From 10bc3409459a525654d6b986b3cd49d22dd95460 Mon Sep 17 00:00:00 2001 From: Andy Polyakov Date: Sat, 30 Dec 2017 20:15:44 +0100 Subject: [PATCH] ec/ecp_nistz256.c: switch to faster addition chain in scalar inversion. [and improve formatting] Reviewed-by: Rich Salz (Merged from https://github.com/openssl/openssl/pull/5001) --- crypto/ec/ecp_nistz256.c | 99 ++++++++++++++++++++++++++++++++++------ 1 file changed, 85 insertions(+), 14 deletions(-) diff --git a/crypto/ec/ecp_nistz256.c b/crypto/ec/ecp_nistz256.c index 6bae3d1f82..08a7e849d7 100644 --- a/crypto/ec/ecp_nistz256.c +++ b/crypto/ec/ecp_nistz256.c @@ -1515,19 +1515,14 @@ static int ecp_nistz256_inv_mod_ord(const EC_GROUP *group, BIGNUM *r, BIGNUM *x, BN_CTX *ctx) { /* RR = 2^512 mod ord(p256) */ - static const BN_ULONG RR[P256_LIMBS] = { TOBN(0x83244c95,0xbe79eea2), - TOBN(0x4699799c,0x49bd6fa6), - TOBN(0x2845b239,0x2b6bec59), - TOBN(0x66e12d94,0xf3d95620) }; + static const BN_ULONG RR[P256_LIMBS] = { + TOBN(0x83244c95,0xbe79eea2), TOBN(0x4699799c,0x49bd6fa6), + TOBN(0x2845b239,0x2b6bec59), TOBN(0x66e12d94,0xf3d95620) + }; /* The constant 1 (unlike ONE that is one in Montgomery representation) */ - static const BN_ULONG one[P256_LIMBS] = { TOBN(0,1),TOBN(0,0), - TOBN(0,0),TOBN(0,0) }; - /* expLo - the low 128bit of the exponent we use (ord(p256) - 2), - * split into 4bit windows */ - static const unsigned char expLo[32] = { 0xb,0xc,0xe,0x6,0xf,0xa,0xa,0xd, - 0xa,0x7,0x1,0x7,0x9,0xe,0x8,0x4, - 0xf,0x3,0xb,0x9,0xc,0xa,0xc,0x2, - 0xf,0xc,0x6,0x3,0x2,0x5,0x4,0xf }; + static const BN_ULONG one[P256_LIMBS] = { + TOBN(0,1), TOBN(0,0), TOBN(0,0), TOBN(0,0) + }; /* * We don't use entry 0 in the table, so we omit it and address * with -1 offset. @@ -1561,6 +1556,10 @@ static int ecp_nistz256_inv_mod_ord(const EC_GROUP *group, BIGNUM *r, } ecp_nistz256_ord_mul_mont(table[0], t, RR); +#if 0 + /* + * Original sparse-then-fixed-window algorithm, retained for reference. + */ for (i = 2; i < 16; i += 2) { ecp_nistz256_ord_sqr_mont(table[i-1], table[i/2-1], 1); ecp_nistz256_ord_mul_mont(table[i], table[i-1], table[0]); @@ -1586,13 +1585,85 @@ static int ecp_nistz256_inv_mod_ord(const EC_GROUP *group, BIGNUM *r, ecp_nistz256_ord_mul_mont(out, out, t); /* ffffffff00000000ffffffffffffffff */ /* - * The bottom 128 bit of the exponent are easier done with a table + * The bottom 128 bit of the exponent are processed with fixed 4-bit window */ for(i = 0; i < 32; i++) { + /* expLo - the low 128 bits of the exponent we use (ord(p256) - 2), + * split into nibbles */ + static const unsigned char expLo[32] = { + 0xb,0xc,0xe,0x6,0xf,0xa,0xa,0xd,0xa,0x7,0x1,0x7,0x9,0xe,0x8,0x4, + 0xf,0x3,0xb,0x9,0xc,0xa,0xc,0x2,0xf,0xc,0x6,0x3,0x2,0x5,0x4,0xf + }; + ecp_nistz256_ord_sqr_mont(out, out, 4); /* The exponent is public, no need in constant-time access */ ecp_nistz256_ord_mul_mont(out, out, table[expLo[i]-1]); } +#else + /* + * https://briansmith.org/ecc-inversion-addition-chains-01#p256_scalar_inversion + * + * Even though this code path spares 12 squarings, 4.5%, and 13 + * multiplications, 25%, on grand scale sign operation is not that + * much faster, not more that 2%... + */ + enum { + i_1 = 0, i_10, i_11, i_101, i_111, i_1010, i_1111, + i_10101, i_101010, i_101111, i_x6, i_x8, i_x16, i_x32 + }; + + /* pre-calculate powers */ + ecp_nistz256_ord_sqr_mont(table[i_10], table[i_1], 1); + + ecp_nistz256_ord_mul_mont(table[i_11], table[i_1], table[i_10]); + + ecp_nistz256_ord_mul_mont(table[i_101], table[i_11], table[i_10]); + + ecp_nistz256_ord_mul_mont(table[i_111], table[i_101], table[i_10]); + + ecp_nistz256_ord_sqr_mont(table[i_1010], table[i_101], 1); + + ecp_nistz256_ord_mul_mont(table[i_1111], table[i_1010], table[i_101]); + + ecp_nistz256_ord_sqr_mont(table[i_10101], table[i_1010], 1); + ecp_nistz256_ord_mul_mont(table[i_10101], table[i_10101], table[i_1]); + + ecp_nistz256_ord_sqr_mont(table[i_101010], table[i_10101], 1); + + ecp_nistz256_ord_mul_mont(table[i_101111], table[i_101010], table[i_101]); + + ecp_nistz256_ord_mul_mont(table[i_x6], table[i_101010], table[i_10101]); + + ecp_nistz256_ord_sqr_mont(table[i_x8], table[i_x6], 2); + ecp_nistz256_ord_mul_mont(table[i_x8], table[i_x8], table[i_11]); + + ecp_nistz256_ord_sqr_mont(table[i_x16], table[i_x8], 8); + ecp_nistz256_ord_mul_mont(table[i_x16], table[i_x16], table[i_x8]); + + ecp_nistz256_ord_sqr_mont(table[i_x32], table[i_x16], 16); + ecp_nistz256_ord_mul_mont(table[i_x32], table[i_x32], table[i_x16]); + + /* calculations */ + ecp_nistz256_ord_sqr_mont(out, table[i_x32], 64); + ecp_nistz256_ord_mul_mont(out, out, table[i_x32]); + + for (i = 0; i < 27; i++) { + static const struct { unsigned char p, i; } chain[27] = { + { 32, i_x32 }, { 6, i_101111 }, { 5, i_111 }, + { 4, i_11 }, { 5, i_1111 }, { 5, i_10101 }, + { 4, i_101 }, { 3, i_101 }, { 3, i_101 }, + { 5, i_111 }, { 9, i_101111 }, { 6, i_1111 }, + { 2, i_1 }, { 5, i_1 }, { 6, i_1111 }, + { 5, i_111 }, { 4, i_111 }, { 5, i_111 }, + { 5, i_101 }, { 3, i_11 }, { 10, i_101111 }, + { 2, i_11 }, { 5, i_11 }, { 5, i_11 }, + { 3, i_1 }, { 7, i_10101 }, { 6, i_1111 } + }; + + ecp_nistz256_ord_sqr_mont(out, out, chain[i].p); + ecp_nistz256_ord_mul_mont(out, out, table[chain[i].i]); + } +#endif ecp_nistz256_ord_mul_mont(out, out, one); /* @@ -1659,7 +1730,7 @@ const EC_METHOD *EC_GFp_nistz256_method(void) 0, /* keycopy */ 0, /* keyfinish */ ecdh_simple_compute_key, - ecp_nistz256_inv_mod_ord /* can be #defined-ed NULL */ + ecp_nistz256_inv_mod_ord /* can be #define-d NULL */ }; return &ret;