rand: implement an unbiased random integer from a range

Refer: https://github.com/apple/swift/pull/39143 for a description
of the algorithm.

It is optimal in the sense of having:

* no divisions
* minimal number of blocks of random bits from the generator

Reviewed-by: Tom Cosgrove <tom.cosgrove@arm.com>
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/22499)
This commit is contained in:
Pauli 2023-10-25 17:48:43 +11:00 committed by Tomas Mraz
parent 74ff15e1a1
commit 55755fbf42
3 changed files with 89 additions and 1 deletions

View File

@ -1,7 +1,8 @@
LIBS=../../libcrypto
$COMMON=rand_lib.c
$CRYPTO=randfile.c rand_err.c rand_deprecated.c prov_seed.c rand_pool.c
$CRYPTO=randfile.c rand_err.c rand_deprecated.c prov_seed.c rand_pool.c \
rand_uniform.c
IF[{- !$disabled{'egd'} -}]
$CRYPTO=$CRYPTO rand_egd.c

View File

@ -0,0 +1,76 @@
/*
* Copyright 2023 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include "crypto/rand.h"
#include "internal/common.h"
/*
* Implementation an optimal random integer in a range function.
* Refer: https://github.com/apple/swift/pull/39143 for a description
* of the algorithm.
*/
uint32_t ossl_rand_uniform_uint32(OSSL_LIB_CTX *ctx, uint32_t upper, int *err)
{
uint32_t i, f; /* integer and fractional parts */
uint32_t f2, rand; /* extra fractional part and random material */
uint64_t prod; /* temporary holding double width product */
const int max_followup_iterations = 10;
int j;
if (!ossl_assert(upper > 0)) {
*err = 0;
return 0;
}
if (unlikely(upper == 1))
return 0;
/* Get 32 bits of entropy */
if (RAND_bytes_ex(ctx, (unsigned char *)&rand, sizeof(rand), 0) <= 0) {
*err = 1;
return 0;
}
prod = (uint64_t)upper * rand;
i = prod >> 32;
f = prod & 0xffffffff;
if (likely(f <= 1 + ~upper)) /* 1+~upper == -upper but compilers whine */
return i;
for (j = 0; j < max_followup_iterations; j++) {
if (RAND_bytes_ex(ctx, (unsigned char *)&rand, sizeof(rand), 0) <= 0) {
*err = 1;
return 0;
}
prod = (uint64_t)upper * rand;
f2 = prod >> 32;
f += f2;
/* On overflow, add the carry to our result */
if (f < f2)
return i + 1;
/* For not all 1 bits, there is no carry so return the result */
if (unlikely(f != 0xffffffff))
return i;
/* setup for the next word of randomness */
f = prod & 0xffffffff;
}
/*
* If we get here, we've consumed 32 * max_followup_iterations + 32 bits
* with no firm decision, this gives a bias with probability < 2^(32*n),
* likely acceptable.
*/
return i;
}
uint32_t ossl_rand_range_uint32(OSSL_LIB_CTX *ctx, uint32_t lower, uint32_t upper,
int *err)
{
if (!ossl_assert(lower < upper)) {
*err = 1;
return 0;
}
return lower + ossl_rand_uniform_uint32(ctx, upper - lower, err);
}

View File

@ -140,4 +140,15 @@ EVP_RAND_CTX *ossl_rand_get0_private_noncreating(OSSL_LIB_CTX *ctx);
# else
EVP_RAND_CTX *ossl_rand_get0_seed_noncreating(OSSL_LIB_CTX *ctx);
# endif
/* Generate a uniformly distributed random integer in the interval [0, upper) */
uint32_t ossl_rand_uniform_uint32(OSSL_LIB_CTX *ctx, uint32_t upper, int *err);
/*
* Generate a uniformly distributed random integer in the interval
* [lower, upper).
*/
uint32_t ossl_rand_range_uint32(OSSL_LIB_CTX *ctx, uint32_t lower, uint32_t upper,
int *err);
#endif