rand: set up EVP and DRBG infrastructure for RAND from providers.

Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
(Merged from https://github.com/openssl/openssl/pull/11682)
This commit is contained in:
Pauli 2020-05-08 10:22:45 +10:00
parent 94478bd8d7
commit 714a1bb380
10 changed files with 1454 additions and 51 deletions

View File

@ -58,18 +58,42 @@ static void *evp_rand_new(void)
evp_rand_free(rand);
return NULL;
}
rand->refcnt = 1;
return rand;
}
/* Enable locking of the underlying DRBG/RAND if available */
int EVP_RAND_CTX_enable_locking(EVP_RAND_CTX *rand)
{
if (rand->meth->enable_prov_locking != NULL)
return rand->meth->enable_prov_locking(rand->data);
return 1;
}
/* Lock the underlying DRBG/RAND if available */
static int evp_rand_lock(EVP_RAND_CTX *rand)
{
if (rand->meth->prov_lock != NULL)
return rand->meth->prov_lock(rand->data);
return 1;
}
/* Unlock the underlying DRBG/RAND if available */
static void evp_rand_unlock(EVP_RAND_CTX *rand)
{
if (rand->meth->prov_unlock != NULL)
rand->meth->prov_unlock(rand->data);
}
static void *evp_rand_from_dispatch(int name_id,
const OSSL_DISPATCH *fns,
OSSL_PROVIDER *prov)
{
EVP_RAND *rand = NULL;
int fnrandcnt = 0, fnctxcnt = 0;
#ifdef FIPS_MODULE
int fnfipscnt = 0;
#endif
if ((rand = evp_rand_new()) == NULL) {
EVPerr(0, ERR_R_MALLOC_FAILURE);
@ -172,13 +196,27 @@ static void *evp_rand_from_dispatch(int name_id,
break;
rand->set_ctx_params = OSSL_get_OP_rand_set_ctx_params(fns);
break;
case OSSL_FUNC_RAND_VERIFY_ZEROIZATION:
if (rand->verify_zeroization != NULL)
break;
rand->verify_zeroization = OSSL_get_OP_rand_verify_zeroization(fns);
#ifdef FIPS_MODULE
fnfipscnt++;
#endif
break;
}
}
if (fnrandcnt != 3 || fnctxcnt != 2) {
if (fnrandcnt != 3
|| fnctxcnt != 2
#ifdef FIPS_MODULE
|| fnfipscnt != 1
#endif
) {
/*
* In order to be a consistent set of functions we must have at least
* a complete set of "rand" functions and a complete set of context
* management functions.
* management functions. In FIPS mode, we also require the zeroization
* verification function.
*/
evp_rand_free(rand);
ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_PROVIDER_FUNCTIONS);
@ -236,8 +274,7 @@ int EVP_RAND_get_params(EVP_RAND *rand, OSSL_PARAM params[])
return 1;
}
EVP_RAND_CTX *EVP_RAND_CTX_new(EVP_RAND *rand, int secure, unsigned int df,
EVP_RAND_CTX *parent)
EVP_RAND_CTX *EVP_RAND_CTX_new(EVP_RAND *rand, int secure, EVP_RAND_CTX *parent)
{
EVP_RAND_CTX *ctx;
void *parent_ctx = NULL;
@ -250,10 +287,11 @@ EVP_RAND_CTX *EVP_RAND_CTX_new(EVP_RAND *rand, int secure, unsigned int df,
if (ctx == NULL)
return NULL;
if (parent != NULL) {
EVP_RAND_CTX_enable_locking(parent);
parent_ctx = parent->data;
parent_dispatch = parent->meth->dispatch;
}
if ((ctx->data = rand->newctx(ossl_provider_ctx(rand->prov), secure, df,
if ((ctx->data = rand->newctx(ossl_provider_ctx(rand->prov), secure,
parent_ctx, parent_dispatch)) == NULL
|| !EVP_RAND_up_ref(rand)) {
EVPerr(0, ERR_R_MALLOC_FAILURE);
@ -283,16 +321,31 @@ EVP_RAND *EVP_RAND_CTX_rand(EVP_RAND_CTX *ctx)
int EVP_RAND_CTX_get_params(EVP_RAND_CTX *ctx, OSSL_PARAM params[])
{
if (ctx->meth->get_ctx_params != NULL)
return ctx->meth->get_ctx_params(ctx->data, params);
return 1;
int res = 1;
if (ctx->meth->get_ctx_params != NULL) {
if (!evp_rand_lock(ctx))
return 0;
res = ctx->meth->get_ctx_params(ctx->data, params);
evp_rand_unlock(ctx);
}
return res;
}
int EVP_RAND_CTX_set_params(EVP_RAND_CTX *ctx, const OSSL_PARAM params[])
{
if (ctx->meth->set_ctx_params != NULL)
return ctx->meth->set_ctx_params(ctx->data, params);
return 1;
int res = 1;
if (ctx->meth->set_ctx_params != NULL) {
if (!evp_rand_lock(ctx))
return 0;
res = ctx->meth->set_ctx_params(ctx->data, params);
evp_rand_unlock(ctx);
/* Clear out the cache state because the values can change on a set */
ctx->strength = 0;
ctx->max_request = 0;
}
return res;
}
const OSSL_PARAM *EVP_RAND_gettable_params(const EVP_RAND *rand)
@ -333,52 +386,133 @@ void EVP_RAND_names_do_all(const EVP_RAND *rand,
evp_names_do_all(rand->prov, rand->name_id, fn, data);
}
int EVP_RAND_CTX_instantiate(EVP_RAND_CTX *ctx, int strength,
int EVP_RAND_CTX_instantiate(EVP_RAND_CTX *ctx, unsigned int strength,
int prediction_resistance,
const unsigned char *pstr, size_t pstr_len)
{
return ctx->meth->instantiate(ctx->data, strength, prediction_resistance,
pstr, pstr_len);
int res;
if (!evp_rand_lock(ctx))
return 0;
res = ctx->meth->instantiate(ctx->data, strength, prediction_resistance,
pstr, pstr_len);
evp_rand_unlock(ctx);
return res;
}
int EVP_RAND_CTX_uninstantiate(EVP_RAND_CTX *ctx)
{
return ctx->meth->uninstantiate(ctx->data);
int res;
if (!evp_rand_lock(ctx))
return 0;
res = ctx->meth->uninstantiate(ctx->data);
evp_rand_unlock(ctx);
return res;
}
int EVP_RAND_CTX_generate(EVP_RAND_CTX *ctx, unsigned char *out, size_t outlen,
int strength, int prediction_resistance,
unsigned int strength, int prediction_resistance,
const unsigned char *addin, size_t addin_len)
{
return ctx->meth->generate(ctx->data, out, outlen, strength,
prediction_resistance, addin, addin_len);
size_t chunk;
OSSL_PARAM params[2];
int res = 0;
if (!evp_rand_lock(ctx))
return 0;
if (ctx->max_request == 0) {
params[0] = OSSL_PARAM_construct_size_t(OSSL_DRBG_PARAM_MAX_REQUEST,
&ctx->max_request);
params[1] = OSSL_PARAM_construct_end();
if (!EVP_RAND_CTX_get_params(ctx, params)
|| ctx->max_request == 0)
goto err;
}
for (; outlen > 0; outlen -= chunk, out += chunk) {
chunk = outlen > ctx->max_request ? ctx->max_request : outlen;
if (!ctx->meth->generate(ctx->data, out, chunk, strength,
prediction_resistance, addin, addin_len))
goto err;
}
res = 1;
err:
evp_rand_unlock(ctx);
return res;
}
int EVP_RAND_CTX_reseed(EVP_RAND_CTX *ctx, int prediction_resistance,
const unsigned char *ent, size_t ent_len,
const unsigned char *addin, size_t addin_len)
{
if (ctx->meth->reseed == NULL)
return 1;
return ctx->meth->reseed(ctx->data, prediction_resistance,
addin, addin_len);
int res = 1;
if (!evp_rand_lock(ctx))
return 0;
if (ctx->meth->reseed != NULL)
res = ctx->meth->reseed(ctx->data, prediction_resistance,
ent, ent_len, addin, addin_len);
evp_rand_unlock(ctx);
return res;
}
int EVP_RAND_CTX_nonce(EVP_RAND_CTX *ctx, unsigned char *out, size_t outlen)
{
if (ctx->meth->nonce != NULL)
return ctx->meth->nonce(ctx->data, out, outlen);
return ctx->meth->generate(ctx->data, out, outlen, 0, 0, NULL, 0);
}
int res = 1;
int EVP_RAND_CTX_set_callbacks(const EVP_RAND_CTX *ctx,
OSSL_CALLBACK *get_entropy,
OSSL_CALLBACK *cleanup_entropy,
OSSL_CALLBACK *get_nonce,
OSSL_CALLBACK *cleanup_nonce)
{
if (ctx->meth->set_callbacks == NULL)
if (!evp_rand_lock(ctx))
return 0;
return ctx->meth->set_callbacks(ctx->data, get_entropy, cleanup_entropy,
get_nonce, cleanup_nonce);
if (ctx->meth->nonce == NULL
|| !ctx->meth->nonce(ctx->data, out, 0, outlen, outlen))
res = ctx->meth->generate(ctx->data, out, outlen, 0, 0, NULL, 0);
evp_rand_unlock(ctx);
return res;
}
unsigned int EVP_RAND_CTX_strength(EVP_RAND_CTX *ctx)
{
OSSL_PARAM params[2];
int res;
if (ctx->strength == 0) {
params[0] = OSSL_PARAM_construct_uint(OSSL_RAND_PARAM_STRENGTH,
&ctx->strength);
params[1] = OSSL_PARAM_construct_end();
if (!evp_rand_lock(ctx))
return 0;
res = EVP_RAND_CTX_get_params(ctx, params);
evp_rand_unlock(ctx);
if (!res)
return 0;
}
return ctx->strength;
}
int EVP_RAND_CTX_state(EVP_RAND_CTX *ctx)
{
OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END };
int status, res;
params[0] = OSSL_PARAM_construct_int(OSSL_RAND_PARAM_STATE,
&status);
if (!evp_rand_lock(ctx))
return 0;
res = EVP_RAND_CTX_get_params(ctx, params);
evp_rand_unlock(ctx);
if (!res)
status = EVP_RAND_STATE_ERROR;
return status;
}
int EVP_RAND_CTX_verify_zeroization(EVP_RAND_CTX *ctx)
{
int res = 0;
if (ctx->meth->verify_zeroization != NULL) {
if (!evp_rand_lock(ctx))
return 0;
res = ctx->meth->verify_zeroization(ctx->data);
evp_rand_unlock(ctx);
}
return res;
}

View File

@ -180,6 +180,26 @@ extern "C" {
#define OSSL_KDF_NAME_KBKDF "KBKDF"
#define OSSL_KDF_NAME_KRB5KDF "KRB5KDF"
/* Know RAND names */
#define OSSL_RAND_PARAM_STATUS "status"
#define OSSL_RAND_PARAM_STRENGTH "strength"
#define OSSL_RAND_PARAM_RESEED_REQUESTS "reseed_requests"
#define OSSL_RAND_PARAM_RESEED_TIME_INTERVAL "reseed_time_interval"
#define OSSL_RAND_PARAM_MAX_REQUEST "max_request"
#define OSSL_RAND_PARAM_MIN_ENTROPYLEN "min_entropylen"
#define OSSL_RAND_PARAM_MAX_ENTROPYLEN "max_entropylen"
#define OSSL_RAND_PARAM_MIN_NONCELEN "min_noncelen"
#define OSSL_RAND_PARAM_MAX_NONCELEN "max_noncelen"
#define OSSL_RAND_PARAM_MAX_PERSLEN "max_perslen"
#define OSSL_RAND_PARAM_MAX_ADINLEN "max_adinlen"
#define OSSL_RAND_PARAM_RESEED_CTR "reseed_counter"
#define OSSL_RAND_PARAM_RESEED_PROP_CTR "reseed_prop_counter"
#define OSSL_RAND_PARAM_PROPERTIES OSSL_ALG_PARAM_PROPERTIES
#define OSSL_RAND_PARAM_DIGEST OSSL_ALG_PARAM_DIGEST
#define OSSL_RAND_PARAM_CIPHER OSSL_ALG_PARAM_CIPHER
#define OSSL_RAND_PARAM_TEST_ENTROPY "test_entropy"
#define OSSL_RAND_PARAM_TEST_NONCE "test_nonce"
/* PKEY parameters */
/* Common PKEY parameters */
#define OSSL_PKEY_PARAM_BITS "bits" /* integer */

View File

@ -359,24 +359,28 @@ OSSL_CORE_MAKE_FUNC(int, OP_kdf_set_ctx_params,
# define OSSL_FUNC_RAND_GET_CTX_PARAMS 15
# define OSSL_FUNC_RAND_SET_CTX_PARAMS 16
# define OSSL_FUNC_RAND_SET_CALLBACKS 17
# define OSSL_FUNC_RAND_VERIFY_ZEROIZATION 18
OSSL_CORE_MAKE_FUNC(void *, OP_rand_newctx,
(void *provctx, int secure, unsigned int df, void *parent,
(void *provctx, int secure, void *parent,
const OSSL_DISPATCH *parent_calls))
OSSL_CORE_MAKE_FUNC(void, OP_rand_freectx, (void *vctx))
OSSL_CORE_MAKE_FUNC(int, OP_rand_instantiate,
(void *vdrbg, int strength, int prediction_resistance,
(void *vdrbg, unsigned int strength,
int prediction_resistance,
const unsigned char *pstr, size_t pstr_len))
OSSL_CORE_MAKE_FUNC(int, OP_rand_uninstantiate, (void *vdrbg))
OSSL_CORE_MAKE_FUNC(int, OP_rand_generate,
(void *vctx, unsigned char *out, size_t outlen,
int strength, int prediction_resistance,
unsigned int strength, int prediction_resistance,
const unsigned char *addin, size_t addin_len))
OSSL_CORE_MAKE_FUNC(int, OP_rand_reseed,
(void *vctx, int prediction_resistance,
const unsigned char *ent, size_t ent_len,
const unsigned char *addin, size_t addin_len))
OSSL_CORE_MAKE_FUNC(int, OP_rand_nonce,
(void *vctx, unsigned char *out, size_t outlen))
OSSL_CORE_MAKE_FUNC(size_t, OP_rand_nonce,
(void *vctx, unsigned char *out, int strength,
size_t min_noncelen, size_t max_noncelen))
OSSL_CORE_MAKE_FUNC(int, OP_rand_set_callbacks,
(void *vctx,
OSSL_CALLBACK *get_entropy, OSSL_CALLBACK *cleanup_entropy,
@ -392,6 +396,8 @@ OSSL_CORE_MAKE_FUNC(int, OP_rand_get_ctx_params,
(void *vctx, OSSL_PARAM params[]))
OSSL_CORE_MAKE_FUNC(int, OP_rand_set_ctx_params,
(void *vctx, const OSSL_PARAM params[]))
OSSL_CORE_MAKE_FUNC(int, OP_rand_verify_zeroization,
(void *vctx))
/*-
* Key management

View File

@ -1073,7 +1073,7 @@ void EVP_MD_do_all_provided(OPENSSL_CTX *libctx,
/* RAND stuff */
EVP_RAND *EVP_RAND_fetch(OPENSSL_CTX *libctx, const char *algorithm,
const char *properties);
const char *properties);
int EVP_RAND_up_ref(EVP_RAND *rand);
void EVP_RAND_free(EVP_RAND *rand);
int EVP_RAND_number(const EVP_RAND *rand);
@ -1082,7 +1082,7 @@ int EVP_RAND_is_a(const EVP_RAND *rand, const char *name);
const OSSL_PROVIDER *EVP_RAND_provider(const EVP_RAND *rand);
int EVP_RAND_get_params(EVP_RAND *rand, OSSL_PARAM params[]);
EVP_RAND_CTX *EVP_RAND_CTX_new(EVP_RAND *rand, int secure, unsigned int df,
EVP_RAND_CTX *EVP_RAND_CTX_new(EVP_RAND *rand, int secure,
EVP_RAND_CTX *parent);
void EVP_RAND_CTX_free(EVP_RAND_CTX *ctx);
EVP_RAND *EVP_RAND_CTX_rand(EVP_RAND_CTX *ctx);
@ -1099,14 +1099,15 @@ void EVP_RAND_names_do_all(const EVP_RAND *rand,
void (*fn)(const char *name, void *data),
void *data);
int EVP_RAND_CTX_instantiate(EVP_RAND_CTX *ctx, int strength,
int EVP_RAND_CTX_instantiate(EVP_RAND_CTX *ctx, unsigned int strength,
int prediction_resistance,
const unsigned char *pstr, size_t pstr_len);
int EVP_RAND_CTX_uninstantiate(EVP_RAND_CTX *ctx);
int EVP_RAND_CTX_generate(EVP_RAND_CTX *ctx, unsigned char *out, size_t outlen,
int strength, int prediction_resistance,
unsigned int strength, int prediction_resistance,
const unsigned char *addin, size_t addin_len);
int EVP_RAND_CTX_reseed(EVP_RAND_CTX *ctx, int prediction_resistance,
const unsigned char *ent, size_t ent_len,
const unsigned char *addin, size_t addin_len);
int EVP_RAND_CTX_nonce(EVP_RAND_CTX *ctx, unsigned char *out, size_t outlen);
int EVP_RAND_CTX_set_callbacks(const EVP_RAND_CTX *rand,
@ -1114,6 +1115,14 @@ int EVP_RAND_CTX_set_callbacks(const EVP_RAND_CTX *rand,
OSSL_CALLBACK *cleanup_entropy,
OSSL_CALLBACK *get_nonce,
OSSL_CALLBACK *cleanup_nonce);
int EVP_RAND_CTX_enable_locking(EVP_RAND_CTX *ctx);
int EVP_RAND_CTX_verify_zeroization(EVP_RAND_CTX *ctx);
unsigned int EVP_RAND_CTX_strength(EVP_RAND_CTX *ctx);
int EVP_RAND_CTX_state(EVP_RAND_CTX *ctx);
#define EVP_RAND_STATE_UNINITIALISED 0
#define EVP_RAND_STATE_READY 1
#define EVP_RAND_STATE_ERROR 2
/* PKEY stuff */
DEPRECATEDIN_3_0(int EVP_PKEY_decrypt_old(unsigned char *dec_key,

View File

@ -1,2 +1,2 @@
SUBDIRS=digests ciphers macs kdfs exchange keymgmt signature asymciphers \
SUBDIRS=digests ciphers rands macs kdfs exchange keymgmt signature asymciphers \
serializers

View File

@ -7,6 +7,9 @@
* https://www.openssl.org/source/license.html
*/
#include <openssl/core.h>
#include <openssl/types.h>
/* Digests */
extern const OSSL_DISPATCH sha1_functions[];
extern const OSSL_DISPATCH sha224_functions[];
@ -252,6 +255,12 @@ extern const OSSL_DISPATCH kdf_x942_kdf_functions[];
#endif
extern const OSSL_DISPATCH kdf_krb5kdf_functions[];
/* RNGs */
extern const OSSL_DISPATCH test_rng_functions[];
extern const OSSL_DISPATCH drbg_hash_functions[];
extern const OSSL_DISPATCH drbg_hmac_functions[];
extern const OSSL_DISPATCH drbg_ctr_functions[];
extern const OSSL_DISPATCH crngt_functions[];
/* Key management */
extern const OSSL_DISPATCH dh_keymgmt_functions[];

View File

@ -0,0 +1,7 @@
# Missing: drbg_ctr.c
SOURCE[../../libfips.a]=drbg.c
SOURCE[../../libnonfips.a]=drbg.c
# Missing: drbg_hmac.c crngt.c
SOURCE[../../libimplementations.a]=test_rng.c drbg_hash.c

View File

@ -0,0 +1,884 @@
/*
* Copyright 2011-2020 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <string.h>
#include <openssl/crypto.h>
#include <openssl/err.h>
#include <openssl/rand.h>
#include "crypto/rand.h"
#include "drbg_local.h"
#include "internal/thread_once.h"
#include "crypto/cryptlib.h"
#include "seeding/seeding.h"
#include "crypto/rand_pool.h"
/*
* Support framework for NIST SP 800-90A DRBG
*
* See manual page PROV_DRBG(7) for a general overview.
*
* The OpenSSL model is to have new and free functions, and that new
* does all initialization. That is not the NIST model, which has
* instantiation and un-instantiate, and re-use within a new/free
* lifecycle. (No doubt this comes from the desire to support hardware
* DRBG, where allocation of resources on something like an HSM is
* a much bigger deal than just re-setting an allocated resource.)
*/
#ifdef FIPS_MODULE
# define get_entropy prov_crngt_get_entropy
# define cleanup_entropy prov_crngt_cleanup_entropy
#else
# define get_entropy prov_drbg_get_entropy
# define cleanup_entropy prov_drbg_cleanup_entropy
#endif
/* NIST SP 800-90A DRBG recommends the use of a personalization string. */
static const char ossl_pers_string[] = DRBG_DEFAULT_PERS_STRING;
static unsigned int master_reseed_interval = MASTER_RESEED_INTERVAL;
static unsigned int slave_reseed_interval = SLAVE_RESEED_INTERVAL;
static time_t master_reseed_time_interval = MASTER_RESEED_TIME_INTERVAL;
static time_t slave_reseed_time_interval = SLAVE_RESEED_TIME_INTERVAL;
static const OSSL_DISPATCH *find_call(const OSSL_DISPATCH *dispatch,
int function);
int drbg_lock(void *vctx)
{
PROV_DRBG *drbg = vctx;
if (drbg == NULL || drbg->lock == NULL)
return 1;
return CRYPTO_THREAD_write_lock(drbg->lock);
}
void drbg_unlock(void *vctx)
{
PROV_DRBG *drbg = vctx;
if (drbg != NULL && drbg->lock != NULL)
CRYPTO_THREAD_unlock(drbg->lock);
}
static int drbg_lock_parent(PROV_DRBG *drbg)
{
void *parent = drbg->parent;
const OSSL_DISPATCH *pfunc;
if (parent != NULL) {
pfunc = find_call(drbg->parent_dispatch, OSSL_FUNC_RAND_LOCK);
if (pfunc != NULL && !OSSL_get_OP_rand_lock(pfunc)(parent)) {
ERR_raise(ERR_LIB_PROV, RAND_R_PARENT_LOCKING_NOT_ENABLED);
return 0;
}
}
return 1;
}
static void drbg_unlock_parent(PROV_DRBG *drbg)
{
void *parent = drbg->parent;
const OSSL_DISPATCH *pfunc;
if (parent != NULL) {
pfunc = find_call(drbg->parent_dispatch, OSSL_FUNC_RAND_UNLOCK);
if (pfunc != NULL)
OSSL_get_OP_rand_unlock(pfunc)(parent);
}
}
static int get_parent_strength(PROV_DRBG *drbg, int *str)
{
OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END };
const OSSL_DISPATCH *pfunc;
void *parent = drbg->parent;
pfunc = find_call(drbg->parent_dispatch, OSSL_FUNC_RAND_GET_CTX_PARAMS);
if (pfunc == NULL) {
ERR_raise(ERR_LIB_PROV, RAND_R_UNABLE_TO_GET_PARENT_STRENGTH);
return 0;
}
*params = OSSL_PARAM_construct_int(OSSL_RAND_PARAM_STRENGTH, str);
if (!drbg_lock_parent(drbg)) {
ERR_raise(ERR_LIB_PROV, RAND_R_UNABLE_TO_LOCK_PARENT);
return 0;
}
if (!OSSL_get_OP_rand_get_ctx_params(pfunc)(parent, params)) {
drbg_unlock_parent(drbg);
ERR_raise(ERR_LIB_PROV, RAND_R_UNABLE_TO_GET_PARENT_STRENGTH);
return 0;
}
drbg_unlock_parent(drbg);
return 1;
}
static unsigned int get_parent_reseed_count(PROV_DRBG *drbg)
{
OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END };
const OSSL_DISPATCH *pfunc;
void *parent = drbg->parent;
unsigned int r;
pfunc = find_call(drbg->parent_dispatch, OSSL_FUNC_RAND_GET_CTX_PARAMS);
if (pfunc == NULL) {
ERR_raise(ERR_LIB_PROV,
RAND_R_UNABLE_TO_GET_PARENT_RESEED_PROP_COUNTER);
goto err;
}
*params = OSSL_PARAM_construct_uint(OSSL_RAND_PARAM_RESEED_PROP_CTR, &r);
if (!drbg_lock_parent(drbg)) {
ERR_raise(ERR_LIB_PROV, RAND_R_UNABLE_TO_LOCK_PARENT);
goto err;
}
if (!OSSL_get_OP_rand_get_ctx_params(pfunc)(parent, params)) {
drbg_unlock_parent(drbg);
ERR_raise(ERR_LIB_PROV, RAND_R_UNABLE_TO_GET_RESEED_PROP_CTR);
goto err;
}
drbg_unlock_parent(drbg);
return r;
err:
r = tsan_load(&drbg->reseed_prop_counter) - 2;
if (r == 0)
r = UINT_MAX;
return r;
}
#ifndef FIPS_MODULE
/*
* Implements the get_entropy() callback (see RAND_DRBG_set_callbacks())
*
* If the DRBG has a parent, then the required amount of entropy input
* is fetched using the parent's RAND_DRBG_generate().
*
* Otherwise, the entropy is polled from the system entropy sources
* using rand_pool_acquire_entropy().
*
* If a random pool has been added to the DRBG using RAND_add(), then
* its entropy will be used up first.
*/
static size_t prov_drbg_get_entropy(PROV_DRBG *drbg, unsigned char **pout,
int entropy, size_t min_len, size_t max_len,
int prediction_resistance)
{
size_t ret = 0;
size_t entropy_available = 0;
RAND_POOL *pool;
int p_str;
const OSSL_DISPATCH *pfunc;
if (drbg->parent != NULL) {
if (!get_parent_strength(drbg, &p_str))
return 0;
if (drbg->strength > p_str) {
/*
* We currently don't support the algorithm from NIST SP 800-90C
* 10.1.2 to use a weaker DRBG as source
*/
RANDerr(0, RAND_R_PARENT_STRENGTH_TOO_WEAK);
return 0;
}
}
if (drbg->seed_pool != NULL) {
pool = drbg->seed_pool;
pool->entropy_requested = entropy;
} else {
pool = rand_pool_new(entropy, drbg->secure, min_len, max_len);
if (pool == NULL)
return 0;
}
if (drbg->parent != NULL) {
size_t bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
unsigned char *buffer = rand_pool_add_begin(pool, bytes_needed);
if (buffer != NULL) {
size_t bytes = 0;
/*
* Get random data from parent. Include our address as additional input,
* in order to provide some additional distinction between different
* DRBG child instances.
* Our lock is already held, but we need to lock our parent before
* generating bits from it. (Note: taking the lock will be a no-op
* if locking if drbg->parent->lock == NULL.)
*/
pfunc = find_call(drbg->parent_dispatch, OSSL_FUNC_RAND_GENERATE);
if (pfunc == NULL)
return 0;
drbg_lock_parent(drbg);
if (OSSL_get_OP_rand_generate(pfunc)(drbg->parent, buffer, bytes_needed,
drbg->strength,
prediction_resistance,
(unsigned char *)&drbg,
sizeof(drbg)) != 0)
bytes = bytes_needed;
drbg->reseed_next_counter = get_parent_reseed_count(drbg);
drbg_unlock_parent(drbg);
rand_pool_add_end(pool, bytes, 8 * bytes);
entropy_available = rand_pool_entropy_available(pool);
}
} else {
/* Get entropy by polling system entropy sources. */
entropy_available = rand_pool_acquire_entropy(pool);
}
if (entropy_available > 0) {
ret = rand_pool_length(pool);
*pout = rand_pool_detach(pool);
}
if (drbg->seed_pool == NULL)
rand_pool_free(pool);
return ret;
}
/*
* Implements the cleanup_entropy() callback (see RAND_DRBG_set_callbacks())
*
*/
static void prov_drbg_cleanup_entropy(PROV_DRBG *drbg,
unsigned char *out, size_t outlen)
{
if (drbg->seed_pool == NULL) {
if (drbg->secure)
OPENSSL_secure_clear_free(out, outlen);
else
OPENSSL_clear_free(out, outlen);
}
}
#endif
#ifndef PROV_RAND_GET_RANDOM_NONCE
typedef struct prov_drbg_nonce_global_st {
CRYPTO_RWLOCK *rand_nonce_lock;
int rand_nonce_count;
} PROV_DRBG_NONCE_GLOBAL;
/*
* drbg_ossl_ctx_new() calls drgb_setup() which calls rand_drbg_get_nonce()
* which needs to get the rand_nonce_lock out of the OPENSSL_CTX...but since
* drbg_ossl_ctx_new() hasn't finished running yet we need the rand_nonce_lock
* to be in a different global data object. Otherwise we will go into an
* infinite recursion loop.
*/
static void *prov_drbg_nonce_ossl_ctx_new(OPENSSL_CTX *libctx)
{
PROV_DRBG_NONCE_GLOBAL *dngbl = OPENSSL_zalloc(sizeof(*dngbl));
if (dngbl == NULL)
return NULL;
dngbl->rand_nonce_lock = CRYPTO_THREAD_lock_new();
if (dngbl->rand_nonce_lock == NULL) {
OPENSSL_free(dngbl);
return NULL;
}
return dngbl;
}
static void prov_drbg_nonce_ossl_ctx_free(void *vdngbl)
{
PROV_DRBG_NONCE_GLOBAL *dngbl = vdngbl;
if (dngbl == NULL)
return;
CRYPTO_THREAD_lock_free(dngbl->rand_nonce_lock);
OPENSSL_free(dngbl);
}
static const OPENSSL_CTX_METHOD drbg_nonce_ossl_ctx_method = {
prov_drbg_nonce_ossl_ctx_new,
prov_drbg_nonce_ossl_ctx_free,
};
/* Get a nonce from the operating system */
static size_t prov_drbg_get_nonce(PROV_DRBG *drbg,
unsigned char **pout,
int entropy, size_t min_len, size_t max_len)
{
size_t ret = 0;
RAND_POOL *pool;
PROV_DRBG_NONCE_GLOBAL *dngbl
= openssl_ctx_get_data(drbg->libctx, OPENSSL_CTX_DRBG_NONCE_INDEX,
&drbg_nonce_ossl_ctx_method);
struct {
void *instance;
int count;
} data;
if (dngbl == NULL)
return 0;
memset(&data, 0, sizeof(data));
pool = rand_pool_new(0, 0, min_len, max_len);
if (pool == NULL)
return 0;
if (rand_pool_add_nonce_data(pool) == 0)
goto err;
data.instance = drbg;
CRYPTO_atomic_add(&dngbl->rand_nonce_count, 1, &data.count,
dngbl->rand_nonce_lock);
if (rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0) == 0)
goto err;
ret = rand_pool_length(pool);
*pout = rand_pool_detach(pool);
err:
rand_pool_free(pool);
return ret;
}
#endif
/*
* Implements the cleanup_nonce() callback (see PROV_DRBG_set_callbacks())
*
*/
static void prov_drbg_cleanup_nonce(PROV_DRBG *drbg,
unsigned char *out, size_t outlen)
{
OPENSSL_clear_free(out, outlen);
}
/*
* Instantiate |drbg|, after it has been initialized. Use |pers| and
* |perslen| as prediction-resistance input.
*
* Requires that drbg->lock is already locked for write, if non-null.
*
* Returns 1 on success, 0 on failure.
*/
int PROV_DRBG_instantiate(PROV_DRBG *drbg, int strength,
int prediction_resistance,
const unsigned char *pers, size_t perslen,
int (*ifnc)(PROV_DRBG *drbg,
const unsigned char *ent, size_t ent_len,
const unsigned char *nonce,
size_t nonce_len,
const unsigned char *pstr,
size_t pstr_len))
{
unsigned char *nonce = NULL, *entropy = NULL;
size_t noncelen = 0, entropylen = 0;
size_t min_entropy, min_entropylen, max_entropylen;
const OSSL_DISPATCH *pnonce;
if (strength > drbg->strength) {
PROVerr(0, RAND_R_INSUFFICIENT_DRBG_STRENGTH);
goto end;
}
min_entropy = drbg->strength;
min_entropylen = drbg->min_entropylen;
max_entropylen = drbg->max_entropylen;
if (pers == NULL) {
pers = (const unsigned char *)ossl_pers_string;
perslen = sizeof(ossl_pers_string);
}
if (perslen > drbg->max_perslen) {
PROVerr(0, RAND_R_PERSONALISATION_STRING_TOO_LONG);
goto end;
}
if (drbg->state != DRBG_UNINITIALISED) {
if (drbg->state == DRBG_ERROR)
PROVerr(0, RAND_R_IN_ERROR_STATE);
else
PROVerr(0, RAND_R_ALREADY_INSTANTIATED);
goto end;
}
drbg->state = DRBG_ERROR;
if (drbg->min_noncelen > 0) {
#ifndef PROV_RAND_GET_RANDOM_NONCE
if (drbg->parent != NULL)
#endif
{
pnonce = find_call(drbg->parent_dispatch, OSSL_FUNC_RAND_NONCE);
if (pnonce == NULL) {
/*
* NIST SP800-90Ar1 section 9.1 says you can combine getting
* the entropy and nonce in 1 call by increasing the entropy
* with 50% and increasing the minimum length to accommodate
* the length of the nonce. We do this in case a nonce is
* required and there is no parental nonce capability.
*/
min_entropy += drbg->strength / 2;
min_entropylen += drbg->min_noncelen;
max_entropylen += drbg->max_noncelen;
} else {
drbg_lock_parent(drbg);
noncelen = OSSL_get_OP_rand_nonce(pnonce)(drbg->parent, &nonce,
drbg->strength / 2,
drbg->min_noncelen,
drbg->max_noncelen);
drbg_unlock_parent(drbg);
if (noncelen < drbg->min_noncelen
|| noncelen > drbg->max_noncelen) {
PROVerr(0, RAND_R_ERROR_RETRIEVING_NONCE);
goto end;
}
}
}
#ifndef PROV_RAND_GET_RANDOM_NONCE
else { /* parent == NULL */
noncelen = prov_drbg_get_nonce(drbg, &nonce, drbg->strength / 2,
drbg->min_noncelen,
drbg->max_noncelen);
if (noncelen < drbg->min_noncelen
|| noncelen > drbg->max_noncelen) {
PROVerr(0, RAND_R_ERROR_RETRIEVING_NONCE);
goto end;
}
}
#endif
}
drbg->reseed_next_counter = tsan_load(&drbg->reseed_prop_counter);
if (drbg->reseed_next_counter) {
drbg->reseed_next_counter++;
if(!drbg->reseed_next_counter)
drbg->reseed_next_counter = 1;
}
entropylen = get_entropy(drbg, &entropy, min_entropy,
min_entropylen, max_entropylen,
prediction_resistance);
if (entropylen < min_entropylen
|| entropylen > max_entropylen) {
PROVerr(0, RAND_R_ERROR_RETRIEVING_ENTROPY);
goto end;
}
if (!ifnc(drbg, entropy, entropylen, nonce, noncelen, pers, perslen)) {
PROVerr(0, RAND_R_ERROR_INSTANTIATING_DRBG);
goto end;
}
drbg->state = DRBG_READY;
drbg->reseed_gen_counter = 1;
drbg->reseed_time = time(NULL);
tsan_store(&drbg->reseed_prop_counter, drbg->reseed_next_counter);
end:
if (entropy != NULL)
cleanup_entropy(drbg, entropy, entropylen);
if (nonce != NULL)
prov_drbg_cleanup_nonce(drbg, nonce, noncelen);
if (drbg->state == DRBG_READY)
return 1;
return 0;
}
/*
* Reseed |drbg|, mixing in the specified data
*
* Requires that drbg->lock is already locked for write, if non-null.
*
* Returns 1 on success, 0 on failure.
*/
int PROV_DRBG_reseed(PROV_DRBG *drbg, int prediction_resistance,
const unsigned char *ent, size_t ent_len,
const unsigned char *adin, size_t adinlen,
int (*reseed)(PROV_DRBG *drbg,
const unsigned char *ent, size_t ent_len,
const unsigned char *adin, size_t adin_len))
{
unsigned char *entropy = NULL;
size_t entropylen = 0;
if (drbg->state == DRBG_ERROR) {
PROVerr(0, RAND_R_IN_ERROR_STATE);
return 0;
}
if (drbg->state == DRBG_UNINITIALISED) {
PROVerr(0, RAND_R_NOT_INSTANTIATED);
return 0;
}
if (adin == NULL) {
adinlen = 0;
} else if (adinlen > drbg->max_adinlen) {
PROVerr(0, RAND_R_ADDITIONAL_INPUT_TOO_LONG);
return 0;
}
drbg->state = DRBG_ERROR;
drbg->reseed_next_counter = tsan_load(&drbg->reseed_prop_counter);
if (drbg->reseed_next_counter) {
drbg->reseed_next_counter++;
if(!drbg->reseed_next_counter)
drbg->reseed_next_counter = 1;
}
entropylen = get_entropy(drbg, &entropy, drbg->strength,
drbg->min_entropylen, drbg->max_entropylen,
prediction_resistance);
if (entropylen < drbg->min_entropylen
|| entropylen > drbg->max_entropylen) {
PROVerr(0, RAND_R_ERROR_RETRIEVING_ENTROPY);
goto end;
}
if (!reseed(drbg, entropy, entropylen, adin, adinlen))
goto end;
drbg->state = DRBG_READY;
drbg->reseed_gen_counter = 1;
drbg->reseed_time = time(NULL);
tsan_store(&drbg->reseed_prop_counter, drbg->reseed_next_counter);
end:
if (entropy != NULL)
OPENSSL_cleanse(entropy, entropylen);
if (drbg->state == DRBG_READY)
return 1;
return 0;
}
/*
* Generate |outlen| bytes into the buffer at |out|. Reseed if we need
* to or if |prediction_resistance| is set. Additional input can be
* sent in |adin| and |adinlen|.
*
* Requires that drbg->lock is already locked for write, if non-null.
*
* Returns 1 on success, 0 on failure.
*
*/
int PROV_DRBG_generate(PROV_DRBG *drbg, unsigned char *out, size_t outlen,
int strength, int prediction_resistance,
const unsigned char *adin, size_t adinlen,
int (*generate)(PROV_DRBG *, unsigned char *out,
size_t outlen, const unsigned char *adin,
size_t adin_len),
int (*reseed)(PROV_DRBG *drbg, const unsigned char *ent,
size_t ent_len, const unsigned char *adin,
size_t adin_len))
{
int fork_id;
int reseed_required = 0;
if (drbg->state != DRBG_READY) {
if (drbg->state == DRBG_ERROR) {
PROVerr(0, RAND_R_IN_ERROR_STATE);
return 0;
}
if (drbg->state == DRBG_UNINITIALISED) {
PROVerr(0, RAND_R_NOT_INSTANTIATED);
return 0;
}
}
if (outlen > drbg->max_request) {
PROVerr(0, RAND_R_REQUEST_TOO_LARGE_FOR_DRBG);
return 0;
}
if (adinlen > drbg->max_adinlen) {
PROVerr(0, RAND_R_ADDITIONAL_INPUT_TOO_LONG);
return 0;
}
fork_id = openssl_get_fork_id();
if (drbg->fork_id != fork_id) {
drbg->fork_id = fork_id;
reseed_required = 1;
}
if (drbg->reseed_interval > 0) {
if (drbg->reseed_gen_counter > drbg->reseed_interval)
reseed_required = 1;
}
if (drbg->reseed_time_interval > 0) {
time_t now = time(NULL);
if (now < drbg->reseed_time
|| now - drbg->reseed_time >= drbg->reseed_time_interval)
reseed_required = 1;
}
if (drbg->parent != NULL) {
unsigned int reseed_counter = 0;
if (reseed_counter > 0
&& get_parent_reseed_count(drbg) !=
tsan_load(&drbg->reseed_prop_counter))
reseed_required = 1;
}
if (reseed_required || prediction_resistance) {
if (!PROV_DRBG_reseed(drbg, prediction_resistance, NULL, 0,
adin, adinlen, reseed)) {
PROVerr(0, RAND_R_RESEED_ERROR);
return 0;
}
adin = NULL;
adinlen = 0;
}
if (!generate(drbg, out, outlen, adin, adinlen)) {
drbg->state = DRBG_ERROR;
PROVerr(0, RAND_R_GENERATE_ERROR);
return 0;
}
drbg->reseed_gen_counter++;
return 1;
}
#if 0
/*
* Calculates the minimum length of a full entropy buffer
* which is necessary to seed (i.e. instantiate) the DRBG
* successfully.
*/
size_t prov_drbg_seedlen(PROV_DRBG *drbg)
{
/*
* If no os entropy source is available then PROV_seed(buffer, bufsize)
* is expected to succeed if and only if the buffer length satisfies
* the following requirements, which follow from the calculations
* in PROV_DRBG_instantiate().
*/
size_t min_entropy = drbg->strength;
size_t min_entropylen = drbg->min_entropylen;
/*
* Extra entropy for the random nonce in the absence of a
* get_nonce callback, see comment in PROV_DRBG_instantiate().
*/
if (drbg->min_noncelen > 0) {
#ifndef PROV_RAND_GET_RANDOM_NONCE
if (drbg->parent != NULL)
#endif
if (find_call(drbg->parent_dispatch,
OSSL_FUNC_RAND_NONCE) == NULL) {
min_entropy += drbg->strength / 2;
min_entropylen += drbg->min_noncelen;
}
}
/*
* Convert entropy requirement from bits to bytes
* (dividing by 8 without rounding upwards, because
* all entropy requirements are divisible by 8).
*/
min_entropy >>= 3;
/* Return a value that satisfies both requirements */
return min_entropy > min_entropylen ? min_entropy : min_entropylen;
}
#endif
/* Provider support from here down */
static const OSSL_DISPATCH *find_call(const OSSL_DISPATCH *dispatch,
int function)
{
if (dispatch != NULL)
while (dispatch->function_id != 0)
if (dispatch->function_id == function)
return dispatch;
return NULL;
}
int drbg_enable_locking(void *vctx)
{
PROV_DRBG *drbg = vctx;
const OSSL_DISPATCH *pfunc;
if (drbg == NULL)
return 1;
if (drbg->lock == NULL) {
if (drbg->state != DRBG_UNINITIALISED) {
ERR_raise(ERR_LIB_PROV, RAND_R_DRBG_ALREADY_INITIALIZED);
return 0;
}
pfunc = find_call(drbg->parent_dispatch, OSSL_FUNC_RAND_ENABLE_LOCKING);
if (pfunc != NULL)
if (!OSSL_get_OP_rand_enable_locking(pfunc)(drbg->parent)) {
ERR_raise(ERR_LIB_PROV, RAND_R_PARENT_LOCKING_NOT_ENABLED);
return 0;
}
drbg->lock = CRYPTO_THREAD_lock_new();
if (drbg->lock == NULL) {
ERR_raise(ERR_LIB_PROV, RAND_R_FAILED_TO_CREATE_LOCK);
return 0;
}
}
return 1;
}
/*
* Allocate memory and initialize a new DRBG. The DRBG is allocated on
* the secure heap if |secure| is nonzero and the secure heap is enabled.
* The |parent|, if not NULL, will be used as random source for reseeding.
* This also requires the parent's provider context and the parent's lock.
*
* Returns a pointer to the new DRBG instance on success, NULL on failure.
*/
PROV_DRBG *prov_rand_drbg_new(void *provctx, int secure, void *parent,
const OSSL_DISPATCH *parent_dispatch,
int (*dnew)(PROV_DRBG *ctx, int secure))
{
PROV_DRBG *drbg = OPENSSL_zalloc(sizeof(*drbg));
int p_str;
if (drbg == NULL) {
ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
return NULL;
}
drbg->libctx = provctx;
drbg->secure = secure;
drbg->parent = parent;
drbg->parent_dispatch = parent_dispatch;
/* Set some default maximums up */
drbg->max_entropylen = DRBG_MAX_LENGTH;
drbg->max_noncelen = DRBG_MAX_LENGTH;
drbg->max_perslen = DRBG_MAX_LENGTH;
drbg->max_adinlen = DRBG_MAX_LENGTH;
drbg->reseed_gen_counter = 1;
/* TODO(3.0) clean this up */
if (parent == NULL) {
drbg->reseed_interval = master_reseed_interval;
drbg->reseed_time_interval = master_reseed_time_interval;
} else {
/*
* Do not provide nonce callbacks, the child DRBGs will
* obtain their nonce using random bits from the parent.
*/
drbg->reseed_interval = slave_reseed_interval;
drbg->reseed_time_interval = slave_reseed_time_interval;
}
if (!dnew(drbg, secure))
goto err;
if (parent != NULL) {
if (!get_parent_strength(drbg, &p_str))
goto err;
if (drbg->strength > p_str) {
/*
* We currently don't support the algorithm from NIST SP 800-90C
* 10.1.2 to use a weaker DRBG as source
*/
ERR_raise(ERR_LIB_PROV, RAND_R_PARENT_STRENGTH_TOO_WEAK);
goto err;
}
}
return drbg;
err:
prov_rand_drbg_free(drbg);
return NULL;
}
void prov_rand_drbg_free(PROV_DRBG *drbg)
{
if (drbg == NULL)
return;
rand_pool_free(drbg->adin_pool);
CRYPTO_THREAD_lock_free(drbg->lock);
#ifndef FIPS_MODULE
CRYPTO_free_ex_data(CRYPTO_EX_INDEX_RAND_DRBG, drbg, &drbg->ex_data);
#endif
}
int drbg_get_ctx_params(PROV_DRBG *drbg, OSSL_PARAM params[])
{
OSSL_PARAM *p;
p = OSSL_PARAM_locate(params, OSSL_RAND_PARAM_STATUS);
if (p != NULL && !OSSL_PARAM_set_int(p, drbg->state))
return 0;
p = OSSL_PARAM_locate(params, OSSL_RAND_PARAM_STRENGTH);
if (p != NULL && !OSSL_PARAM_set_int(p, drbg->strength))
return 0;
p = OSSL_PARAM_locate(params, OSSL_RAND_PARAM_MAX_REQUEST);
if (p != NULL && !OSSL_PARAM_set_size_t(p, drbg->max_request))
return 0;
p = OSSL_PARAM_locate(params, OSSL_RAND_PARAM_MIN_ENTROPYLEN);
if (p != NULL && !OSSL_PARAM_set_size_t(p, drbg->min_entropylen))
return 0;
p = OSSL_PARAM_locate(params, OSSL_RAND_PARAM_MAX_ENTROPYLEN);
if (p != NULL && !OSSL_PARAM_set_size_t(p, drbg->max_entropylen))
return 0;
p = OSSL_PARAM_locate(params, OSSL_RAND_PARAM_MIN_NONCELEN);
if (p != NULL && !OSSL_PARAM_set_size_t(p, drbg->min_noncelen))
return 0;
p = OSSL_PARAM_locate(params, OSSL_RAND_PARAM_MAX_NONCELEN);
if (p != NULL && !OSSL_PARAM_set_size_t(p, drbg->max_noncelen))
return 0;
p = OSSL_PARAM_locate(params, OSSL_RAND_PARAM_MAX_PERSLEN);
if (p != NULL && !OSSL_PARAM_set_size_t(p, drbg->max_perslen))
return 0;
p = OSSL_PARAM_locate(params, OSSL_RAND_PARAM_MAX_ADINLEN);
if (p != NULL && !OSSL_PARAM_set_size_t(p, drbg->max_adinlen))
return 0;
p = OSSL_PARAM_locate(params, OSSL_RAND_PARAM_RESEED_CTR);
if (p != NULL && !OSSL_PARAM_set_uint(p, drbg->reseed_gen_counter))
return 0;
p = OSSL_PARAM_locate(params, OSSL_RAND_PARAM_RESEED_REQUESTS);
if (p != NULL && !OSSL_PARAM_set_uint(p, drbg->reseed_interval))
return 0;
p = OSSL_PARAM_locate(params, OSSL_RAND_PARAM_RESEED_TIME_INTERVAL);
if (p != NULL && !OSSL_PARAM_set_time_t(p, drbg->reseed_time_interval))
return 0;
p = OSSL_PARAM_locate(params, OSSL_RAND_PARAM_RESEED_PROP_CTR);
if (p != NULL
&& !OSSL_PARAM_set_uint(p, tsan_load(&drbg->reseed_prop_counter)))
return 0;
return 1;
}
int drbg_set_ctx_params(PROV_DRBG *drbg, const OSSL_PARAM params[])
{
const OSSL_PARAM *p;
p = OSSL_PARAM_locate_const(params, OSSL_RAND_PARAM_RESEED_REQUESTS);
if (p != NULL && !OSSL_PARAM_get_uint(p, &drbg->reseed_interval))
return 0;
p = OSSL_PARAM_locate_const(params, OSSL_RAND_PARAM_RESEED_TIME_INTERVAL);
if (p != NULL && !OSSL_PARAM_get_time_t(p, &drbg->reseed_time_interval))
return 0;
return 1;
}

View File

@ -0,0 +1,287 @@
/*
* Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#ifndef OSSL_CRYPTO_PROV_LOCAL_H
# define OSSL_CRYPTO_PROV_LOCAL_H
# include <openssl/evp.h>
# include <openssl/core_numbers.h>
# include <openssl/core_names.h>
# include <openssl/params.h>
# include "internal/tsan_assist.h"
# include "internal/numbers.h"
/* How many times to read the TSC as a randomness source. */
# define TSC_READ_COUNT 4
/* Maximum reseed intervals */
# define MAX_RESEED_INTERVAL (1 << 24)
# define MAX_RESEED_TIME_INTERVAL (1 << 20) /* approx. 12 days */
/* Default reseed intervals */
# define MASTER_RESEED_INTERVAL (1 << 8)
# define SLAVE_RESEED_INTERVAL (1 << 16)
# define MASTER_RESEED_TIME_INTERVAL (60*60) /* 1 hour */
# define SLAVE_RESEED_TIME_INTERVAL (7*60) /* 7 minutes */
/*
* The number of bytes that constitutes an atomic lump of entropy with respect
* to the FIPS 140-2 section 4.9.2 Conditional Tests. The size is somewhat
* arbitrary, the smaller the value, the less entropy is consumed on first
* read but the higher the probability of the test failing by accident.
*
* The value is in bytes.
*/
#define CRNGT_BUFSIZ 16
/*
* Maximum input size for the DRBG (entropy, nonce, personalization string)
*
* NIST SP800 90Ar1 allows a maximum of (1 << 35) bits i.e., (1 << 32) bytes.
*
* We lower it to 'only' INT32_MAX bytes, which is equivalent to 2 gigabytes.
*/
# define DRBG_MAX_LENGTH INT32_MAX
/* The default nonce */
#ifdef CHARSET_EBCDIC
# define DRBG_DEFAULT_PERS_STRING { 0x4f, 0x70, 0x65, 0x6e, 0x53, 0x53, \
0x4c, 0x20, 0x4e, 0x49, 0x53, 0x54, 0x20, 0x53, 0x50, 0x20, 0x38, 0x30, \
0x30, 0x2d, 0x39, 0x30, 0x41, 0x20, 0x44, 0x52, 0x42, 0x47, 0x00};
#else
# define DRBG_DEFAULT_PERS_STRING "OpenSSL NIST SP 800-90A DRBG"
#endif
typedef struct prov_drbg_st PROV_DRBG;
/* DRBG status values */
typedef enum drbg_status_e {
DRBG_UNINITIALISED,
DRBG_READY,
DRBG_ERROR
} DRBG_STATUS;
/*
* The DRBG methods
*/
typedef struct rand_drbg_hmac_st {
EVP_MD *md;
HMAC_CTX *ctx;
size_t blocklen;
unsigned char K[EVP_MAX_MD_SIZE];
unsigned char V[EVP_MAX_MD_SIZE];
} PROV_DRBG_HMAC;
/*
* The state of a DRBG AES-CTR.
*/
typedef struct rand_drbg_ctr_st {
EVP_CIPHER_CTX *ctx_ecb;
EVP_CIPHER_CTX *ctx_ctr;
EVP_CIPHER_CTX *ctx_df;
EVP_CIPHER *cipher_ecb;
EVP_CIPHER *cipher_ctr;
size_t keylen;
unsigned char K[32];
unsigned char V[16];
/* Temporary block storage used by ctr_df */
unsigned char bltmp[16];
size_t bltmp_pos;
unsigned char KX[48];
} PROV_DRBG_CTR;
/*
* The state of all types of DRBGs, even though we only have CTR mode
* right now.
*/
struct prov_drbg_st {
CRYPTO_RWLOCK *lock;
/* The library context this DRBG is associated with, if any */
OPENSSL_CTX *libctx;
void *parent;
const OSSL_DISPATCH *parent_dispatch;
int secure; /* 1: allocated on the secure heap, 0: otherwise */
/*
* Stores the return value of openssl_get_fork_id() as of when we last
* reseeded. The DRBG reseeds automatically whenever drbg->fork_id !=
* openssl_get_fork_id(). Used to provide fork-safety and reseed this
* DRBG in the child process.
*/
int fork_id;
unsigned short flags; /* various external flags */
/*
* The random_data is used by PROV_add()/drbg_add() to attach random
* data to the global drbg, such that the rand_drbg_get_entropy() callback
* can pull it during instantiation and reseeding. This is necessary to
* reconcile the different philosophies of the PROV and the PROV_DRBG
* with respect to how randomness is added to the RNG during reseeding
* (see PR #4328).
*/
struct rand_pool_st *seed_pool;
/*
* Auxiliary pool for additional data.
*/
struct rand_pool_st *adin_pool;
/*
* The following parameters are setup by the per-type "init" function.
*
* The supported types and their init functions are:
* (1) CTR_DRBG: drbg_ctr_init().
* (2) HMAC_DRBG: drbg_hmac_init().
* (3) HASH_DRBG: drbg_hash_init().
*
* The parameters are closely related to the ones described in
* section '10.2.1 CTR_DRBG' of [NIST SP 800-90Ar1], with one
* crucial difference: In the NIST standard, all counts are given
* in bits, whereas in OpenSSL entropy counts are given in bits
* and buffer lengths are given in bytes.
*
* Since this difference has lead to some confusion in the past,
* (see [GitHub Issue #2443], formerly [rt.openssl.org #4055])
* the 'len' suffix has been added to all buffer sizes for
* clarification.
*/
int strength;
size_t max_request;
size_t min_entropylen, max_entropylen;
size_t min_noncelen, max_noncelen;
size_t max_perslen, max_adinlen;
/*
* Counts the number of generate requests since the last reseed
* (Starts at 1). This value is the reseed_counter as defined in
* NIST SP 800-90Ar1
*/
unsigned int reseed_gen_counter;
/*
* Maximum number of generate requests until a reseed is required.
* This value is ignored if it is zero.
*/
unsigned int reseed_interval;
/* Stores the time when the last reseeding occurred */
time_t reseed_time;
/*
* Specifies the maximum time interval (in seconds) between reseeds.
* This value is ignored if it is zero.
*/
time_t reseed_time_interval;
/*
* Counts the number of reseeds since instantiation.
* This value is ignored if it is zero.
*
* This counter is used only for seed propagation from the <master> DRBG
* to its two children, the <public> and <private> DRBG. This feature is
* very special and its sole purpose is to ensure that any randomness which
* is added by PROV_add() or PROV_seed() will have an immediate effect on
* the output of PROV_bytes() resp. PROV_priv_bytes().
*/
TSAN_QUALIFIER unsigned int reseed_prop_counter;
unsigned int reseed_next_counter;
size_t seedlen;
DRBG_STATUS state;
void *data;
#ifndef FIPS_MODULE
/* Application data, mainly used in the KATs. */
CRYPTO_EX_DATA ex_data;
#endif
};
/* DRBG helpers */
int rand_drbg_restart(PROV_DRBG *drbg,
const unsigned char *buffer, size_t len, size_t entropy);
size_t rand_drbg_seedlen(PROV_DRBG *drbg);
PROV_DRBG *prov_rand_drbg_new(void *provctx, int secure, void *parent,
const OSSL_DISPATCH *parent_dispatch,
int (*dnew)(PROV_DRBG *ctx, int secure));
void prov_rand_free(PROV_DRBG *drbg);
int PROV_DRBG_instantiate(PROV_DRBG *drbg, int strength,
int prediction_resistance,
const unsigned char *pers, size_t perslen,
int (*ifnc)(PROV_DRBG *drbg,
const unsigned char *ent, size_t ent_len,
const unsigned char *nonce,
size_t nonce_len,
const unsigned char *pstr,
size_t pstr_len));
int PROV_DRBG_reseed(PROV_DRBG *drbg, int prediction_resistance,
const unsigned char *ent, size_t ent_len,
const unsigned char *adin, size_t adinlen,
int (*reseed)(PROV_DRBG *drbg, const unsigned char *ent,
size_t ent_len, const unsigned char *adin,
size_t adin_len));
int PROV_DRBG_generate(PROV_DRBG *drbg, unsigned char *out, size_t outlen,
int strength, int prediction_resistance,
const unsigned char *adin, size_t adinlen,
int (*generate)(PROV_DRBG *, unsigned char *out,
size_t outlen, const unsigned char *adin,
size_t adin_len),
int (*reseed)(PROV_DRBG *drbg, const unsigned char *ent,
size_t ent_len, const unsigned char *adin,
size_t adin_len));
/* locking api */
OSSL_OP_rand_enable_locking_fn drbg_enable_locking;
OSSL_OP_rand_lock_fn drbg_lock;
OSSL_OP_rand_unlock_fn drbg_unlock;
int drbg_get_ctx_params(PROV_DRBG *drbg, OSSL_PARAM params[]);
int drbg_set_ctx_params(PROV_DRBG *drbg, const OSSL_PARAM params[]);
#define OSSL_PARAM_DRBG_SETABLE_CTX_COMMON \
OSSL_PARAM_uint(OSSL_RAND_PARAM_RESEED_REQUESTS, NULL), \
OSSL_PARAM_uint64(OSSL_RAND_PARAM_RESEED_TIME_INTERVAL, NULL)
#define OSSL_PARAM_DRBG_GETABLE_CTX_COMMON \
OSSL_PARAM_int(OSSL_RAND_PARAM_STATUS, NULL), \
OSSL_PARAM_uint(OSSL_RAND_PARAM_STRENGTH, NULL), \
OSSL_PARAM_size_t(OSSL_RAND_PARAM_MAX_REQUEST, NULL), \
OSSL_PARAM_size_t(OSSL_RAND_PARAM_MIN_ENTROPYLEN, NULL), \
OSSL_PARAM_size_t(OSSL_RAND_PARAM_MAX_ENTROPYLEN, NULL), \
OSSL_PARAM_size_t(OSSL_RAND_PARAM_MIN_NONCELEN, NULL), \
OSSL_PARAM_size_t(OSSL_RAND_PARAM_MAX_NONCELEN, NULL), \
OSSL_PARAM_size_t(OSSL_RAND_PARAM_MAX_PERSLEN, NULL), \
OSSL_PARAM_size_t(OSSL_RAND_PARAM_MAX_ADINLEN, NULL), \
OSSL_PARAM_uint(OSSL_RAND_PARAM_RESEED_CTR, NULL), \
OSSL_PARAM_uint(OSSL_RAND_PARAM_RESEED_REQUESTS, NULL), \
OSSL_PARAM_uint64(OSSL_RAND_PARAM_RESEED_TIME_INTERVAL, NULL)
size_t prov_crngt_get_entropy(PROV_DRBG *drbg,
unsigned char **pout,
int entropy, size_t min_len, size_t max_len,
int prediction_resistance);
void prov_crngt_cleanup_entropy(PROV_DRBG *drbg,
unsigned char *out, size_t outlen);
/*
* Entropy call back for the FIPS 140-2 section 4.9.2 Conditional Tests.
* These need to be exposed for the unit tests.
*/
#if 0
int rand_crngt_get_entropy_cb(OPENSSL_CTX *ctx, PROV_POOL *pool,
unsigned char *buf, unsigned char *md,
unsigned int *md_size);
extern int (*crngt_get_entropy)(OPENSSL_CTX *ctx, PROV_POOL *pool,
unsigned char *buf, unsigned char *md,
unsigned int *md_size);
#endif
#endif

View File

@ -17,16 +17,42 @@
#include "crypto/rand.h"
#include "internal/thread_once.h"
#include "internal/cryptlib.h"
#include "rand_local.h"
#include "crypto/rand_pool.h"
#include "drbg_local.h"
#include "crypto/rand_pool.h"
#include "seeding/seeding.h"
typedef struct crng_test_global_st {
unsigned char crngt_prev[EVP_MAX_MD_SIZE];
RAND_POOL *crngt_pool;
} CRNG_TEST_GLOBAL;
int (*crngt_get_entropy)(OPENSSL_CTX *, RAND_POOL *, unsigned char *,
unsigned char *, unsigned int *)
= &rand_crngt_get_entropy_cb;
static int crngt_get_entropy(OPENSSL_CTX *ctx, RAND_POOL *pool,
unsigned char *buf, unsigned char *md,
unsigned int *md_size)
{
int r;
size_t n;
unsigned char *p;
if (pool == NULL)
return 0;
n = prov_pool_acquire_entropy(pool);
if (n >= CRNGT_BUFSIZ) {
EVP_MD *fmd = EVP_MD_fetch(ctx, "SHA256", "");
if (fmd == NULL)
return 0;
p = rand_pool_detach(pool);
r = EVP_Digest(p, CRNGT_BUFSIZ, md, md_size, fmd, NULL);
if (r != 0)
memcpy(buf, p, CRNGT_BUFSIZ);
rand_pool_reattach(pool, p);
EVP_MD_free(fmd);
return r;
}
return 0;
}
static void rand_crng_ossl_ctx_free(void *vcrngt_glob)
{
@ -137,3 +163,24 @@ void rand_crngt_cleanup_entropy(RAND_DRBG *drbg,
{
OPENSSL_secure_clear_free(out, outlen);
}
#if 0
const OSSL_DISPATCH crngt_functions[] = {
{ OSSL_FUNC_RAND_NEWCTX, (void(*)(void))crngt_new },
{ OSSL_FUNC_RAND_FREECTX, (void(*)(void))crngt_free },
{ OSSL_FUNC_RAND_INSTANTIATE, (void(*)(void))crngt_instantiate },
{ OSSL_FUNC_RAND_UNINSTANTIATE, (void(*)(void))crngt_uninstantiate },
{ OSSL_FUNC_RAND_GENERATE, (void(*)(void))crngt_generate },
{ OSSL_FUNC_RAND_RESEED, (void(*)(void))crngt_reseed },
{ OSSL_FUNC_RAND_ENABLE_LOCKING, (void(*)(void))drbg_enable_locking },
{ OSSL_FUNC_RAND_LOCK, (void(*)(void))drbg_lock },
{ OSSL_FUNC_RAND_UNLOCK, (void(*)(void))drbg_unlock },
{ OSSL_FUNC_RAND_SETTABLE_CTX_PARAMS,
(void(*)(void))crngt_settable_ctx_params },
{ OSSL_FUNC_RAND_SET_CTX_PARAMS, (void(*)(void))crngt_set_ctx_params },
{ OSSL_FUNC_RAND_GETTABLE_CTX_PARAMS,
(void(*)(void))crngt_gettable_ctx_params },
{ OSSL_FUNC_RAND_GET_CTX_PARAMS, (void(*)(void))crngt_get_ctx_params },
{ 0, NULL }
};
#endif