Add AES consttime code for no-asm configurations

This adds optional constant time support for AES
when building openssl for no-asm.

Enable with: ./config no-asm -DOPENSSL_AES_CONST_TIME
Disable with: ./config no-asm -DOPENSSL_NO_AES_CONST_TIME

This is by default enabled.

[extended tests]

Reviewed-by: Paul Dale <pauli@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/10828)
This commit is contained in:
Bernd Edlinger 2020-01-09 23:02:54 +01:00
parent 3614d94d5f
commit 0051746e03
2 changed files with 632 additions and 1 deletions

View File

@ -50,7 +50,637 @@
#include <openssl/aes.h>
#include "aes_local.h"
#ifndef AES_ASM
#if !defined(OPENSSL_NO_AES_CONST_TIME) && !defined(AES_ASM)
typedef union {
unsigned char b[8];
u32 w[2];
u64 d;
} uni;
/*
* Compute w := (w * x) mod (x^8 + x^4 + x^3 + x^1 + 1)
* Therefore the name "xtime".
*/
static void XtimeWord(u32 *w)
{
u32 a, b;
a = *w;
b = a & 0x80808080u;
a ^= b;
b -= b >> 7;
b &= 0x1B1B1B1Bu;
b ^= a << 1;
*w = b;
}
static void XtimeLong(u64 *w)
{
u64 a, b;
a = *w;
b = a & 0x8080808080808080u;
a ^= b;
b -= b >> 7;
b &= 0x1B1B1B1B1B1B1B1Bu;
b ^= a << 1;
*w = b;
}
/*
* This computes w := S * w ^ -1 + c, where c = {01100011}.
* Instead of using GF(2^8) mod (x^8+x^4+x^3+x+1} we do the inversion
* in GF(GF(GF(2^2)^2)^2) mod (X^2+X+8)
* and GF(GF(2^2)^2) mod (X^2+X+2)
* and GF(2^2) mod (X^2+X+1)
* The first part of the algorithm below transfers the coordinates
* {0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80} =>
* {1,Y,Y^2,Y^3,Y^4,Y^5,Y^6,Y^7} with Y=0x41:
* {0x01,0x41,0x66,0x6c,0x56,0x9a,0x58,0xc4}
* The last part undoes the coordinate transfer and the final affine
* transformation S:
* b[i] = b[i] + b[(i+4)%8] + b[(i+5)%8] + b[(i+6)%8] + b[(i+7)%8] + c[i]
* in one step.
* The multiplication in GF(2^2^2^2) is done in ordinary coords:
* A = (a0*1 + a1*x^4)
* B = (b0*1 + b1*x^4)
* AB = ((a0*b0 + 8*a1*b1)*1 + (a1*b0 + (a0+a1)*b1)*x^4)
* When A = (a0,a1) is given we want to solve AB = 1:
* (a) 1 = a0*b0 + 8*a1*b1
* (b) 0 = a1*b0 + (a0+a1)*b1
* => multiply (a) by a1 and (b) by a0
* (c) a1 = a1*a0*b0 + (8*a1*a1)*b1
* (d) 0 = a1*a0*b0 + (a0*a0+a1*a0)*b1
* => add (c) + (d)
* (e) a1 = (a0*a0 + a1*a0 + 8*a1*a1)*b1
* => therefore
* b1 = (a0*a0 + a1*a0 + 8*a1*a1)^-1 * a1
* => and adding (a1*b0) to (b) we get
* (f) a1*b0 = (a0+a1)*b1
* => therefore
* b0 = (a0*a0 + a1*a0 + 8*a1*a1)^-1 * (a0+a1)
* Note this formula also works for the case
* (a0+a1)*a0 + 8*a1*a1 = 0
* if the inverse element for 0^-1 is mapped to 0.
* Repeat the same for GF(2^2^2) and GF(2^2).
* We get the following algorithm:
* inv8(a0,a1):
* x0 = a0^a1
* [y0,y1] = mul4([x0,a1],[a0,a1]); (*)
* y1 = mul4(8,y1);
* t = inv4(y0^y1);
* [b0,b1] = mul4([x0,a1],[t,t]); (*)
* return [b0,b1];
* The non-linear multiplies (*) can be done in parallel at no extra cost.
*/
static void SubWord(u32 *w)
{
u32 x, y, a1, a2, a3, a4, a5, a6;
x = *w;
y = ((x & 0xFEFEFEFEu) >> 1) | ((x & 0x01010101u) << 7);
x &= 0xDDDDDDDDu;
x ^= y & 0x57575757u;
y = ((y & 0xFEFEFEFEu) >> 1) | ((y & 0x01010101u) << 7);
x ^= y & 0x1C1C1C1Cu;
y = ((y & 0xFEFEFEFEu) >> 1) | ((y & 0x01010101u) << 7);
x ^= y & 0x4A4A4A4Au;
y = ((y & 0xFEFEFEFEu) >> 1) | ((y & 0x01010101u) << 7);
x ^= y & 0x42424242u;
y = ((y & 0xFEFEFEFEu) >> 1) | ((y & 0x01010101u) << 7);
x ^= y & 0x64646464u;
y = ((y & 0xFEFEFEFEu) >> 1) | ((y & 0x01010101u) << 7);
x ^= y & 0xE0E0E0E0u;
a1 = x;
a1 ^= (x & 0xF0F0F0F0u) >> 4;
a2 = ((x & 0xCCCCCCCCu) >> 2) | ((x & 0x33333333u) << 2);
a3 = x & a1;
a3 ^= (a3 & 0xAAAAAAAAu) >> 1;
a3 ^= (((x << 1) & a1) ^ ((a1 << 1) & x)) & 0xAAAAAAAAu;
a4 = a2 & a1;
a4 ^= (a4 & 0xAAAAAAAAu) >> 1;
a4 ^= (((a2 << 1) & a1) ^ ((a1 << 1) & a2)) & 0xAAAAAAAAu;
a5 = (a3 & 0xCCCCCCCCu) >> 2;
a3 ^= ((a4 << 2) ^ a4) & 0xCCCCCCCCu;
a4 = a5 & 0x22222222u;
a4 |= a4 >> 1;
a4 ^= (a5 << 1) & 0x22222222u;
a3 ^= a4;
a5 = a3 & 0xA0A0A0A0u;
a5 |= a5 >> 1;
a5 ^= (a3 << 1) & 0xA0A0A0A0u;
a4 = a5 & 0xC0C0C0C0u;
a6 = a4 >> 2;
a4 ^= (a5 << 2) & 0xC0C0C0C0u;
a5 = a6 & 0x20202020u;
a5 |= a5 >> 1;
a5 ^= (a6 << 1) & 0x20202020u;
a4 |= a5;
a3 ^= a4 >> 4;
a3 &= 0x0F0F0F0Fu;
a2 = a3;
a2 ^= (a3 & 0x0C0C0C0Cu) >> 2;
a4 = a3 & a2;
a4 ^= (a4 & 0x0A0A0A0A0Au) >> 1;
a4 ^= (((a3 << 1) & a2) ^ ((a2 << 1) & a3)) & 0x0A0A0A0Au;
a5 = a4 & 0x08080808u;
a5 |= a5 >> 1;
a5 ^= (a4 << 1) & 0x08080808u;
a4 ^= a5 >> 2;
a4 &= 0x03030303u;
a4 ^= (a4 & 0x02020202u) >> 1;
a4 |= a4 << 2;
a3 = a2 & a4;
a3 ^= (a3 & 0x0A0A0A0Au) >> 1;
a3 ^= (((a2 << 1) & a4) ^ ((a4 << 1) & a2)) & 0x0A0A0A0Au;
a3 |= a3 << 4;
a2 = ((a1 & 0xCCCCCCCCu) >> 2) | ((a1 & 0x33333333u) << 2);
x = a1 & a3;
x ^= (x & 0xAAAAAAAAu) >> 1;
x ^= (((a1 << 1) & a3) ^ ((a3 << 1) & a1)) & 0xAAAAAAAAu;
a4 = a2 & a3;
a4 ^= (a4 & 0xAAAAAAAAu) >> 1;
a4 ^= (((a2 << 1) & a3) ^ ((a3 << 1) & a2)) & 0xAAAAAAAAu;
a5 = (x & 0xCCCCCCCCu) >> 2;
x ^= ((a4 << 2) ^ a4) & 0xCCCCCCCCu;
a4 = a5 & 0x22222222u;
a4 |= a4 >> 1;
a4 ^= (a5 << 1) & 0x22222222u;
x ^= a4;
y = ((x & 0xFEFEFEFEu) >> 1) | ((x & 0x01010101u) << 7);
x &= 0x39393939u;
x ^= y & 0x3F3F3F3Fu;
y = ((y & 0xFCFCFCFCu) >> 2) | ((y & 0x03030303u) << 6);
x ^= y & 0x97979797u;
y = ((y & 0xFEFEFEFEu) >> 1) | ((y & 0x01010101u) << 7);
x ^= y & 0x9B9B9B9Bu;
y = ((y & 0xFEFEFEFEu) >> 1) | ((y & 0x01010101u) << 7);
x ^= y & 0x3C3C3C3Cu;
y = ((y & 0xFEFEFEFEu) >> 1) | ((y & 0x01010101u) << 7);
x ^= y & 0xDDDDDDDDu;
y = ((y & 0xFEFEFEFEu) >> 1) | ((y & 0x01010101u) << 7);
x ^= y & 0x72727272u;
x ^= 0x63636363u;
*w = x;
}
static void SubLong(u64 *w)
{
u64 x, y, a1, a2, a3, a4, a5, a6;
x = *w;
y = ((x & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((x & 0x0101010101010101u) << 7);
x &= 0xDDDDDDDDDDDDDDDDu;
x ^= y & 0x5757575757575757u;
y = ((y & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((y & 0x0101010101010101u) << 7);
x ^= y & 0x1C1C1C1C1C1C1C1Cu;
y = ((y & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((y & 0x0101010101010101u) << 7);
x ^= y & 0x4A4A4A4A4A4A4A4Au;
y = ((y & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((y & 0x0101010101010101u) << 7);
x ^= y & 0x4242424242424242u;
y = ((y & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((y & 0x0101010101010101u) << 7);
x ^= y & 0x6464646464646464u;
y = ((y & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((y & 0x0101010101010101u) << 7);
x ^= y & 0xE0E0E0E0E0E0E0E0u;
a1 = x;
a1 ^= (x & 0xF0F0F0F0F0F0F0F0u) >> 4;
a2 = ((x & 0xCCCCCCCCCCCCCCCCu) >> 2) | ((x & 0x3333333333333333u) << 2);
a3 = x & a1;
a3 ^= (a3 & 0xAAAAAAAAAAAAAAAAu) >> 1;
a3 ^= (((x << 1) & a1) ^ ((a1 << 1) & x)) & 0xAAAAAAAAAAAAAAAAu;
a4 = a2 & a1;
a4 ^= (a4 & 0xAAAAAAAAAAAAAAAAu) >> 1;
a4 ^= (((a2 << 1) & a1) ^ ((a1 << 1) & a2)) & 0xAAAAAAAAAAAAAAAAu;
a5 = (a3 & 0xCCCCCCCCCCCCCCCCu) >> 2;
a3 ^= ((a4 << 2) ^ a4) & 0xCCCCCCCCCCCCCCCCu;
a4 = a5 & 0x2222222222222222u;
a4 |= a4 >> 1;
a4 ^= (a5 << 1) & 0x2222222222222222u;
a3 ^= a4;
a5 = a3 & 0xA0A0A0A0A0A0A0A0u;
a5 |= a5 >> 1;
a5 ^= (a3 << 1) & 0xA0A0A0A0A0A0A0A0u;
a4 = a5 & 0xC0C0C0C0C0C0C0C0u;
a6 = a4 >> 2;
a4 ^= (a5 << 2) & 0xC0C0C0C0C0C0C0C0u;
a5 = a6 & 0x2020202020202020u;
a5 |= a5 >> 1;
a5 ^= (a6 << 1) & 0x2020202020202020u;
a4 |= a5;
a3 ^= a4 >> 4;
a3 &= 0x0F0F0F0F0F0F0F0Fu;
a2 = a3;
a2 ^= (a3 & 0x0C0C0C0C0C0C0C0Cu) >> 2;
a4 = a3 & a2;
a4 ^= (a4 & 0x0A0A0A0A0A0A0A0Au) >> 1;
a4 ^= (((a3 << 1) & a2) ^ ((a2 << 1) & a3)) & 0x0A0A0A0A0A0A0A0Au;
a5 = a4 & 0x0808080808080808u;
a5 |= a5 >> 1;
a5 ^= (a4 << 1) & 0x0808080808080808u;
a4 ^= a5 >> 2;
a4 &= 0x0303030303030303u;
a4 ^= (a4 & 0x0202020202020202u) >> 1;
a4 |= a4 << 2;
a3 = a2 & a4;
a3 ^= (a3 & 0x0A0A0A0A0A0A0A0Au) >> 1;
a3 ^= (((a2 << 1) & a4) ^ ((a4 << 1) & a2)) & 0x0A0A0A0A0A0A0A0Au;
a3 |= a3 << 4;
a2 = ((a1 & 0xCCCCCCCCCCCCCCCCu) >> 2) | ((a1 & 0x3333333333333333u) << 2);
x = a1 & a3;
x ^= (x & 0xAAAAAAAAAAAAAAAAu) >> 1;
x ^= (((a1 << 1) & a3) ^ ((a3 << 1) & a1)) & 0xAAAAAAAAAAAAAAAAu;
a4 = a2 & a3;
a4 ^= (a4 & 0xAAAAAAAAAAAAAAAAu) >> 1;
a4 ^= (((a2 << 1) & a3) ^ ((a3 << 1) & a2)) & 0xAAAAAAAAAAAAAAAAu;
a5 = (x & 0xCCCCCCCCCCCCCCCCu) >> 2;
x ^= ((a4 << 2) ^ a4) & 0xCCCCCCCCCCCCCCCCu;
a4 = a5 & 0x2222222222222222u;
a4 |= a4 >> 1;
a4 ^= (a5 << 1) & 0x2222222222222222u;
x ^= a4;
y = ((x & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((x & 0x0101010101010101u) << 7);
x &= 0x3939393939393939u;
x ^= y & 0x3F3F3F3F3F3F3F3Fu;
y = ((y & 0xFCFCFCFCFCFCFCFCu) >> 2) | ((y & 0x0303030303030303u) << 6);
x ^= y & 0x9797979797979797u;
y = ((y & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((y & 0x0101010101010101u) << 7);
x ^= y & 0x9B9B9B9B9B9B9B9Bu;
y = ((y & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((y & 0x0101010101010101u) << 7);
x ^= y & 0x3C3C3C3C3C3C3C3Cu;
y = ((y & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((y & 0x0101010101010101u) << 7);
x ^= y & 0xDDDDDDDDDDDDDDDDu;
y = ((y & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((y & 0x0101010101010101u) << 7);
x ^= y & 0x7272727272727272u;
x ^= 0x6363636363636363u;
*w = x;
}
/*
* This computes w := (S^-1 * (w + c))^-1
*/
static void InvSubLong(u64 *w)
{
u64 x, y, a1, a2, a3, a4, a5, a6;
x = *w;
x ^= 0x6363636363636363u;
y = ((x & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((x & 0x0101010101010101u) << 7);
x &= 0xFDFDFDFDFDFDFDFDu;
x ^= y & 0x5E5E5E5E5E5E5E5Eu;
y = ((y & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((y & 0x0101010101010101u) << 7);
x ^= y & 0xF3F3F3F3F3F3F3F3u;
y = ((y & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((y & 0x0101010101010101u) << 7);
x ^= y & 0xF5F5F5F5F5F5F5F5u;
y = ((y & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((y & 0x0101010101010101u) << 7);
x ^= y & 0x7878787878787878u;
y = ((y & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((y & 0x0101010101010101u) << 7);
x ^= y & 0x7777777777777777u;
y = ((y & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((y & 0x0101010101010101u) << 7);
x ^= y & 0x1515151515151515u;
y = ((y & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((y & 0x0101010101010101u) << 7);
x ^= y & 0xA5A5A5A5A5A5A5A5u;
a1 = x;
a1 ^= (x & 0xF0F0F0F0F0F0F0F0u) >> 4;
a2 = ((x & 0xCCCCCCCCCCCCCCCCu) >> 2) | ((x & 0x3333333333333333u) << 2);
a3 = x & a1;
a3 ^= (a3 & 0xAAAAAAAAAAAAAAAAu) >> 1;
a3 ^= (((x << 1) & a1) ^ ((a1 << 1) & x)) & 0xAAAAAAAAAAAAAAAAu;
a4 = a2 & a1;
a4 ^= (a4 & 0xAAAAAAAAAAAAAAAAu) >> 1;
a4 ^= (((a2 << 1) & a1) ^ ((a1 << 1) & a2)) & 0xAAAAAAAAAAAAAAAAu;
a5 = (a3 & 0xCCCCCCCCCCCCCCCCu) >> 2;
a3 ^= ((a4 << 2) ^ a4) & 0xCCCCCCCCCCCCCCCCu;
a4 = a5 & 0x2222222222222222u;
a4 |= a4 >> 1;
a4 ^= (a5 << 1) & 0x2222222222222222u;
a3 ^= a4;
a5 = a3 & 0xA0A0A0A0A0A0A0A0u;
a5 |= a5 >> 1;
a5 ^= (a3 << 1) & 0xA0A0A0A0A0A0A0A0u;
a4 = a5 & 0xC0C0C0C0C0C0C0C0u;
a6 = a4 >> 2;
a4 ^= (a5 << 2) & 0xC0C0C0C0C0C0C0C0u;
a5 = a6 & 0x2020202020202020u;
a5 |= a5 >> 1;
a5 ^= (a6 << 1) & 0x2020202020202020u;
a4 |= a5;
a3 ^= a4 >> 4;
a3 &= 0x0F0F0F0F0F0F0F0Fu;
a2 = a3;
a2 ^= (a3 & 0x0C0C0C0C0C0C0C0Cu) >> 2;
a4 = a3 & a2;
a4 ^= (a4 & 0x0A0A0A0A0A0A0A0Au) >> 1;
a4 ^= (((a3 << 1) & a2) ^ ((a2 << 1) & a3)) & 0x0A0A0A0A0A0A0A0Au;
a5 = a4 & 0x0808080808080808u;
a5 |= a5 >> 1;
a5 ^= (a4 << 1) & 0x0808080808080808u;
a4 ^= a5 >> 2;
a4 &= 0x0303030303030303u;
a4 ^= (a4 & 0x0202020202020202u) >> 1;
a4 |= a4 << 2;
a3 = a2 & a4;
a3 ^= (a3 & 0x0A0A0A0A0A0A0A0Au) >> 1;
a3 ^= (((a2 << 1) & a4) ^ ((a4 << 1) & a2)) & 0x0A0A0A0A0A0A0A0Au;
a3 |= a3 << 4;
a2 = ((a1 & 0xCCCCCCCCCCCCCCCCu) >> 2) | ((a1 & 0x3333333333333333u) << 2);
x = a1 & a3;
x ^= (x & 0xAAAAAAAAAAAAAAAAu) >> 1;
x ^= (((a1 << 1) & a3) ^ ((a3 << 1) & a1)) & 0xAAAAAAAAAAAAAAAAu;
a4 = a2 & a3;
a4 ^= (a4 & 0xAAAAAAAAAAAAAAAAu) >> 1;
a4 ^= (((a2 << 1) & a3) ^ ((a3 << 1) & a2)) & 0xAAAAAAAAAAAAAAAAu;
a5 = (x & 0xCCCCCCCCCCCCCCCCu) >> 2;
x ^= ((a4 << 2) ^ a4) & 0xCCCCCCCCCCCCCCCCu;
a4 = a5 & 0x2222222222222222u;
a4 |= a4 >> 1;
a4 ^= (a5 << 1) & 0x2222222222222222u;
x ^= a4;
y = ((x & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((x & 0x0101010101010101u) << 7);
x &= 0xB5B5B5B5B5B5B5B5u;
x ^= y & 0x4040404040404040u;
y = ((y & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((y & 0x0101010101010101u) << 7);
x ^= y & 0x8080808080808080u;
y = ((y & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((y & 0x0101010101010101u) << 7);
x ^= y & 0x1616161616161616u;
y = ((y & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((y & 0x0101010101010101u) << 7);
x ^= y & 0xEBEBEBEBEBEBEBEBu;
y = ((y & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((y & 0x0101010101010101u) << 7);
x ^= y & 0x9797979797979797u;
y = ((y & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((y & 0x0101010101010101u) << 7);
x ^= y & 0xFBFBFBFBFBFBFBFBu;
y = ((y & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((y & 0x0101010101010101u) << 7);
x ^= y & 0x7D7D7D7D7D7D7D7Du;
*w = x;
}
static void ShiftRows(u64 *state)
{
unsigned char s[4];
unsigned char *s0;
int r;
s0 = (unsigned char *)state;
for (r = 0; r < 4; r++) {
s[0] = s0[0*4 + r];
s[1] = s0[1*4 + r];
s[2] = s0[2*4 + r];
s[3] = s0[3*4 + r];
s0[0*4 + r] = s[(r+0) % 4];
s0[1*4 + r] = s[(r+1) % 4];
s0[2*4 + r] = s[(r+2) % 4];
s0[3*4 + r] = s[(r+3) % 4];
}
}
static void InvShiftRows(u64 *state)
{
unsigned char s[4];
unsigned char *s0;
int r;
s0 = (unsigned char *)state;
for (r = 0; r < 4; r++) {
s[0] = s0[0*4 + r];
s[1] = s0[1*4 + r];
s[2] = s0[2*4 + r];
s[3] = s0[3*4 + r];
s0[0*4 + r] = s[(4-r) % 4];
s0[1*4 + r] = s[(5-r) % 4];
s0[2*4 + r] = s[(6-r) % 4];
s0[3*4 + r] = s[(7-r) % 4];
}
}
static void MixColumns(u64 *state)
{
uni s1;
uni s;
int c;
for (c = 0; c < 2; c++) {
s1.d = state[c];
s.d = s1.d;
s.d ^= ((s.d & 0xFFFF0000FFFF0000u) >> 16)
| ((s.d & 0x0000FFFF0000FFFFu) << 16);
s.d ^= ((s.d & 0xFF00FF00FF00FF00u) >> 8)
| ((s.d & 0x00FF00FF00FF00FFu) << 8);
s.d ^= s1.d;
XtimeLong(&s1.d);
s.d ^= s1.d;
s.b[0] ^= s1.b[1];
s.b[1] ^= s1.b[2];
s.b[2] ^= s1.b[3];
s.b[3] ^= s1.b[0];
s.b[4] ^= s1.b[5];
s.b[5] ^= s1.b[6];
s.b[6] ^= s1.b[7];
s.b[7] ^= s1.b[4];
state[c] = s.d;
}
}
static void InvMixColumns(u64 *state)
{
uni s1;
uni s;
int c;
for (c = 0; c < 2; c++) {
s1.d = state[c];
s.d = s1.d;
s.d ^= ((s.d & 0xFFFF0000FFFF0000u) >> 16)
| ((s.d & 0x0000FFFF0000FFFFu) << 16);
s.d ^= ((s.d & 0xFF00FF00FF00FF00u) >> 8)
| ((s.d & 0x00FF00FF00FF00FFu) << 8);
s.d ^= s1.d;
XtimeLong(&s1.d);
s.d ^= s1.d;
s.b[0] ^= s1.b[1];
s.b[1] ^= s1.b[2];
s.b[2] ^= s1.b[3];
s.b[3] ^= s1.b[0];
s.b[4] ^= s1.b[5];
s.b[5] ^= s1.b[6];
s.b[6] ^= s1.b[7];
s.b[7] ^= s1.b[4];
XtimeLong(&s1.d);
s1.d ^= ((s1.d & 0xFFFF0000FFFF0000u) >> 16)
| ((s1.d & 0x0000FFFF0000FFFFu) << 16);
s.d ^= s1.d;
XtimeLong(&s1.d);
s1.d ^= ((s1.d & 0xFF00FF00FF00FF00u) >> 8)
| ((s1.d & 0x00FF00FF00FF00FFu) << 8);
s.d ^= s1.d;
state[c] = s.d;
}
}
static void AddRoundKey(u64 *state, const u64 *w)
{
state[0] ^= w[0];
state[1] ^= w[1];
}
static void Cipher(const unsigned char *in, unsigned char *out,
const u64 *w, int nr)
{
u64 state[2];
int i;
memcpy(state, in, 16);
AddRoundKey(state, w);
for (i = 1; i < nr; i++) {
SubLong(&state[0]);
SubLong(&state[1]);
ShiftRows(state);
MixColumns(state);
AddRoundKey(state, w + i*2);
}
SubLong(&state[0]);
SubLong(&state[1]);
ShiftRows(state);
AddRoundKey(state, w + nr*2);
memcpy(out, state, 16);
}
static void InvCipher(const unsigned char *in, unsigned char *out,
const u64 *w, int nr)
{
u64 state[2];
int i;
memcpy(state, in, 16);
AddRoundKey(state, w + nr*2);
for (i = nr - 1; i > 0; i--) {
InvShiftRows(state);
InvSubLong(&state[0]);
InvSubLong(&state[1]);
AddRoundKey(state, w + i*2);
InvMixColumns(state);
}
InvShiftRows(state);
InvSubLong(&state[0]);
InvSubLong(&state[1]);
AddRoundKey(state, w);
memcpy(out, state, 16);
}
static void RotWord(u32 *x)
{
unsigned char *w0;
unsigned char tmp;
w0 = (unsigned char *)x;
tmp = w0[0];
w0[0] = w0[1];
w0[1] = w0[2];
w0[2] = w0[3];
w0[3] = tmp;
}
static void KeyExpansion(const unsigned char *key, u64 *w,
int nr, int nk)
{
u32 rcon;
uni prev;
u32 temp;
int i, n;
memcpy(w, key, nk*4);
memcpy(&rcon, "\1\0\0\0", 4);
n = nk/2;
prev.d = w[n-1];
for (i = n; i < (nr+1)*2; i++) {
temp = prev.w[1];
if (i % n == 0) {
RotWord(&temp);
SubWord(&temp);
temp ^= rcon;
XtimeWord(&rcon);
} else if (nk > 6 && i % n == 2) {
SubWord(&temp);
}
prev.d = w[i-n];
prev.w[0] ^= temp;
prev.w[1] ^= prev.w[0];
w[i] = prev.d;
}
}
/**
* Expand the cipher key into the encryption key schedule.
*/
int AES_set_encrypt_key(const unsigned char *userKey, const int bits,
AES_KEY *key)
{
u64 *rk;
if (!userKey || !key)
return -1;
if (bits != 128 && bits != 192 && bits != 256)
return -2;
rk = (u64*)key->rd_key;
if (bits == 128)
key->rounds = 10;
else if (bits == 192)
key->rounds = 12;
else
key->rounds = 14;
KeyExpansion(userKey, rk, key->rounds, bits/32);
return 0;
}
/**
* Expand the cipher key into the decryption key schedule.
*/
int AES_set_decrypt_key(const unsigned char *userKey, const int bits,
AES_KEY *key)
{
return AES_set_encrypt_key(userKey, bits, key);
}
/*
* Encrypt a single block
* in and out can overlap
*/
void AES_encrypt(const unsigned char *in, unsigned char *out,
const AES_KEY *key)
{
const u64 *rk;
assert(in && out && key);
rk = (u64*)key->rd_key;
Cipher(in, out, rk, key->rounds);
}
/*
* Decrypt a single block
* in and out can overlap
*/
void AES_decrypt(const unsigned char *in, unsigned char *out,
const AES_KEY *key)
{
const u64 *rk;
assert(in && out && key);
rk = (u64*)key->rd_key;
InvCipher(in, out, rk, key->rounds);
}
#elif !defined(AES_ASM)
/*-
Te0[x] = S [x].[02, 01, 01, 03];
Te1[x] = S [x].[03, 02, 01, 01];

View File

@ -24,6 +24,7 @@
# define PUTU32(ct, st) { (ct)[0] = (u8)((st) >> 24); (ct)[1] = (u8)((st) >> 16); (ct)[2] = (u8)((st) >> 8); (ct)[3] = (u8)(st); }
# endif
typedef uint64_t u64;
# ifdef AES_LONG
typedef unsigned long u32;
# else