Add BN_check_prime()

Add a new API to test for primes that can't be misused, deprecated the
old APIs.

Suggested by Jake Massimo and Kenneth Paterson

Reviewed-by: Paul Dale <paul.dale@oracle.com>
GH: #9272
This commit is contained in:
Kurt Roeckx 2019-10-06 17:21:16 +02:00
parent 6c4ae41f1c
commit 42619397eb
18 changed files with 172 additions and 150 deletions

View File

@ -35,7 +35,7 @@ const OPTIONS prime_options[] = {
int prime_main(int argc, char **argv)
{
BIGNUM *bn = NULL;
int hex = 0, checks = 20, generate = 0, bits = 0, safe = 0, ret = 1;
int hex = 0, generate = 0, bits = 0, safe = 0, ret = 1;
char *prog;
OPTION_CHOICE o;
@ -64,7 +64,8 @@ opthelp:
safe = 1;
break;
case OPT_CHECKS:
checks = atoi(opt_arg());
/* ignore parameter and argument */
opt_arg();
break;
}
}
@ -121,7 +122,7 @@ opthelp:
BN_print(bio_out, bn);
BIO_printf(bio_out, " (%s) %s prime\n",
argv[0],
BN_is_prime_ex(bn, checks, NULL, NULL)
BN_check_prime(bn, NULL, NULL)
? "is" : "is not");
}
}

View File

@ -272,8 +272,6 @@ typedef struct srp_arg_st {
int strength; /* minimal size for N */
} SRP_ARG;
# define SRP_NUMBER_ITERATIONS_FOR_PRIME 64
static int srp_Verify_N_and_g(const BIGNUM *N, const BIGNUM *g)
{
BN_CTX *bn_ctx = BN_CTX_new();
@ -281,10 +279,10 @@ static int srp_Verify_N_and_g(const BIGNUM *N, const BIGNUM *g)
BIGNUM *r = BN_new();
int ret =
g != NULL && N != NULL && bn_ctx != NULL && BN_is_odd(N) &&
BN_is_prime_ex(N, SRP_NUMBER_ITERATIONS_FOR_PRIME, bn_ctx, NULL) == 1 &&
BN_check_prime(N, bn_ctx, NULL) == 1 &&
p != NULL && BN_rshift1(p, N) &&
/* p = (N-1)/2 */
BN_is_prime_ex(p, SRP_NUMBER_ITERATIONS_FOR_PRIME, bn_ctx, NULL) == 1 &&
BN_check_prime(p, bn_ctx, NULL) == 1 &&
r != NULL &&
/* verify g^((N-1)/2) == -1 (mod N) */
BN_mod_exp(r, g, p, N, bn_ctx) &&

View File

@ -52,7 +52,7 @@ int BN_is_prime(const BIGNUM *a, int checks,
{
BN_GENCB cb;
BN_GENCB_set_old(&cb, callback, cb_arg);
return BN_is_prime_ex(a, checks, ctx_passed, &cb);
return bn_check_prime_int(a, checks, ctx_passed, 0, &cb);
}
int BN_is_prime_fasttest(const BIGNUM *a, int checks,
@ -62,7 +62,7 @@ int BN_is_prime_fasttest(const BIGNUM *a, int checks,
{
BN_GENCB cb;
BN_GENCB_set_old(&cb, callback, cb_arg);
return BN_is_prime_fasttest_ex(a, checks, ctx_passed,
do_trial_division, &cb);
return bn_check_prime_int(a, checks, ctx_passed, do_trial_division, &cb);
}
#endif

View File

@ -665,4 +665,7 @@ static ossl_inline BIGNUM *bn_expand(BIGNUM *a, int bits)
return bn_expand2((a),(bits+BN_BITS2-1)/BN_BITS2);
}
int bn_check_prime_int(const BIGNUM *w, int checks, BN_CTX *ctx,
int do_trial_division, BN_GENCB *cb);
#endif

View File

@ -24,6 +24,8 @@ static int probable_prime(BIGNUM *rnd, int bits, int safe, prime_t *mods,
static int probable_prime_dh(BIGNUM *rnd, int bits, int safe, prime_t *mods,
const BIGNUM *add, const BIGNUM *rem,
BN_CTX *ctx);
static int bn_is_prime_int(const BIGNUM *w, int checks, BN_CTX *ctx,
int do_trial_division, BN_GENCB *cb);
#define square(x) ((BN_ULONG)(x) * (BN_ULONG)(x))
@ -82,6 +84,20 @@ static int calc_trial_divisions(int bits)
return NUMPRIMES;
}
/*
* Use a minimum of 64 rounds of Miller-Rabin, which should give a false
* positive rate of 2^-128. If the size of the prime is larger than 2048
* the user probably wants a higher security level than 128, so switch
* to 128 rounds giving a false positive rate of 2^-256.
* Returns the number of rounds.
*/
static int bn_mr_min_checks(int bits)
{
if (bits > 2048)
return 128;
return 64;
}
int BN_GENCB_call(BN_GENCB *cb, int a, int b)
{
/* No callback means continue */
@ -112,7 +128,7 @@ int BN_generate_prime_ex2(BIGNUM *ret, int bits, int safe,
int found = 0;
int i, j, c1 = 0;
prime_t *mods = NULL;
int checks = BN_prime_checks_for_size(bits);
int checks = bn_mr_min_checks(bits);
if (bits < 2) {
/* There are no prime numbers this small. */
@ -151,7 +167,7 @@ int BN_generate_prime_ex2(BIGNUM *ret, int bits, int safe,
goto err;
if (!safe) {
i = BN_is_prime_fasttest_ex(ret, checks, ctx, 0, cb);
i = bn_is_prime_int(ret, checks, ctx, 0, cb);
if (i == -1)
goto err;
if (i == 0)
@ -165,13 +181,13 @@ int BN_generate_prime_ex2(BIGNUM *ret, int bits, int safe,
goto err;
for (i = 0; i < checks; i++) {
j = BN_is_prime_fasttest_ex(ret, 1, ctx, 0, cb);
j = bn_is_prime_int(ret, 1, ctx, 0, cb);
if (j == -1)
goto err;
if (j == 0)
goto loop;
j = BN_is_prime_fasttest_ex(t, 1, ctx, 0, cb);
j = bn_is_prime_int(t, 1, ctx, 0, cb);
if (j == -1)
goto err;
if (j == 0)
@ -208,15 +224,45 @@ int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe,
}
#endif
#if !OPENSSL_API_3
int BN_is_prime_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed,
BN_GENCB *cb)
{
return BN_is_prime_fasttest_ex(a, checks, ctx_passed, 0, cb);
return bn_check_prime_int(a, checks, ctx_passed, 0, cb);
}
/* See FIPS 186-4 C.3.1 Miller Rabin Probabilistic Primality Test. */
int BN_is_prime_fasttest_ex(const BIGNUM *w, int checks, BN_CTX *ctx,
int do_trial_division, BN_GENCB *cb)
{
return bn_check_prime_int(w, checks, ctx, do_trial_division, cb);
}
#endif
/* Wrapper around bn_is_prime_int that sets the minimum number of checks */
int bn_check_prime_int(const BIGNUM *w, int checks, BN_CTX *ctx,
int do_trial_division, BN_GENCB *cb)
{
int min_checks = bn_mr_min_checks(BN_num_bits(w));
if (checks < min_checks)
checks = min_checks;
return bn_is_prime_int(w, checks, ctx, do_trial_division, cb);
}
int BN_check_prime(const BIGNUM *p, BN_CTX *ctx, BN_GENCB *cb)
{
return bn_check_prime_int(p, 0, ctx, 1, cb);
}
/*
* Tests that |w| is probably prime
* See FIPS 186-4 C.3.1 Miller Rabin Probabilistic Primality Test.
*
* Returns 0 when composite, 1 when probable prime, -1 on error.
*/
static int bn_is_prime_int(const BIGNUM *w, int checks, BN_CTX *ctx,
int do_trial_division, BN_GENCB *cb)
{
int i, status, ret = -1;
#ifndef FIPS_MODE
@ -332,8 +378,8 @@ int bn_miller_rabin_is_prime(const BIGNUM *w, int iterations, BN_CTX *ctx,
if (mont == NULL || !BN_MONT_CTX_set(mont, w, ctx))
goto err;
if (iterations == BN_prime_checks)
iterations = BN_prime_checks_for_size(BN_num_bits(w));
if (iterations == 0)
iterations = bn_mr_min_checks(BN_num_bits(w));
/* (Step 4) */
for (i = 0; i < iterations; ++i) {

View File

@ -67,44 +67,6 @@ static int bn_rsa_fips186_4_aux_prime_max_sum_size_for_prob_primes(int nbits)
return 0;
}
/*
* FIPS 186-4 Table C.3 for error probability of 2^-100
* Minimum number of Miller Rabin Rounds for p1, p2, q1 & q2.
*
* Params:
* aux_prime_bits The auxiliary prime size in bits.
* Returns:
* The minimum number of Miller Rabin Rounds for an auxiliary prime, or
* 0 if aux_prime_bits is invalid.
*/
static int bn_rsa_fips186_4_aux_prime_MR_min_checks(int aux_prime_bits)
{
if (aux_prime_bits > 170)
return 27;
if (aux_prime_bits > 140)
return 32;
return 0; /* Error case */
}
/*
* FIPS 186-4 Table C.3 for error probability of 2^-100
* Minimum number of Miller Rabin Rounds for p, q.
*
* Params:
* nbits The key size in bits.
* Returns:
* The minimum number of Miller Rabin Rounds required,
* or 0 if nbits is invalid.
*/
int bn_rsa_fips186_4_prime_MR_min_checks(int nbits)
{
if (nbits >= 3072) /* > 170 */
return 3;
if (nbits == 2048) /* > 140 */
return 4;
return 0; /* Error case */
}
/*
* Find the first odd integer that is a probable prime.
*
@ -123,9 +85,8 @@ static int bn_rsa_fips186_4_find_aux_prob_prime(const BIGNUM *Xp1,
{
int ret = 0;
int i = 0;
int checks = bn_rsa_fips186_4_aux_prime_MR_min_checks(BN_num_bits(Xp1));
if (checks == 0 || BN_copy(p1, Xp1) == NULL)
if (BN_copy(p1, Xp1) == NULL)
return 0;
/* Find the first odd number >= Xp1 that is probably prime */
@ -133,7 +94,7 @@ static int bn_rsa_fips186_4_find_aux_prob_prime(const BIGNUM *Xp1,
i++;
BN_GENCB_call(cb, 0, i);
/* MR test with trial division */
if (BN_is_prime_fasttest_ex(p1, checks, ctx, 1, cb))
if (BN_check_prime(p1, ctx, cb))
break;
/* Get next odd number */
if (!BN_add_word(p1, 2))
@ -259,11 +220,8 @@ int bn_rsa_fips186_4_derive_prime(BIGNUM *Y, BIGNUM *X, const BIGNUM *Xin,
int ret = 0;
int i, imax;
int bits = nlen >> 1;
int checks = bn_rsa_fips186_4_prime_MR_min_checks(nlen);
BIGNUM *tmp, *R, *r1r2x2, *y1, *r1x2;
if (checks == 0)
return 0;
BN_CTX_start(ctx);
R = BN_CTX_get(ctx);
@ -331,8 +289,7 @@ int bn_rsa_fips186_4_derive_prime(BIGNUM *Y, BIGNUM *X, const BIGNUM *Xin,
|| !BN_sub_word(y1, 1)
|| !BN_gcd(tmp, y1, e, ctx))
goto err;
if (BN_is_one(tmp)
&& BN_is_prime_fasttest_ex(Y, checks, ctx, 1, cb))
if (BN_is_one(tmp) && BN_check_prime(Y, ctx, cb))
goto end;
/* (Step 8-10) */
if (++i >= imax || !BN_add(Y, Y, r1r2x2))

View File

@ -30,7 +30,7 @@ static int bn_x931_derive_pi(BIGNUM *pi, const BIGNUM *Xpi, BN_CTX *ctx,
i++;
BN_GENCB_call(cb, 0, i);
/* NB 27 MR is specified in X9.31 */
is_prime = BN_is_prime_fasttest_ex(pi, 27, ctx, 1, cb);
is_prime = BN_check_prime(pi, ctx, cb);
if (is_prime < 0)
return 0;
if (is_prime)
@ -131,7 +131,7 @@ int BN_X931_derive_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2,
* offering similar or better guarantees 50 MR is considerably
* better.
*/
int r = BN_is_prime_fasttest_ex(p, 50, ctx, 1, cb);
int r = BN_check_prime(p, ctx, cb);
if (r < 0)
goto err;
if (r)

View File

@ -12,8 +12,6 @@
#include <openssl/bn.h>
#include "dh_local.h"
# define DH_NUMBER_ITERATIONS_FOR_PRIME 64
/*-
* Check that p and g are suitable enough
*
@ -137,7 +135,7 @@ int DH_check(const DH *dh, int *ret)
if (!BN_is_one(t1))
*ret |= DH_NOT_SUITABLE_GENERATOR;
}
r = BN_is_prime_ex(dh->q, DH_NUMBER_ITERATIONS_FOR_PRIME, ctx, NULL);
r = BN_check_prime(dh->q, ctx, NULL);
if (r < 0)
goto err;
if (!r)
@ -151,7 +149,7 @@ int DH_check(const DH *dh, int *ret)
*ret |= DH_CHECK_INVALID_J_VALUE;
}
r = BN_is_prime_ex(dh->p, DH_NUMBER_ITERATIONS_FOR_PRIME, ctx, NULL);
r = BN_check_prime(dh->p, ctx, NULL);
if (r < 0)
goto err;
if (!r)
@ -159,7 +157,7 @@ int DH_check(const DH *dh, int *ret)
else if (!dh->q) {
if (!BN_rshift1(t1, dh->p))
goto err;
r = BN_is_prime_ex(t1, DH_NUMBER_ITERATIONS_FOR_PRIME, ctx, NULL);
r = BN_check_prime(t1, ctx, NULL);
if (r < 0)
goto err;
if (!r)

View File

@ -154,8 +154,7 @@ int dsa_builtin_paramgen(DSA *ret, size_t bits, size_t qbits,
goto err;
/* step 4 */
r = BN_is_prime_fasttest_ex(q, DSS_prime_checks, ctx,
use_random_seed, cb);
r = BN_check_prime(q, ctx, cb);
if (r > 0)
break;
if (r != 0)
@ -226,7 +225,7 @@ int dsa_builtin_paramgen(DSA *ret, size_t bits, size_t qbits,
/* step 10 */
if (BN_cmp(p, test) >= 0) {
/* step 11 */
r = BN_is_prime_fasttest_ex(p, DSS_prime_checks, ctx, 1, cb);
r = BN_check_prime(p, ctx, cb);
if (r > 0)
goto end; /* found it */
if (r != 0)
@ -425,8 +424,7 @@ int dsa_builtin_paramgen2(DSA *ret, size_t L, size_t N,
goto err;
/* step 4 */
r = BN_is_prime_fasttest_ex(q, DSS_prime_checks, ctx,
seed_in ? 1 : 0, cb);
r = BN_check_prime(q, ctx, cb);
if (r > 0)
break;
if (r != 0)
@ -506,7 +504,7 @@ int dsa_builtin_paramgen2(DSA *ret, size_t L, size_t N,
/* step 10 */
if (BN_cmp(p, test) >= 0) {
/* step 11 */
r = BN_is_prime_fasttest_ex(p, DSS_prime_checks, ctx, 1, cb);
r = BN_check_prime(p, ctx, cb);
if (r > 0)
goto end; /* found it */
if (r != 0)

View File

@ -73,13 +73,13 @@ int RSA_check_key_ex(const RSA *key, BN_GENCB *cb)
}
/* p prime? */
if (BN_is_prime_ex(key->p, BN_prime_checks, NULL, cb) != 1) {
if (BN_check_prime(key->p, NULL, cb) != 1) {
ret = 0;
RSAerr(RSA_F_RSA_CHECK_KEY_EX, RSA_R_P_NOT_PRIME);
}
/* q prime? */
if (BN_is_prime_ex(key->q, BN_prime_checks, NULL, cb) != 1) {
if (BN_check_prime(key->q, NULL, cb) != 1) {
ret = 0;
RSAerr(RSA_F_RSA_CHECK_KEY_EX, RSA_R_Q_NOT_PRIME);
}
@ -87,7 +87,7 @@ int RSA_check_key_ex(const RSA *key, BN_GENCB *cb)
/* r_i prime? */
for (idx = 0; idx < ex_primes; idx++) {
pinfo = sk_RSA_PRIME_INFO_value(key->prime_infos, idx);
if (BN_is_prime_ex(pinfo->r, BN_prime_checks, NULL, cb) != 1) {
if (BN_check_prime(pinfo->r, NULL, cb) != 1) {
ret = 0;
RSAerr(RSA_F_RSA_CHECK_KEY_EX, RSA_R_MP_R_NOT_PRIME);
}

View File

@ -119,16 +119,15 @@ err:
* Check the prime factor (for either p or q)
* i.e: p is prime AND GCD(p - 1, e) = 1
*
* See SP800-5bBr1 6.4.1.2.3 Step 5 (a to d) & (e to h).
* See SP800-56Br1 6.4.1.2.3 Step 5 (a to d) & (e to h).
*/
int rsa_check_prime_factor(BIGNUM *p, BIGNUM *e, int nbits, BN_CTX *ctx)
{
int checks = bn_rsa_fips186_4_prime_MR_min_checks(nbits);
int ret = 0;
BIGNUM *p1 = NULL, *gcd = NULL;
/* (Steps 5 a-b) prime test */
if (BN_is_prime_fasttest_ex(p, checks, ctx, 1, NULL) != 1
if (BN_check_prime(p, ctx, NULL) != 1
/* (Step 5c) (√2)(2^(nbits/2 - 1) <= p <= 2^(nbits/2 - 1) */
|| rsa_check_prime_factor_range(p, nbits, ctx) != 1)
return 0;
@ -235,7 +234,7 @@ int rsa_get_lcm(BN_CTX *ctx, const BIGNUM *p, const BIGNUM *q,
*/
int rsa_sp800_56b_check_public(const RSA *rsa)
{
int ret = 0, nbits, iterations, status;
int ret = 0, nbits, status;
BN_CTX *ctx = NULL;
BIGNUM *gcd = NULL;
@ -268,7 +267,6 @@ int rsa_sp800_56b_check_public(const RSA *rsa)
if (ctx == NULL || gcd == NULL)
goto err;
iterations = bn_rsa_fips186_4_prime_MR_min_checks(nbits);
/* (Steps d-f):
* The modulus is composite, but not a power of a prime.
* The modulus has no factors smaller than 752.
@ -278,7 +276,7 @@ int rsa_sp800_56b_check_public(const RSA *rsa)
goto err;
}
ret = bn_miller_rabin_is_prime(rsa->n, iterations, ctx, NULL, 1, &status);
ret = bn_miller_rabin_is_prime(rsa->n, 0, ctx, NULL, 1, &status);
if (ret != 1 || status != BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME) {
RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_INVALID_MODULUS);
ret = 0;

View File

@ -50,8 +50,7 @@ generated is I<n>, then check that C<(I<n>-1)/2> is also prime.
=item B<-checks> I<num>
Perform the checks I<num> times to see that the generated number
is prime. The default is 20.
This parameter is ignored.
=back

View File

@ -2,7 +2,7 @@
=head1 NAME
BN_generate_prime_ex2, BN_generate_prime_ex, BN_is_prime_ex,
BN_generate_prime_ex2, BN_generate_prime_ex, BN_is_prime_ex, BN_check_prime,
BN_is_prime_fasttest_ex, BN_GENCB_call, BN_GENCB_new, BN_GENCB_free,
BN_GENCB_set_old, BN_GENCB_set, BN_GENCB_get_arg, BN_generate_prime,
BN_is_prime, BN_is_prime_fasttest - generate primes and test for primality
@ -18,10 +18,7 @@ BN_is_prime, BN_is_prime_fasttest - generate primes and test for primality
int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe, const BIGNUM *add,
const BIGNUM *rem, BN_GENCB *cb);
int BN_is_prime_ex(const BIGNUM *p, int nchecks, BN_CTX *ctx, BN_GENCB *cb);
int BN_is_prime_fasttest_ex(const BIGNUM *p, int nchecks, BN_CTX *ctx,
int do_trial_division, BN_GENCB *cb);
int BN_check_prime(const BIGNUM *p, BN_CTX *ctx, BN_GENCB *cb);
int BN_GENCB_call(BN_GENCB *cb, int a, int b);
@ -45,19 +42,32 @@ L<openssl_user_macros(7)>:
BIGNUM *rem, void (*callback)(int, int, void *),
void *cb_arg);
int BN_is_prime(const BIGNUM *a, int checks,
int BN_is_prime(const BIGNUM *p, int nchecks,
void (*callback)(int, int, void *), BN_CTX *ctx, void *cb_arg);
int BN_is_prime_fasttest(const BIGNUM *a, int checks,
int BN_is_prime_fasttest(const BIGNUM *p, int nchecks,
void (*callback)(int, int, void *), BN_CTX *ctx,
void *cb_arg, int do_trial_division);
Deprecated since OpenSSL 3.0:
int BN_is_prime_ex(const BIGNUM *p, int nchecks, BN_CTX *ctx, BN_GENCB *cb);
int BN_is_prime_fasttest_ex(const BIGNUM *p, int nchecks, BN_CTX *ctx,
int do_trial_division, BN_GENCB *cb);
=head1 DESCRIPTION
BN_generate_prime_ex2() generates a pseudo-random prime number of
at least bit length B<bits> using the BN_CTX provided in B<ctx>. The value of
B<ctx> must not be NULL.
The returned number is probably prime with a negligible error.
The maximum error rate is 2^-128.
It's 2^-287 for a 512 bit prime, 2^-435 for a 1024 bit prime,
2^-648 for a 2048 bit prime, and lower than 2^-882 for primes larger
than 2048 bit.
If B<add> is B<NULL> the returned prime number will have exact bit
length B<bits> with the top most two bits set.
@ -111,37 +121,43 @@ B<ctx> parameter is passed.
In this case the random number generator associated with the default OPENSSL_CTX
will be used.
BN_is_prime_ex() and BN_is_prime_fasttest_ex() test if the number B<p> is
prime. The following tests are performed until one of them shows that
B<p> is composite; if B<p> passes all these tests, it is considered
prime.
BN_check_prime(), BN_is_prime_ex(), BN_is_prime_fasttest_ex(), BN_is_prime()
and BN_is_prime_fasttest() test if the number B<p> is prime.
The functions tests until one of the tests shows that B<p> is composite,
or all the tests passed.
If B<p> passes all these tests, it is considered a probable prime.
BN_is_prime_fasttest_ex(), when called with B<do_trial_division == 1>,
first attempts trial division by a number of small primes;
if no divisors are found by this test and B<cb> is not B<NULL>,
B<BN_GENCB_call(cb, 1, -1)> is called.
If B<do_trial_division == 0>, this test is skipped.
The test performed on B<p> are trial division by a number of small primes
and rounds of the of the Miller-Rabin probabilistic primality test.
Both BN_is_prime_ex() and BN_is_prime_fasttest_ex() perform a Miller-Rabin
probabilistic primality test with B<nchecks> iterations. If
B<nchecks == BN_prime_checks>, a number of iterations is used that
yields a false positive rate of at most 2^-64 for random input.
The error rate depends on the size of the prime and goes down for bigger primes.
The rate is 2^-80 starting at 308 bits, 2^-112 at 852 bits, 2^-128 at 1080 bits,
2^-192 at 3747 bits and 2^-256 at 6394 bits.
The functions do at least 64 rounds of the Miller-Rabin test giving a maximum
false positive rate of 2^-128.
If the size of B<p> is more than 2048 bits, they do at least 128 rounds
giving a maximum false positive rate of 2^-256.
When the source of the prime is not random or not trusted, the number
of checks needs to be much higher to reach the same level of assurance:
It should equal half of the targeted security level in bits (rounded up to the
next integer if necessary).
For instance, to reach the 128 bit security level, B<nchecks> should be set to
64.
If B<nchecks> is larger than the minimum above (64 or 128), B<nchecks>
rounds of the Miller-Rabin test will be done.
If B<cb> is not B<NULL>, B<BN_GENCB_call(cb, 1, j)> is called
after the j-th iteration (j = 0, 1, ...). B<ctx> is a
pre-allocated B<BN_CTX> (to save the overhead of allocating and
If B<do_trial_division> set to B<0>, the trial division will be skipped.
BN_is_prime_ex() and BN_is_prime() always skip the trial division.
BN_is_prime_ex(), BN_is_prime_fasttest_ex(), BN_is_prime()
and BN_is_prime_fasttest() are deprecated.
BN_is_prime_fasttest() and BN_is_prime() behave just like
BN_is_prime_fasttest_ex() and BN_is_prime_ex() respectively, but with the old
style call back.
B<ctx> is a pre-allocated B<BN_CTX> (to save the overhead of allocating and
freeing the structure in a loop), or B<NULL>.
If the trial division is done, and no divisors are found and B<cb>
is not B<NULL>, B<BN_GENCB_call(cb, 1, -1)> is called.
After each round of the Miller-Rabin probabilistic primality test,
if B<cb> is not B<NULL>, B<BN_GENCB_call(cb, 1, j)> is called
with B<j> the iteration (j = 0, 1, ...).
BN_GENCB_call() calls the callback function held in the B<BN_GENCB> structure
and passes the ints B<a> and B<b> as arguments. There are two types of
B<BN_GENCB> structure that are supported: "new" style and "old" style. New
@ -176,9 +192,9 @@ BN_is_prime_fasttest_ex(), respectively.
BN_generate_prime_ex() return 1 on success or 0 on error.
BN_is_prime_ex(), BN_is_prime_fasttest_ex(), BN_is_prime() and
BN_is_prime_fasttest() return 0 if the number is composite, 1 if it is
prime with an error probability of less than 0.25^B<nchecks>, and
BN_is_prime_ex(), BN_is_prime_fasttest_ex(), BN_is_prime(),
BN_is_prime_fasttest() and BN_check_prime return 0 if the number is composite,
1 if it is prime with an error probability of less than 0.25^B<nchecks>, and
-1 on error.
BN_generate_prime() returns the prime number on success, B<NULL> otherwise.
@ -220,6 +236,8 @@ L<RAND(7)>
The BN_GENCB_new(), BN_GENCB_free(),
and BN_GENCB_get_arg() functions were added in OpenSSL 1.1.0.
BN_check_prime() was added in OpenSSL 3.0.
=head1 COPYRIGHT
Copyright 2000-2019 The OpenSSL Project Authors. All Rights Reserved.

View File

@ -109,8 +109,9 @@ void BN_GENCB_set(BN_GENCB *gencb, int (*callback) (int, int, BN_GENCB *),
void *BN_GENCB_get_arg(BN_GENCB *cb);
# define BN_prime_checks 0 /* default: select number of iterations based
* on the size of the number */
# if !OPENSSL_API_3
# define BN_prime_checks 0 /* default: select number of iterations based
* on the size of the number */
/*
* BN_prime_checks_for_size() returns the number of Miller-Rabin iterations
@ -175,14 +176,15 @@ void *BN_GENCB_get_arg(BN_GENCB *cb);
* (b) >= 6 | >= 12 | 34 | 64 bit
*/
# define BN_prime_checks_for_size(b) ((b) >= 3747 ? 3 : \
(b) >= 1345 ? 4 : \
(b) >= 476 ? 5 : \
(b) >= 400 ? 6 : \
(b) >= 347 ? 7 : \
(b) >= 308 ? 8 : \
(b) >= 55 ? 27 : \
/* b >= 6 */ 34)
# define BN_prime_checks_for_size(b) ((b) >= 3747 ? 3 : \
(b) >= 1345 ? 4 : \
(b) >= 476 ? 5 : \
(b) >= 400 ? 6 : \
(b) >= 347 ? 7 : \
(b) >= 308 ? 8 : \
(b) >= 55 ? 27 : \
/* b >= 6 */ 34)
# endif
# define BN_num_bytes(a) ((BN_num_bits(a)+7)/8)
@ -353,15 +355,16 @@ DEPRECATEDIN_0_9_8(int
BN_CTX *ctx, void *cb_arg,
int do_trial_division))
DEPRECATEDIN_3(int BN_is_prime_ex(const BIGNUM *p, int nchecks, BN_CTX *ctx, BN_GENCB *cb))
DEPRECATEDIN_3(int BN_is_prime_fasttest_ex(const BIGNUM *p, int nchecks, BN_CTX *ctx,
int do_trial_division, BN_GENCB *cb))
/* Newer versions */
int BN_generate_prime_ex2(BIGNUM *ret, int bits, int safe,
const BIGNUM *add, const BIGNUM *rem, BN_GENCB *cb,
BN_CTX *ctx);
int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe, const BIGNUM *add,
const BIGNUM *rem, BN_GENCB *cb);
int BN_is_prime_ex(const BIGNUM *p, int nchecks, BN_CTX *ctx, BN_GENCB *cb);
int BN_is_prime_fasttest_ex(const BIGNUM *p, int nchecks, BN_CTX *ctx,
int do_trial_division, BN_GENCB *cb);
int BN_check_prime(const BIGNUM *p, BN_CTX *ctx, BN_GENCB *cb);
int BN_X931_generate_Xpq(BIGNUM *Xp, BIGNUM *Xq, int nbits, BN_CTX *ctx);

View File

@ -144,15 +144,17 @@ int DSAparams_print_fp(FILE *fp, const DSA *x);
int DSA_print_fp(FILE *bp, const DSA *x, int off);
# endif
# define DSS_prime_checks 64
# if !OPENSSL_API_3
# define DSS_prime_checks 64
/*
* Primality test according to FIPS PUB 186-4, Appendix C.3. Since we only
* have one value here we set the number of checks to 64 which is the 128 bit
* security level that is the highest level and valid for creating a 3072 bit
* DSA key.
*/
# define DSA_is_prime(n, callback, cb_arg) \
BN_is_prime(n, DSS_prime_checks, callback, NULL, cb_arg)
# define DSA_is_prime(n, callback, cb_arg) \
BN_is_prime(n, DSS_prime_checks, callback, NULL, cb_arg)
# endif
# ifndef OPENSSL_NO_DH
/*

View File

@ -2312,7 +2312,7 @@ static int test_is_prime(int i)
for (trial = 0; trial <= 1; ++trial) {
if (!TEST_true(BN_set_word(r, primes[i]))
|| !TEST_int_eq(BN_is_prime_fasttest_ex(r, 1, ctx, trial, NULL),
|| !TEST_int_eq(BN_check_prime(r, ctx, NULL),
1))
goto err;
}
@ -2336,7 +2336,7 @@ static int test_not_prime(int i)
for (trial = 0; trial <= 1; ++trial) {
if (!TEST_true(BN_set_word(r, not_primes[i]))
|| !TEST_false(BN_is_prime_fasttest_ex(r, 1, ctx, trial, NULL)))
|| !TEST_false(BN_check_prime(r, ctx, NULL)))
goto err;
}

View File

@ -287,7 +287,7 @@ static int prime_field_tests(void)
|| !TEST_true(BN_hex2bn(&p, "FFFFFFFF"
"FFFFFFFFFFFFFFFFFFFFFFFF7FFFFFFF"))
|| !TEST_int_eq(1, BN_is_prime_ex(p, BN_prime_checks, ctx, NULL))
|| !TEST_int_eq(1, BN_check_prime(p, ctx, NULL))
|| !TEST_true(BN_hex2bn(&a, "FFFFFFFF"
"FFFFFFFFFFFFFFFFFFFFFFFF7FFFFFFC"))
|| !TEST_true(BN_hex2bn(&b, "1C97BEFC"
@ -327,7 +327,7 @@ static int prime_field_tests(void)
|| !TEST_true(BN_hex2bn(&p, "FFFFFFFFFFFFFFFF"
"FFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFF"))
|| !TEST_int_eq(1, BN_is_prime_ex(p, BN_prime_checks, ctx, NULL))
|| !TEST_int_eq(1, BN_check_prime(p, ctx, NULL))
|| !TEST_true(BN_hex2bn(&a, "FFFFFFFFFFFFFFFF"
"FFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFC"))
|| !TEST_true(BN_hex2bn(&b, "64210519E59C80E7"
@ -366,7 +366,7 @@ static int prime_field_tests(void)
|| !TEST_true(BN_hex2bn(&p, "FFFFFFFFFFFFFFFFFFFFFFFF"
"FFFFFFFF000000000000000000000001"))
|| !TEST_int_eq(1, BN_is_prime_ex(p, BN_prime_checks, ctx, NULL))
|| !TEST_int_eq(1, BN_check_prime(p, ctx, NULL))
|| !TEST_true(BN_hex2bn(&a, "FFFFFFFFFFFFFFFFFFFFFFFF"
"FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFE"))
|| !TEST_true(BN_hex2bn(&b, "B4050A850C04B3ABF5413256"
@ -405,7 +405,7 @@ static int prime_field_tests(void)
|| !TEST_true(BN_hex2bn(&p, "FFFFFFFF000000010000000000000000"
"00000000FFFFFFFFFFFFFFFFFFFFFFFF"))
|| !TEST_int_eq(1, BN_is_prime_ex(p, BN_prime_checks, ctx, NULL))
|| !TEST_int_eq(1, BN_check_prime(p, ctx, NULL))
|| !TEST_true(BN_hex2bn(&a, "FFFFFFFF000000010000000000000000"
"00000000FFFFFFFFFFFFFFFFFFFFFFFC"))
|| !TEST_true(BN_hex2bn(&b, "5AC635D8AA3A93E7B3EBBD55769886BC"
@ -446,7 +446,7 @@ static int prime_field_tests(void)
|| !TEST_true(BN_hex2bn(&p, "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE"
"FFFFFFFF0000000000000000FFFFFFFF"))
|| !TEST_int_eq(1, BN_is_prime_ex(p, BN_prime_checks, ctx, NULL))
|| !TEST_int_eq(1, BN_check_prime(p, ctx, NULL))
|| !TEST_true(BN_hex2bn(&a, "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE"
"FFFFFFFF0000000000000000FFFFFFFC"))
@ -493,7 +493,7 @@ static int prime_field_tests(void)
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"))
|| !TEST_int_eq(1, BN_is_prime_ex(p, BN_prime_checks, ctx, NULL))
|| !TEST_int_eq(1, BN_check_prime(p, ctx, NULL))
|| !TEST_true(BN_hex2bn(&a, "1FF"
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"
@ -1328,7 +1328,7 @@ static int nistp_single_test(int idx)
|| !TEST_ptr(NISTP = EC_GROUP_new(test->meth()))
|| !TEST_true(BN_hex2bn(&p, test->p))
|| !TEST_int_eq(1, BN_is_prime_ex(p, BN_prime_checks, ctx, NULL))
|| !TEST_int_eq(1, BN_check_prime(p, ctx, NULL))
|| !TEST_true(BN_hex2bn(&a, test->a))
|| !TEST_true(BN_hex2bn(&b, test->b))
|| !TEST_true(EC_GROUP_set_curve(NISTP, p, a, b, ctx))

View File

@ -149,7 +149,7 @@ ASN1_get_object 151 3_0_0 EXIST::FUNCTION:
i2d_IPAddressFamily 152 3_0_0 EXIST::FUNCTION:RFC3779
ENGINE_get_ctrl_function 153 3_0_0 EXIST::FUNCTION:ENGINE
X509_REVOKED_get_ext_count 154 3_0_0 EXIST::FUNCTION:
BN_is_prime_fasttest_ex 155 3_0_0 EXIST::FUNCTION:
BN_is_prime_fasttest_ex 155 3_0_0 EXIST::FUNCTION:DEPRECATEDIN_3
ERR_load_PKCS12_strings 156 3_0_0 EXIST::FUNCTION:
EVP_sha384 157 3_0_0 EXIST::FUNCTION:
i2d_DHparams 158 3_0_0 EXIST::FUNCTION:DH
@ -3531,7 +3531,7 @@ CMS_add1_recipient_cert 3608 3_0_0 EXIST::FUNCTION:CMS
CMS_RecipientInfo_kekri_get0_id 3609 3_0_0 EXIST::FUNCTION:CMS
BN_mod_word 3610 3_0_0 EXIST::FUNCTION:
ASN1_PCTX_new 3611 3_0_0 EXIST::FUNCTION:
BN_is_prime_ex 3612 3_0_0 EXIST::FUNCTION:
BN_is_prime_ex 3612 3_0_0 EXIST::FUNCTION:DEPRECATEDIN_3
PKCS5_v2_PBE_keyivgen 3613 3_0_0 EXIST::FUNCTION:
CRYPTO_ctr128_encrypt 3614 3_0_0 EXIST::FUNCTION:
CMS_unsigned_add1_attr_by_OBJ 3615 3_0_0 EXIST::FUNCTION:CMS
@ -4826,3 +4826,4 @@ EVP_DigestSignInit_ex 4942 3_0_0 EXIST::FUNCTION:
EVP_DigestSignUpdate 4943 3_0_0 EXIST::FUNCTION:
EVP_DigestVerifyInit_ex 4944 3_0_0 EXIST::FUNCTION:
EVP_DigestVerifyUpdate 4945 3_0_0 EXIST::FUNCTION:
BN_check_prime 4946 3_0_0 EXIST::FUNCTION: