (!iv && !key)
if (iv == NULL && key == NULL)
return 1; return 1;
if (key) {
int bits = EVP_CIPHER_CTX_get_key_length(ctx) * 8; if (key != NULL) {
const int bits = EVP_CIPHER_CTX_get_key_length(ctx) * 8;
if (bits <= 0) {
ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
return 0;
}
aes_t4_set_encrypt_key(key, bits, &cctx->ks.ks); aes_t4_set_encrypt_key(key, bits, &cctx->ks.ks);
CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
&cctx->ks, (block128_f) aes_t4_encrypt); &cctx->ks, (block128_f) aes_t4_encrypt);
@ -696,19 +744,25 @@ static int aes_t4_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc) const unsigned char *iv, int enc)
{ {
EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx); EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx);
if (!iv && !key)
if (iv == NULL && key == NULL)
return 1; return 1;
if (key) {
if (key != NULL) {
const int keylen = EVP_CIPHER_CTX_get_key_length(ctx) * 8;
if (keylen <= 0) {
ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
return 0;
}
do { do {
/* /*
* We set both the encrypt and decrypt key here because decrypt * We set both the encrypt and decrypt key here because decrypt
* needs both. We could possibly optimise to remove setting the * needs both. We could possibly optimise to remove setting the
* decrypt for an encryption operation. * decrypt for an encryption operation.
*/ */
aes_t4_set_encrypt_key(key, EVP_CIPHER_CTX_get_key_length(ctx) * 8, aes_t4_set_encrypt_key(key, keylen, &octx->ksenc.ks);
&octx->ksenc.ks); aes_t4_set_decrypt_key(key, keylen, &octx->ksdec.ks);
aes_t4_set_decrypt_key(key, EVP_CIPHER_CTX_get_key_length(ctx) * 8,
&octx->ksdec.ks);
if (!CRYPTO_ocb128_init(&octx->ocb, if (!CRYPTO_ocb128_init(&octx->ocb,
&octx->ksenc.ks, &octx->ksdec.ks, &octx->ksenc.ks, &octx->ksdec.ks,
(block128_f) aes_t4_encrypt, (block128_f) aes_t4_encrypt,
@ -973,6 +1027,10 @@ static int s390x_aes_ecb_init_key(EVP_CIPHER_CTX *ctx,
S390X_AES_ECB_CTX *cctx = EVP_C_DATA(S390X_AES_ECB_CTX, ctx); S390X_AES_ECB_CTX *cctx = EVP_C_DATA(S390X_AES_ECB_CTX, ctx);
const int keylen = EVP_CIPHER_CTX_get_key_length(ctx); const int keylen = EVP_CIPHER_CTX_get_key_length(ctx);
if (keylen <= 0) {
ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
return 0;
}
cctx->fc = S390X_AES_FC(keylen); cctx->fc = S390X_AES_FC(keylen);
if (!enc) if (!enc)
cctx->fc |= S390X_DECRYPT; cctx->fc |= S390X_DECRYPT;
@ -999,6 +1057,14 @@ static int s390x_aes_ofb_init_key(EVP_CIPHER_CTX *ctx,
const int keylen = EVP_CIPHER_CTX_get_key_length(ctx); const int keylen = EVP_CIPHER_CTX_get_key_length(ctx);
const int ivlen = EVP_CIPHER_CTX_get_iv_length(ctx); const int ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
if (keylen <= 0) {
ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
return 0;
}
if (ivlen <= 0) {
ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_IV_LENGTH);
return 0;
}
memcpy(cctx->kmo.param.cv, iv, ivlen); memcpy(cctx->kmo.param.cv, iv, ivlen);
memcpy(cctx->kmo.param.k, key, keylen); memcpy(cctx->kmo.param.k, key, keylen);
cctx->fc = S390X_AES_FC(keylen); cctx->fc = S390X_AES_FC(keylen);
@ -1058,6 +1124,14 @@ static int s390x_aes_cfb_init_key(EVP_CIPHER_CTX *ctx,
const int keylen = EVP_CIPHER_CTX_get_key_length(ctx); const int keylen = EVP_CIPHER_CTX_get_key_length(ctx);
const int ivlen = EVP_CIPHER_CTX_get_iv_length(ctx); const int ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
if (keylen <= 0) {
ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
return 0;
}
if (ivlen <= 0) {
ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_IV_LENGTH);
return 0;
}
cctx->fc = S390X_AES_FC(keylen); cctx->fc = S390X_AES_FC(keylen);
cctx->fc |= 16 << 24; /* 16 bytes cipher feedback */ cctx->fc |= 16 << 24; /* 16 bytes cipher feedback */
if (!enc) if (!enc)
@ -1081,6 +1155,14 @@ static int s390x_aes_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
int rem; int rem;
unsigned char tmp; unsigned char tmp;
if (keylen <= 0) {
ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
return 0;
}
if (ivlen <= 0) {
ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_IV_LENGTH);
return 0;
}
memcpy(cctx->kmf.param.cv, iv, ivlen); memcpy(cctx->kmf.param.cv, iv, ivlen);
while (n && len) { while (n && len) {
tmp = *in; tmp = *in;
@ -1128,6 +1210,14 @@ static int s390x_aes_cfb8_init_key(EVP_CIPHER_CTX *ctx,
const int keylen = EVP_CIPHER_CTX_get_key_length(ctx); const int keylen = EVP_CIPHER_CTX_get_key_length(ctx);
const int ivlen = EVP_CIPHER_CTX_get_iv_length(ctx); const int ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
if (keylen <= 0) {
ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
return 0;
}
if (ivlen <= 0) {
ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_IV_LENGTH);
return 0;
}
cctx->fc = S390X_AES_FC(keylen); cctx->fc = S390X_AES_FC(keylen);
cctx->fc |= 1 << 24; /* 1 byte cipher feedback */ cctx->fc |= 1 << 24; /* 1 byte cipher feedback */
if (!enc) if (!enc)
@ -1533,6 +1623,11 @@ static int s390x_aes_gcm_init_key(EVP_CIPHER_CTX *ctx,
if (key != NULL) { if (key != NULL) {
keylen = EVP_CIPHER_CTX_get_key_length(ctx); keylen = EVP_CIPHER_CTX_get_key_length(ctx);
if (keylen <= 0) {
ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
return 0;
}
memcpy(&gctx->kma.param.k, key, keylen); memcpy(&gctx->kma.param.k, key, keylen);
gctx->fc = S390X_AES_FC(keylen); gctx->fc = S390X_AES_FC(keylen);
@ -1939,6 +2034,11 @@ static int s390x_aes_ccm_init_key(EVP_CIPHER_CTX *ctx,
if (key != NULL) { if (key != NULL) {
keylen = EVP_CIPHER_CTX_get_key_length(ctx); keylen = EVP_CIPHER_CTX_get_key_length(ctx);
if (keylen <= 0) {
ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
return 0;
}
cctx->aes.ccm.fc = S390X_AES_FC(keylen); cctx->aes.ccm.fc = S390X_AES_FC(keylen);
memcpy(cctx->aes.ccm.kmac_param.k, key, keylen); memcpy(cctx->aes.ccm.kmac_param.k, key, keylen);
@ -2315,15 +2415,19 @@ static int aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
{ {
int ret, mode; int ret, mode;
EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
const int keylen = EVP_CIPHER_CTX_get_key_length(ctx) * 8;
if (keylen <= 0) {
ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
return 0;
}
mode = EVP_CIPHER_CTX_get_mode(ctx); mode = EVP_CIPHER_CTX_get_mode(ctx);
if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)
&& !enc) { && !enc) {
#ifdef HWAES_CAPABLE #ifdef HWAES_CAPABLE
if (HWAES_CAPABLE) { if (HWAES_CAPABLE) {
ret = HWAES_set_decrypt_key(key, ret = HWAES_set_decrypt_key(key, keylen, &dat->ks.ks);
EVP_CIPHER_CTX_get_key_length(ctx) * 8,
&dat->ks.ks);
dat->block = (block128_f) HWAES_decrypt; dat->block = (block128_f) HWAES_decrypt;
dat->stream.cbc = NULL; dat->stream.cbc = NULL;
# ifdef HWAES_cbc_encrypt # ifdef HWAES_cbc_encrypt
@ -2334,27 +2438,21 @@ static int aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
#endif #endif
#ifdef BSAES_CAPABLE #ifdef BSAES_CAPABLE
if (BSAES_CAPABLE && mode == EVP_CIPH_CBC_MODE) { if (BSAES_CAPABLE && mode == EVP_CIPH_CBC_MODE) {
ret = AES_set_decrypt_key(key, ret = AES_set_decrypt_key(key, keylen, &dat->ks.ks);
EVP_CIPHER_CTX_get_key_length(ctx) * 8,
&dat->ks.ks);
dat->block = (block128_f) AES_decrypt; dat->block = (block128_f) AES_decrypt;
dat->stream.cbc = (cbc128_f) ossl_bsaes_cbc_encrypt; dat->stream.cbc = (cbc128_f) ossl_bsaes_cbc_encrypt;
} else } else
#endif #endif
#ifdef VPAES_CAPABLE #ifdef VPAES_CAPABLE
if (VPAES_CAPABLE) { if (VPAES_CAPABLE) {
ret = vpaes_set_decrypt_key(key, ret = vpaes_set_decrypt_key(key, keylen, &dat->ks.ks);
EVP_CIPHER_CTX_get_key_length(ctx) * 8,
&dat->ks.ks);
dat->block = (block128_f) vpaes_decrypt; dat->block = (block128_f) vpaes_decrypt;
dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
(cbc128_f) vpaes_cbc_encrypt : NULL; (cbc128_f) vpaes_cbc_encrypt : NULL;
} else } else
#endif #endif
{ {
ret = AES_set_decrypt_key(key, ret = AES_set_decrypt_key(key, keylen, &dat->ks.ks);
EVP_CIPHER_CTX_get_key_length(ctx) * 8,
&dat->ks.ks);
dat->block = (block128_f) AES_decrypt; dat->block = (block128_f) AES_decrypt;
dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
(cbc128_f) AES_cbc_encrypt : NULL; (cbc128_f) AES_cbc_encrypt : NULL;
@ -2362,9 +2460,7 @@ static int aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
} else } else
#ifdef HWAES_CAPABLE #ifdef HWAES_CAPABLE
if (HWAES_CAPABLE) { if (HWAES_CAPABLE) {
ret = HWAES_set_encrypt_key(key, ret = HWAES_set_encrypt_key(key, keylen, &dat->ks.ks);
EVP_CIPHER_CTX_get_key_length(ctx) * 8,
&dat->ks.ks);
dat->block = (block128_f) HWAES_encrypt; dat->block = (block128_f) HWAES_encrypt;
dat->stream.cbc = NULL; dat->stream.cbc = NULL;
# ifdef HWAES_cbc_encrypt # ifdef HWAES_cbc_encrypt
@ -2382,25 +2478,21 @@ static int aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
#endif #endif
#ifdef BSAES_CAPABLE #ifdef BSAES_CAPABLE
if (BSAES_CAPABLE && mode == EVP_CIPH_CTR_MODE) { if (BSAES_CAPABLE && mode == EVP_CIPH_CTR_MODE) {
ret = AES_set_encrypt_key(key, EVP_CIPHER_CTX_get_key_length(ctx) * 8, ret = AES_set_encrypt_key(key, keylen, &dat->ks.ks);
&dat->ks.ks);
dat->block = (block128_f) AES_encrypt; dat->block = (block128_f) AES_encrypt;
dat->stream.ctr = (ctr128_f) ossl_bsaes_ctr32_encrypt_blocks; dat->stream.ctr = (ctr128_f) ossl_bsaes_ctr32_encrypt_blocks;
} else } else
#endif #endif
#ifdef VPAES_CAPABLE #ifdef VPAES_CAPABLE
if (VPAES_CAPABLE) { if (VPAES_CAPABLE) {
ret = vpaes_set_encrypt_key(key, ret = vpaes_set_encrypt_key(key, keylen, &dat->ks.ks);
EVP_CIPHER_CTX_get_key_length(ctx) * 8,
&dat->ks.ks);
dat->block = (block128_f) vpaes_encrypt; dat->block = (block128_f) vpaes_encrypt;
dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
(cbc128_f) vpaes_cbc_encrypt : NULL; (cbc128_f) vpaes_cbc_encrypt : NULL;
} else } else
#endif #endif
{ {
ret = AES_set_encrypt_key(key, EVP_CIPHER_CTX_get_key_length(ctx) * 8, ret = AES_set_encrypt_key(key, keylen, &dat->ks.ks);
&dat->ks.ks);
dat->block = (block128_f) AES_encrypt; dat->block = (block128_f) AES_encrypt;
dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
(cbc128_f) AES_cbc_encrypt : NULL; (cbc128_f) AES_cbc_encrypt : NULL;
@ -2711,13 +2803,21 @@ static int aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc) const unsigned char *iv, int enc)
{ {
EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx); EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);
if (!iv && !key)
if (iv == NULL && key == NULL)
return 1; return 1;
if (key) {
if (key != NULL) {
const int keylen = EVP_CIPHER_CTX_get_key_length(ctx) * 8;
if (keylen <= 0) {
ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
return 0;
}
do { do {
#ifdef HWAES_CAPABLE #ifdef HWAES_CAPABLE
if (HWAES_CAPABLE) { if (HWAES_CAPABLE) {
HWAES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks); HWAES_set_encrypt_key(key, keylen, &gctx->ks.ks);
CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
(block128_f) HWAES_encrypt); (block128_f) HWAES_encrypt);
# ifdef HWAES_ctr32_encrypt_blocks # ifdef HWAES_ctr32_encrypt_blocks
@ -2730,7 +2830,7 @@ static int aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
#endif #endif
#ifdef BSAES_CAPABLE #ifdef BSAES_CAPABLE
if (BSAES_CAPABLE) { if (BSAES_CAPABLE) {
AES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks); AES_set_encrypt_key(key, keylen, &gctx->ks.ks);
CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
(block128_f) AES_encrypt); (block128_f) AES_encrypt);
gctx->ctr = (ctr128_f) ossl_bsaes_ctr32_encrypt_blocks; gctx->ctr = (ctr128_f) ossl_bsaes_ctr32_encrypt_blocks;
@ -2739,7 +2839,7 @@ static int aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
#endif #endif
#ifdef VPAES_CAPABLE #ifdef VPAES_CAPABLE
if (VPAES_CAPABLE) { if (VPAES_CAPABLE) {
vpaes_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks); vpaes_set_encrypt_key(key, keylen, &gctx->ks.ks);
CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
(block128_f) vpaes_encrypt); (block128_f) vpaes_encrypt);
gctx->ctr = NULL; gctx->ctr = NULL;
@ -2748,7 +2848,7 @@ static int aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
#endif #endif
(void)0; /* terminate potentially open 'else' */ (void)0; /* terminate potentially open 'else' */
AES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks); AES_set_encrypt_key(key, keylen, &gctx->ks.ks);
CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
(block128_f) AES_encrypt); (block128_f) AES_encrypt);
#ifdef AES_CTR_ASM #ifdef AES_CTR_ASM
@ -3128,15 +3228,20 @@ static int aes_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
{ {
EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx); EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx);
if (!iv && !key) if (iv == NULL && key == NULL)
return 1; return 1;
if (key) { if (key != NULL) {
do { do {
/* The key is two half length keys in reality */ /* The key is two half length keys in reality */
const int bytes = EVP_CIPHER_CTX_get_key_length(ctx) / 2; const int keylen = EVP_CIPHER_CTX_get_key_length(ctx);
const int bytes = keylen / 2;
const int bits = bytes * 8; const int bits = bytes * 8;
if (keylen <= 0) {
ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
return 0;
}
/* /*
* Verify that the two keys are different. * Verify that the two keys are different.
* *
@ -3382,15 +3487,21 @@ static int aes_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc) const unsigned char *iv, int enc)
{ {
EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx); EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
if (!iv && !key)
if (iv == NULL && key == NULL)
return 1; return 1;
if (key)
if (key != NULL) {
const int keylen = EVP_CIPHER_CTX_get_key_length(ctx) * 8;
if (keylen <= 0) {
ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
return 0;
}
do { do {
#ifdef HWAES_CAPABLE #ifdef HWAES_CAPABLE
if (HWAES_CAPABLE) { if (HWAES_CAPABLE) {
HWAES_set_encrypt_key(key, HWAES_set_encrypt_key(key, keylen, &cctx->ks.ks);
EVP_CIPHER_CTX_get_key_length(ctx) * 8,
&cctx->ks.ks);
CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
&cctx->ks, (block128_f) HWAES_encrypt); &cctx->ks, (block128_f) HWAES_encrypt);
@ -3401,9 +3512,7 @@ static int aes_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
#endif #endif
#ifdef VPAES_CAPABLE #ifdef VPAES_CAPABLE
if (VPAES_CAPABLE) { if (VPAES_CAPABLE) {
vpaes_set_encrypt_key(key, vpaes_set_encrypt_key(key, keylen, &cctx->ks.ks);
EVP_CIPHER_CTX_get_key_length(ctx) * 8,
&cctx->ks.ks);
CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
&cctx->ks, (block128_f) vpaes_encrypt); &cctx->ks, (block128_f) vpaes_encrypt);
cctx->str = NULL; cctx->str = NULL;
@ -3411,14 +3520,14 @@ static int aes_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
break; break;
} }
#endif #endif
AES_set_encrypt_key(key, EVP_CIPHER_CTX_get_key_length(ctx) * 8, AES_set_encrypt_key(key, keylen, &cctx->ks.ks);
&cctx->ks.ks);
CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
&cctx->ks, (block128_f) AES_encrypt); &cctx->ks, (block128_f) AES_encrypt);
cctx->str = NULL; cctx->str = NULL;
cctx->key_set = 1; cctx->key_set = 1;
} while (0); } while (0);
if (iv) { }
if (iv != NULL) {
memcpy(ctx->iv, iv, 15 - cctx->L); memcpy(ctx->iv, iv, 15 - cctx->L);
cctx->iv_set = 1; cctx->iv_set = 1;
} }
@ -3573,12 +3682,16 @@ static int aes_wrap_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
if (iv == NULL && key == NULL) if (iv == NULL && key == NULL)
return 1; return 1;
if (key != NULL) { if (key != NULL) {
const int keylen = EVP_CIPHER_CTX_get_key_length(ctx) * 8;
if (keylen <= 0) {
ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
return 0;
}
if (EVP_CIPHER_CTX_is_encrypting(ctx)) if (EVP_CIPHER_CTX_is_encrypting(ctx))
AES_set_encrypt_key(key, EVP_CIPHER_CTX_get_key_length(ctx) * 8, AES_set_encrypt_key(key, keylen, &wctx->ks.ks);
&wctx->ks.ks);
else else
AES_set_decrypt_key(key, EVP_CIPHER_CTX_get_key_length(ctx) * 8, AES_set_decrypt_key(key, keylen, &wctx->ks.ks);
&wctx->ks.ks);
if (iv == NULL) if (iv == NULL)
wctx->iv = NULL; wctx->iv = NULL;
} }
@ -3806,9 +3919,17 @@ static int aes_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc) const unsigned char *iv, int enc)
{ {
EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx); EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx);
if (!iv && !key)
if (iv == NULL && key == NULL)
return 1; return 1;
if (key) {
if (key != NULL) {
const int keylen = EVP_CIPHER_CTX_get_key_length(ctx) * 8;
if (keylen <= 0) {
ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
return 0;
}
do { do {
/* /*
* We set both the encrypt and decrypt key here because decrypt * We set both the encrypt and decrypt key here because decrypt
@ -3817,10 +3938,8 @@ static int aes_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
*/ */
# ifdef HWAES_CAPABLE # ifdef HWAES_CAPABLE
if (HWAES_CAPABLE) { if (HWAES_CAPABLE) {
HWAES_set_encrypt_key(key, EVP_CIPHER_CTX_get_key_length(ctx) * 8, HWAES_set_encrypt_key(key, keylen, &octx->ksenc.ks);
&octx->ksenc.ks); HWAES_set_decrypt_key(key, keylen, &octx->ksdec.ks);
HWAES_set_decrypt_key(key, EVP_CIPHER_CTX_get_key_length(ctx) * 8,
&octx->ksdec.ks);
if (!CRYPTO_ocb128_init(&octx->ocb, if (!CRYPTO_ocb128_init(&octx->ocb,
&octx->ksenc.ks, &octx->ksdec.ks, &octx->ksenc.ks, &octx->ksdec.ks,
(block128_f) HWAES_encrypt, (block128_f) HWAES_encrypt,
@ -3833,12 +3952,8 @@ static int aes_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
# endif # endif
# ifdef VPAES_CAPABLE # ifdef VPAES_CAPABLE
if (VPAES_CAPABLE) { if (VPAES_CAPABLE) {
vpaes_set_encrypt_key(key, vpaes_set_encrypt_key(key, keylen, &octx->ksenc.ks);
EVP_CIPHER_CTX_get_key_length(ctx) * 8, vpaes_set_decrypt_key(key, keylen, &octx->ksdec.ks);
&octx->ksenc.ks);
vpaes_set_decrypt_key(key,
EVP_CIPHER_CTX_get_key_length(ctx) * 8,
&octx->ksdec.ks);
if (!CRYPTO_ocb128_init(&octx->ocb, if (!CRYPTO_ocb128_init(&octx->ocb,
&octx->ksenc.ks, &octx->ksdec.ks, &octx->ksenc.ks, &octx->ksdec.ks,
(block128_f) vpaes_encrypt, (block128_f) vpaes_encrypt,
@ -3848,10 +3963,8 @@ static int aes_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
break; break;
} }
# endif # endif
AES_set_encrypt_key(key, EVP_CIPHER_CTX_get_key_length(ctx) * 8, AES_set_encrypt_key(key, keylen, &octx->ksenc.ks);
&octx->ksenc.ks); AES_set_decrypt_key(key, keylen, &octx->ksdec.ks);
AES_set_decrypt_key(key, EVP_CIPHER_CTX_get_key_length(ctx) * 8,
&octx->ksdec.ks);
if (!CRYPTO_ocb128_init(&octx->ocb, if (!CRYPTO_ocb128_init(&octx->ocb,
&octx->ksenc.ks, &octx->ksdec.ks, &octx->ksenc.ks, &octx->ksdec.ks,
(block128_f) AES_encrypt, (block128_f) AES_encrypt,

View File

@ -72,15 +72,16 @@ static int aesni_cbc_hmac_sha1_init_key(EVP_CIPHER_CTX *ctx,
{ {
EVP_AES_HMAC_SHA1 *key = data(ctx); EVP_AES_HMAC_SHA1 *key = data(ctx);
int ret; int ret;
const int keylen = EVP_CIPHER_CTX_get_key_length(ctx) * 8;
if (keylen <= 0) {
ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
return 0;
}
if (enc) if (enc)
ret = aesni_set_encrypt_key(inkey, ret = aesni_set_encrypt_key(inkey, keylen, &key->ks);
EVP_CIPHER_CTX_get_key_length(ctx) * 8,
&key->ks);
else else
ret = aesni_set_decrypt_key(inkey, ret = aesni_set_decrypt_key(inkey, keylen, &key->ks);
EVP_CIPHER_CTX_get_key_length(ctx) * 8,
&key->ks);
SHA1_Init(&key->head); /* handy when benchmarking */ SHA1_Init(&key->head); /* handy when benchmarking */
key->tail = key->head; key->tail = key->head;
@ -496,6 +497,12 @@ static int aesni_cbc_hmac_sha1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
# if defined(STITCHED_DECRYPT_CALL) # if defined(STITCHED_DECRYPT_CALL)
unsigned char tail_iv[AES_BLOCK_SIZE]; unsigned char tail_iv[AES_BLOCK_SIZE];
int stitch = 0; int stitch = 0;
const int keylen = EVP_CIPHER_CTX_get_key_length(ctx);
if (keylen <= 0) {
ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
return 0;
}
# endif # endif
if ((key->aux.tls_aad[plen - 4] << 8 | key->aux.tls_aad[plen - 3]) if ((key->aux.tls_aad[plen - 4] << 8 | key->aux.tls_aad[plen - 3])
@ -513,7 +520,7 @@ static int aesni_cbc_hmac_sha1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
return 0; return 0;
# if defined(STITCHED_DECRYPT_CALL) # if defined(STITCHED_DECRYPT_CALL)
if (len >= 1024 && ctx->key_len == 32) { if (len >= 1024 && keylen == 32) {
/* decrypt last block */ /* decrypt last block */
memcpy(tail_iv, in + len - 2 * AES_BLOCK_SIZE, memcpy(tail_iv, in + len - 2 * AES_BLOCK_SIZE,
AES_BLOCK_SIZE); AES_BLOCK_SIZE);
@ -734,7 +741,7 @@ static int aesni_cbc_hmac_sha1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
return ret; return ret;
} else { } else {
# if defined(STITCHED_DECRYPT_CALL) # if defined(STITCHED_DECRYPT_CALL)
if (len >= 1024 && ctx->key_len == 32) { if (len >= 1024 && keylen == 32) {
if (sha_off %= SHA_CBLOCK) if (sha_off %= SHA_CBLOCK)
blocks = (len - 3 * SHA_CBLOCK) / SHA_CBLOCK; blocks = (len - 3 * SHA_CBLOCK) / SHA_CBLOCK;
else else