openssl/ssl/quic/quic_impl.c

1290 lines
37 KiB
C
Raw Normal View History

/*
* Copyright 2022 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <openssl/macros.h>
#include <openssl/objects.h>
#include <openssl/sslerr.h>
#include <crypto/rand.h>
#include "quic_local.h"
#include "internal/quic_tls.h"
#include "internal/quic_rx_depack.h"
#include "internal/quic_error.h"
#include "internal/time.h"
static void aon_write_finish(QUIC_CONNECTION *qc);
static int ensure_channel(QUIC_CONNECTION *qc);
/*
* QUIC Front-End I/O API: Common Utilities
* ========================================
*/
/*
* Block until a predicate is met.
*
* Precondition: Must have a channel.
*/
static int block_until_pred(QUIC_CONNECTION *qc,
int (*pred)(void *arg), void *pred_arg,
uint32_t flags)
{
QUIC_REACTOR *rtor;
assert(qc->ch != NULL);
rtor = ossl_quic_channel_get_reactor(qc->ch);
return ossl_quic_reactor_block_until_pred(rtor, pred, pred_arg, flags);
}
/*
* Raise a 'normal' error, meaning one that can be reported via SSL_get_error()
* rather than via ERR.
*/
static int quic_raise_normal_error(QUIC_CONNECTION *qc,
int err)
{
qc->last_error = err;
return 0;
}
/*
* Raise a 'non-normal' error, meaning any error that is not reported via
* SSL_get_error() and must be reported via ERR.
*/
static int quic_raise_non_normal_error(QUIC_CONNECTION *qc,
const char *file,
int line,
const char *func,
int reason,
const char *fmt,
...)
{
va_list args;
ERR_new();
ERR_set_debug(file, line, func);
va_start(args, fmt);
ERR_vset_error(ERR_LIB_SSL, reason, fmt, args);
va_end(args);
qc->last_error = SSL_ERROR_SSL;
return 0;
}
#define QUIC_RAISE_NORMAL_ERROR(qc, err) \
quic_raise_normal_error((qc), (err))
#define QUIC_RAISE_NON_NORMAL_ERROR(qc, reason, msg) \
quic_raise_non_normal_error((qc), \
OPENSSL_FILE, OPENSSL_LINE, \
OPENSSL_FUNC, \
(reason), \
(msg))
/*
* Should be called at entry of every public function to confirm we have a valid
* QUIC_CONNECTION.
*/
static ossl_inline int expect_quic_conn(const QUIC_CONNECTION *qc)
{
if (!ossl_assert(qc != NULL))
return QUIC_RAISE_NON_NORMAL_ERROR(NULL, ERR_R_INTERNAL_ERROR, NULL);
return 1;
}
/*
* QUIC Front-End I/O API: Initialization
* ======================================
*
* SSL_new => ossl_quic_new
* ossl_quic_init
* SSL_reset => ossl_quic_reset
* SSL_clear => ossl_quic_clear
* ossl_quic_deinit
* SSL_free => ossl_quic_free
*
*/
/* SSL_new */
SSL *ossl_quic_new(SSL_CTX *ctx)
{
QUIC_CONNECTION *qc = NULL;
SSL *ssl_base = NULL;
SSL_CONNECTION *sc = NULL;
qc = OPENSSL_zalloc(sizeof(*qc));
if (qc == NULL)
goto err;
/* Initialise the QUIC_CONNECTION's stub header. */
ssl_base = &qc->ssl;
if (!ossl_ssl_init(ssl_base, ctx, ctx->method, SSL_TYPE_QUIC_CONNECTION)) {
ssl_base = NULL;
goto err;
}
qc->tls = ossl_ssl_connection_new_int(ctx, TLS_method());
if (qc->tls == NULL || (sc = SSL_CONNECTION_FROM_SSL(qc->tls)) == NULL)
goto err;
/* Channel is not created yet. */
qc->ssl_mode = qc->ssl.ctx->mode;
qc->last_error = SSL_ERROR_NONE;
qc->blocking = 1;
return ssl_base;
err:
OPENSSL_free(qc);
return NULL;
}
/* SSL_free */
void ossl_quic_free(SSL *s)
{
QUIC_CONNECTION *qc = QUIC_CONNECTION_FROM_SSL(s);
/* We should never be called on anything but a QUIC_CONNECTION. */
if (!expect_quic_conn(qc))
return;
ossl_quic_channel_free(qc->ch);
BIO_free(qc->net_rbio);
BIO_free(qc->net_wbio);
/* Note: SSL_free calls OPENSSL_free(qc) for us */
SSL_free(qc->tls);
}
/* SSL method init */
int ossl_quic_init(SSL *s)
{
QUIC_CONNECTION *qc = QUIC_CONNECTION_FROM_SSL(s);
if (!expect_quic_conn(qc))
return 0;
/* Same op as SSL_clear, forward the call. */
return ossl_quic_clear(s);
}
/* SSL method deinit */
void ossl_quic_deinit(SSL *s)
{
/* No-op. */
}
/* SSL_reset */
int ossl_quic_reset(SSL *s)
{
QUIC_CONNECTION *qc = QUIC_CONNECTION_FROM_SSL(s);
if (!expect_quic_conn(qc))
return 0;
/* TODO(QUIC); Currently a no-op. */
return 1;
}
/* SSL_clear */
int ossl_quic_clear(SSL *s)
{
QUIC_CONNECTION *qc = QUIC_CONNECTION_FROM_SSL(s);
if (!expect_quic_conn(qc))
return 0;
/* TODO(QUIC): Currently a no-op. */
return 1;
}
/*
* QUIC Front-End I/O API: Network BIO Configuration
* =================================================
*
* Handling the different BIOs is difficult:
*
* - It is more or less a requirement that we use non-blocking network I/O;
* we need to be able to have timeouts on recv() calls, and make best effort
* (non blocking) send() and recv() calls.
*
* The only sensible way to do this is to configure the socket into
* non-blocking mode. We could try to do select() before calling send() or
* recv() to get a guarantee that the call will not block, but this will
* probably run into issues with buggy OSes which generate spurious socket
* readiness events. In any case, relying on this to work reliably does not
* seem sane.
*
* Timeouts could be handled via setsockopt() socket timeout options, but
* this depends on OS support and adds another syscall to every network I/O
* operation. It also has obvious thread safety concerns if we want to move
* to concurrent use of a single socket at some later date.
*
* Some OSes support a MSG_DONTWAIT flag which allows a single I/O option to
* be made non-blocking. However some OSes (e.g. Windows) do not support
* this, so we cannot rely on this.
*
* As such, we need to configure any FD in non-blocking mode. This may
* confound users who pass a blocking socket to libssl. However, in practice
* it would be extremely strange for a user of QUIC to pass an FD to us,
* then also try and send receive traffic on the same socket(!). Thus the
* impact of this should be limited, and can be documented.
*
* - We support both blocking and non-blocking operation in terms of the API
* presented to the user. One prospect is to set the blocking mode based on
* whether the socket passed to us was already in blocking mode. However,
* Windows has no API for determining if a socket is in blocking mode (!),
* therefore this cannot be done portably. Currently therefore we expose an
* explicit API call to set this, and default to blocking mode.
*
* - We need to determine our initial destination UDP address. The "natural"
* way for a user to do this is to set the peer variable on a BIO_dgram.
* However, this has problems because BIO_dgram's peer variable is used for
* both transmission and reception. This means it can be constantly being
* changed to a malicious value (e.g. if some random unrelated entity on the
* network starts sending traffic to us) on every read call. This is not a
* direct issue because we use the 'stateless' BIO_sendmmsg and BIO_recvmmsg
* calls only, which do not use this variable. However, we do need to let
* the user specify the peer in a 'normal' manner. The compromise here is
* that we grab the current peer value set at the time the write BIO is set
* and do not read the value again.
*
* - We also need to support memory BIOs (e.g. BIO_dgram_pair) or custom BIOs.
* Currently we do this by only supporting non-blocking mode.
*
*/
/*
* Determines what initial destination UDP address we should use, if possible.
* If this fails the client must set the destination address manually, or use a
* BIO which does not need a destination address.
*/
static int csm_analyse_init_peer_addr(BIO *net_wbio, BIO_ADDR *peer)
{
if (BIO_dgram_get_peer(net_wbio, peer) <= 0)
return 0;
return 1;
}
void ossl_quic_conn_set0_net_rbio(QUIC_CONNECTION *qc, BIO *net_rbio)
{
if (qc->net_rbio == net_rbio)
return;
if (qc->ch != NULL && !ossl_quic_channel_set_net_rbio(qc->ch, net_rbio))
return;
BIO_free(qc->net_rbio);
qc->net_rbio = net_rbio;
/*
* If what we have is not pollable (e.g. a BIO_dgram_pair) disable blocking
* mode as we do not support it for non-pollable BIOs.
*/
if (net_rbio != NULL) {
BIO_POLL_DESCRIPTOR d = {0};
if (!BIO_get_rpoll_descriptor(net_rbio, &d)
|| d.type != BIO_POLL_DESCRIPTOR_TYPE_SOCK_FD) {
qc->blocking = 0;
qc->can_poll_net_rbio = 0;
} else {
qc->can_poll_net_rbio = 1;
}
}
}
void ossl_quic_conn_set0_net_wbio(QUIC_CONNECTION *qc, BIO *net_wbio)
{
if (qc->net_wbio == net_wbio)
return;
if (qc->ch != NULL && !ossl_quic_channel_set_net_wbio(qc->ch, net_wbio))
return;
BIO_free(qc->net_wbio);
qc->net_wbio = net_wbio;
if (net_wbio != NULL) {
BIO_POLL_DESCRIPTOR d = {0};
if (!BIO_get_wpoll_descriptor(net_wbio, &d)
|| d.type != BIO_POLL_DESCRIPTOR_TYPE_SOCK_FD) {
qc->blocking = 0;
qc->can_poll_net_wbio = 0;
} else {
qc->can_poll_net_wbio = 1;
}
/*
* If we do not have a peer address yet, and we have not started trying
* to connect yet, try to autodetect one.
*/
if (BIO_ADDR_family(&qc->init_peer_addr) == AF_UNSPEC
&& !qc->started) {
if (!csm_analyse_init_peer_addr(net_wbio, &qc->init_peer_addr))
/* best effort */
BIO_ADDR_clear(&qc->init_peer_addr);
if (qc->ch != NULL)
ossl_quic_channel_set_peer_addr(qc->ch, &qc->init_peer_addr);
}
}
}
BIO *ossl_quic_conn_get_net_rbio(const QUIC_CONNECTION *qc)
{
return qc->net_rbio;
}
BIO *ossl_quic_conn_get_net_wbio(const QUIC_CONNECTION *qc)
{
return qc->net_wbio;
}
int ossl_quic_conn_get_blocking_mode(const QUIC_CONNECTION *qc)
{
return qc->blocking;
}
int ossl_quic_conn_set_blocking_mode(QUIC_CONNECTION *qc, int blocking)
{
/* Cannot enable blocking mode if we do not have pollable FDs. */
if (blocking != 0 &&
(!qc->can_poll_net_rbio || !qc->can_poll_net_wbio))
return QUIC_RAISE_NON_NORMAL_ERROR(qc, ERR_R_UNSUPPORTED, NULL);
qc->blocking = (blocking != 0);
return 1;
}
int ossl_quic_conn_set_initial_peer_addr(QUIC_CONNECTION *qc,
const BIO_ADDR *peer_addr)
{
if (qc->started)
return QUIC_RAISE_NON_NORMAL_ERROR(qc, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED,
NULL);
if (peer_addr == NULL) {
BIO_ADDR_clear(&qc->init_peer_addr);
return 1;
}
qc->init_peer_addr = *peer_addr;
return 1;
}
/*
* QUIC Front-End I/O API: Asynchronous I/O Management
* ===================================================
*
* (BIO/)SSL_tick => ossl_quic_tick
* (BIO/)SSL_get_tick_timeout => ossl_quic_get_tick_timeout
* (BIO/)SSL_get_poll_fd => ossl_quic_get_poll_fd
*
*/
/* Returns 1 if the connection is being used in blocking mode. */
static int blocking_mode(const QUIC_CONNECTION *qc)
{
return qc->blocking;
}
/* SSL_tick; ticks the reactor. */
int ossl_quic_tick(QUIC_CONNECTION *qc)
{
if (qc->ch == NULL)
return 1;
ossl_quic_reactor_tick(ossl_quic_channel_get_reactor(qc->ch));
return 1;
}
/*
* SSL_get_tick_timeout. Get the time in milliseconds until the SSL object
* should be ticked by the application by calling SSL_tick(). tv is set to 0 if
* the object should be ticked immediately and tv->tv_sec is set to -1 if no
* timeout is currently active.
*/
int ossl_quic_get_tick_timeout(QUIC_CONNECTION *qc, struct timeval *tv)
{
OSSL_TIME deadline = ossl_time_infinite();
if (qc->ch != NULL)
deadline
= ossl_quic_reactor_get_tick_deadline(ossl_quic_channel_get_reactor(qc->ch));
if (ossl_time_is_infinite(deadline)) {
tv->tv_sec = -1;
tv->tv_usec = 0;
return 1;
}
*tv = ossl_time_to_timeval(ossl_time_subtract(deadline, ossl_time_now()));
return 1;
}
/* SSL_get_rpoll_descriptor */
int ossl_quic_get_rpoll_descriptor(QUIC_CONNECTION *qc, BIO_POLL_DESCRIPTOR *desc)
{
if (desc == NULL || qc->net_rbio == NULL)
return 0;
return BIO_get_rpoll_descriptor(qc->net_rbio, desc);
}
/* SSL_get_wpoll_descriptor */
int ossl_quic_get_wpoll_descriptor(QUIC_CONNECTION *qc, BIO_POLL_DESCRIPTOR *desc)
{
if (desc == NULL || qc->net_wbio == NULL)
return 0;
return BIO_get_wpoll_descriptor(qc->net_wbio, desc);
}
/* SSL_net_read_desired */
int ossl_quic_get_net_read_desired(QUIC_CONNECTION *qc)
{
if (qc->ch == NULL)
return 0;
return ossl_quic_reactor_net_read_desired(ossl_quic_channel_get_reactor(qc->ch));
}
/* SSL_net_write_desired */
int ossl_quic_get_net_write_desired(QUIC_CONNECTION *qc)
{
if (qc->ch == NULL)
return 0;
return ossl_quic_reactor_net_write_desired(ossl_quic_channel_get_reactor(qc->ch));
}
/*
* QUIC Front-End I/O API: Connection Lifecycle Operations
* =======================================================
*
* SSL_do_handshake => ossl_quic_do_handshake
* SSL_set_connect_state => ossl_quic_set_connect_state
* SSL_set_accept_state => ossl_quic_set_accept_state
* SSL_shutdown => ossl_quic_shutdown
* SSL_ctrl => ossl_quic_ctrl
* (BIO/)SSL_connect => ossl_quic_connect
* (BIO/)SSL_accept => ossl_quic_accept
*
*/
/* SSL_shutdown */
static int quic_shutdown_wait(void *arg)
{
QUIC_CONNECTION *qc = arg;
return qc->ch == NULL || ossl_quic_channel_is_terminated(qc->ch);
}
int ossl_quic_conn_shutdown(QUIC_CONNECTION *qc, uint64_t flags,
const SSL_SHUTDOWN_EX_ARGS *args,
size_t args_len)
{
if (!ensure_channel(qc))
return -1;
ossl_quic_channel_local_close(qc->ch,
args != NULL ? args->quic_error_code : 0);
/* TODO(QUIC): !SSL_SHUTDOWN_FLAG_NO_STREAM_FLUSH */
if (ossl_quic_channel_is_terminated(qc->ch))
return 1;
if (blocking_mode(qc) && (flags & SSL_SHUTDOWN_FLAG_RAPID) == 0)
block_until_pred(qc, quic_shutdown_wait, qc, 0);
else
ossl_quic_reactor_tick(ossl_quic_channel_get_reactor(qc->ch));
return ossl_quic_channel_is_terminated(qc->ch);
}
/* SSL_ctrl */
long ossl_quic_ctrl(SSL *s, int cmd, long larg, void *parg)
{
QUIC_CONNECTION *qc = QUIC_CONNECTION_FROM_SSL(s);
if (!expect_quic_conn(qc))
return 0;
switch (cmd) {
case SSL_CTRL_MODE:
/* Cannot enable EPW while AON write in progress. */
if (qc->aon_write_in_progress)
larg &= ~SSL_MODE_ENABLE_PARTIAL_WRITE;
qc->ssl_mode |= (uint32_t)larg;
return qc->ssl_mode;
case SSL_CTRL_CLEAR_MODE:
qc->ssl_mode &= ~(uint32_t)larg;
return qc->ssl_mode;
default:
/* Probably a TLS related ctrl. Defer to our internal SSL object */
return SSL_ctrl(qc->tls, cmd, larg, parg);
}
}
/* SSL_set_connect_state */
void ossl_quic_set_connect_state(QUIC_CONNECTION *qc)
{
/* Cannot be changed after handshake started */
if (qc->started)
return;
qc->as_server = 0;
}
/* SSL_set_accept_state */
void ossl_quic_set_accept_state(QUIC_CONNECTION *qc)
{
/* Cannot be changed after handshake started */
if (qc->started)
return;
qc->as_server = 1;
}
/* SSL_do_handshake */
struct quic_handshake_wait_args {
QUIC_CONNECTION *qc;
};
static int quic_handshake_wait(void *arg)
{
struct quic_handshake_wait_args *args = arg;
if (!ossl_quic_channel_is_active(args->qc->ch))
return -1;
if (ossl_quic_channel_is_handshake_complete(args->qc->ch))
return 1;
return 0;
}
static int configure_channel(QUIC_CONNECTION *qc)
{
assert(qc->ch != NULL);
if (!ossl_quic_channel_set_net_rbio(qc->ch, qc->net_rbio)
|| !ossl_quic_channel_set_net_wbio(qc->ch, qc->net_wbio)
|| !ossl_quic_channel_set_peer_addr(qc->ch, &qc->init_peer_addr))
return 0;
return 1;
}
static int ensure_channel(QUIC_CONNECTION *qc)
{
QUIC_CHANNEL_ARGS args = {0};
if (qc->ch != NULL)
return 1;
args.libctx = qc->ssl.ctx->libctx;
args.propq = qc->ssl.ctx->propq;
args.is_server = 0;
args.tls = qc->tls;
qc->ch = ossl_quic_channel_new(&args);
if (qc->ch == NULL)
return 0;
return 1;
}
/*
* Creates a channel and configures it with the information we have accumulated
* via calls made to us from the application prior to starting a handshake
* attempt.
*/
static int ensure_channel_and_start(QUIC_CONNECTION *qc)
{
if (!ensure_channel(qc))
return 0;
if (!configure_channel(qc)
|| !ossl_quic_channel_start(qc->ch)) {
ossl_quic_channel_free(qc->ch);
qc->ch = NULL;
return 0;
}
qc->stream0 = ossl_quic_channel_get_stream_by_id(qc->ch, 0);
if (qc->stream0 == NULL) {
ossl_quic_channel_free(qc->ch);
qc->ch = NULL;
return 0;
}
qc->started = 1;
return 1;
}
int ossl_quic_do_handshake(QUIC_CONNECTION *qc)
{
int ret;
if (qc->ch != NULL && ossl_quic_channel_is_handshake_complete(qc->ch))
/* Handshake already completed. */
return 1;
if (qc->ch != NULL && ossl_quic_channel_is_term_any(qc->ch))
return QUIC_RAISE_NON_NORMAL_ERROR(qc, SSL_R_PROTOCOL_IS_SHUTDOWN, NULL);
if (BIO_ADDR_family(&qc->init_peer_addr) == AF_UNSPEC) {
/* Peer address must have been set. */
QUIC_RAISE_NON_NORMAL_ERROR(qc, SSL_R_REMOTE_PEER_ADDRESS_NOT_SET, NULL);
return -1; /* Non-protocol error */
}
if (qc->as_server) {
/* TODO(QUIC): Server mode not currently supported */
QUIC_RAISE_NON_NORMAL_ERROR(qc, ERR_R_PASSED_INVALID_ARGUMENT, NULL);
return -1; /* Non-protocol error */
}
if (qc->net_rbio == NULL || qc->net_wbio == NULL) {
/* Need read and write BIOs. */
QUIC_RAISE_NON_NORMAL_ERROR(qc, SSL_R_BIO_NOT_SET, NULL);
return -1; /* Non-protocol error */
}
/*
* Start connection process. Note we may come here multiple times in
* non-blocking mode, which is fine.
*/
if (!ensure_channel_and_start(qc)) {
QUIC_RAISE_NON_NORMAL_ERROR(qc, ERR_R_INTERNAL_ERROR, NULL);
return -1; /* Non-protocol error */
}
if (ossl_quic_channel_is_handshake_complete(qc->ch))
/* The handshake is now done. */
return 1;
if (blocking_mode(qc)) {
/* In blocking mode, wait for the handshake to complete. */
struct quic_handshake_wait_args args;
args.qc = qc;
ret = block_until_pred(qc, quic_handshake_wait, &args, 0);
if (!ossl_quic_channel_is_active(qc->ch)) {
QUIC_RAISE_NON_NORMAL_ERROR(qc, SSL_R_PROTOCOL_IS_SHUTDOWN, NULL);
return 0; /* Shutdown before completion */
} else if (ret <= 0) {
QUIC_RAISE_NON_NORMAL_ERROR(qc, ERR_R_INTERNAL_ERROR, NULL);
return -1; /* Non-protocol error */
}
assert(ossl_quic_channel_is_handshake_complete(qc->ch));
return 1;
} else {
/* Try to advance the reactor. */
ossl_quic_reactor_tick(ossl_quic_channel_get_reactor(qc->ch));
if (ossl_quic_channel_is_handshake_complete(qc->ch))
/* The handshake is now done. */
return 1;
/* Otherwise, indicate that the handshake isn't done yet. */
QUIC_RAISE_NORMAL_ERROR(qc, SSL_ERROR_WANT_READ);
return -1; /* Non-protocol error */
}
}
/* SSL_connect */
int ossl_quic_connect(SSL *s)
{
QUIC_CONNECTION *qc = QUIC_CONNECTION_FROM_SSL(s);
if (!expect_quic_conn(qc))
return 0;
/* Ensure we are in connect state (no-op if non-idle). */
ossl_quic_set_connect_state(qc);
/* Begin or continue the handshake */
return ossl_quic_do_handshake(qc);
}
/* SSL_accept */
int ossl_quic_accept(SSL *s)
{
QUIC_CONNECTION *qc = QUIC_CONNECTION_FROM_SSL(s);
if (!expect_quic_conn(qc))
return 0;
/* Ensure we are in accept state (no-op if non-idle). */
ossl_quic_set_accept_state(qc);
/* Begin or continue the handshake */
return ossl_quic_do_handshake(qc);
}
/*
* QUIC Front-End I/O API: Steady-State Operations
* ===============================================
*
* Here we dispatch calls to the steady-state front-end I/O API functions; that
* is, the functions used during the established phase of a QUIC connection
* (e.g. SSL_read, SSL_write).
*
* Each function must handle both blocking and non-blocking modes. As discussed
* above, all QUIC I/O is implemented using non-blocking mode internally.
*
* SSL_get_error => partially implemented by ossl_quic_get_error
* (BIO/)SSL_read => ossl_quic_read
* (BIO/)SSL_write => ossl_quic_write
* SSL_pending => ossl_quic_pending
* SSL_stream_conclude => ossl_quic_conn_stream_conclude
*/
/* SSL_get_error */
int ossl_quic_get_error(const QUIC_CONNECTION *qc, int i)
{
return qc->last_error;
}
/*
* SSL_write
* ---------
*
* The set of functions below provide the implementation of the public SSL_write
* function. We must handle:
*
* - both blocking and non-blocking operation at the application level,
* depending on how we are configured;
*
* - SSL_MODE_ENABLE_PARTIAL_WRITE being on or off;
*
* - SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER.
*
*/
static void quic_post_write(QUIC_CONNECTION *qc, int did_append, int do_tick)
{
/*
* We have appended at least one byte to the stream.
* Potentially mark stream as active, depending on FC.
*/
if (did_append)
ossl_quic_stream_map_update_state(ossl_quic_channel_get_qsm(qc->ch),
qc->stream0);
/*
* Try and send.
*
* TODO(QUIC): It is probably inefficient to try and do this immediately,
* plus we should eventually consider Nagle's algorithm.
*/
if (do_tick)
ossl_quic_reactor_tick(ossl_quic_channel_get_reactor(qc->ch));
}
struct quic_write_again_args {
QUIC_CONNECTION *qc;
const unsigned char *buf;
size_t len;
size_t total_written;
};
static int quic_write_again(void *arg)
{
struct quic_write_again_args *args = arg;
size_t actual_written = 0;
if (!ossl_quic_channel_is_active(args->qc->ch))
/* If connection is torn down due to an error while blocking, stop. */
return -2;
if (!ossl_quic_sstream_append(args->qc->stream0->sstream,
args->buf, args->len, &actual_written))
return -2;
quic_post_write(args->qc, actual_written > 0, 0);
args->buf += actual_written;
args->len -= actual_written;
args->total_written += actual_written;
if (args->len == 0)
/* Written everything, done. */
return 1;
/* Not written everything yet, keep trying. */
return 0;
}
static int quic_write_blocking(QUIC_CONNECTION *qc, const void *buf, size_t len,
size_t *written)
{
int res;
struct quic_write_again_args args;
size_t actual_written = 0;
/* First make a best effort to append as much of the data as possible. */
if (!ossl_quic_sstream_append(qc->stream0->sstream, buf, len,
&actual_written)) {
/* Stream already finished or allocation error. */
*written = 0;
return QUIC_RAISE_NON_NORMAL_ERROR(qc, ERR_R_INTERNAL_ERROR, NULL);
}
quic_post_write(qc, actual_written > 0, 1);
if (actual_written == len) {
/* Managed to append everything on the first try. */
*written = actual_written;
return 1;
}
/*
* We did not manage to append all of the data immediately, so the stream
* buffer has probably filled up. This means we need to block until some of
* it is freed up.
*/
args.qc = qc;
args.buf = (const unsigned char *)buf + actual_written;
args.len = len - actual_written;
args.total_written = 0;
res = block_until_pred(qc, quic_write_again, &args, 0);
if (res <= 0) {
if (!ossl_quic_channel_is_active(qc->ch))
return QUIC_RAISE_NON_NORMAL_ERROR(qc, SSL_R_PROTOCOL_IS_SHUTDOWN, NULL);
else
return QUIC_RAISE_NON_NORMAL_ERROR(qc, ERR_R_INTERNAL_ERROR, NULL);
}
*written = args.total_written;
return 1;
}
/*
* Functions to manage All-or-Nothing (AON) (that is, non-ENABLE_PARTIAL_WRITE)
* write semantics.
*/
static void aon_write_begin(QUIC_CONNECTION *qc, const unsigned char *buf,
size_t buf_len, size_t already_sent)
{
assert(!qc->aon_write_in_progress);
qc->aon_write_in_progress = 1;
qc->aon_buf_base = buf;
qc->aon_buf_pos = already_sent;
qc->aon_buf_len = buf_len;
}
static void aon_write_finish(QUIC_CONNECTION *qc)
{
qc->aon_write_in_progress = 0;
qc->aon_buf_base = NULL;
qc->aon_buf_pos = 0;
qc->aon_buf_len = 0;
}
static int quic_write_nonblocking_aon(QUIC_CONNECTION *qc, const void *buf,
size_t len, size_t *written)
{
const void *actual_buf;
size_t actual_len, actual_written = 0;
int accept_moving_buffer
= ((qc->ssl_mode & SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER) != 0);
if (qc->aon_write_in_progress) {
/*
* We are in the middle of an AON write (i.e., a previous write did not
* manage to append all data to the SSTREAM and we have Enable Partial
* Write (EPW) mode disabled.)
*/
if ((!accept_moving_buffer && qc->aon_buf_base != buf)
|| len != qc->aon_buf_len)
/*
* Pointer must not have changed if we are not in accept moving
* buffer mode. Length must never change.
*/
return QUIC_RAISE_NON_NORMAL_ERROR(qc, SSL_R_BAD_WRITE_RETRY, NULL);
actual_buf = (unsigned char *)buf + qc->aon_buf_pos;
actual_len = len - qc->aon_buf_pos;
assert(actual_len > 0);
} else {
actual_buf = buf;
actual_len = len;
}
/* First make a best effort to append as much of the data as possible. */
if (!ossl_quic_sstream_append(qc->stream0->sstream, actual_buf, actual_len,
&actual_written)) {
/* Stream already finished or allocation error. */
*written = 0;
return QUIC_RAISE_NON_NORMAL_ERROR(qc, ERR_R_INTERNAL_ERROR, NULL);
}
quic_post_write(qc, actual_written > 0, 1);
if (actual_written == actual_len) {
/* We have sent everything. */
if (qc->aon_write_in_progress) {
/*
* We have sent everything, and we were in the middle of an AON
* write. The output write length is the total length of the AON
* buffer, not however many bytes we managed to write to the stream
* in this call.
*/
*written = qc->aon_buf_len;
aon_write_finish(qc);
} else {
*written = actual_written;
}
return 1;
}
if (qc->aon_write_in_progress) {
/*
* AON write is in progress but we have not written everything yet. We
* may have managed to send zero bytes, or some number of bytes less
* than the total remaining which need to be appended during this
* AON operation.
*/
qc->aon_buf_pos += actual_written;
assert(qc->aon_buf_pos < qc->aon_buf_len);
return QUIC_RAISE_NORMAL_ERROR(qc, SSL_ERROR_WANT_WRITE);
}
/*
* Not in an existing AON operation but partial write is not enabled, so we
* need to begin a new AON operation. However we needn't bother if we didn't
* actually append anything.
*/
if (actual_written > 0)
aon_write_begin(qc, buf, len, actual_written);
/*
* AON - We do not publicly admit to having appended anything until AON
* completes.
*/
*written = 0;
return QUIC_RAISE_NORMAL_ERROR(qc, SSL_ERROR_WANT_WRITE);
}
static int quic_write_nonblocking_epw(QUIC_CONNECTION *qc, const void *buf, size_t len,
size_t *written)
{
/* Simple best effort operation. */
if (!ossl_quic_sstream_append(qc->stream0->sstream, buf, len, written)) {
/* Stream already finished or allocation error. */
*written = 0;
return QUIC_RAISE_NON_NORMAL_ERROR(qc, ERR_R_INTERNAL_ERROR, NULL);
}
quic_post_write(qc, *written > 0, 1);
return 1;
}
int ossl_quic_write(SSL *s, const void *buf, size_t len, size_t *written)
{
QUIC_CONNECTION *qc = QUIC_CONNECTION_FROM_SSL(s);
int partial_write = ((qc->ssl_mode & SSL_MODE_ENABLE_PARTIAL_WRITE) != 0);
*written = 0;
if (!expect_quic_conn(qc))
return 0;
if (qc->ch != NULL && ossl_quic_channel_is_term_any(qc->ch))
return QUIC_RAISE_NON_NORMAL_ERROR(qc, SSL_R_PROTOCOL_IS_SHUTDOWN, NULL);
/*
* If we haven't finished the handshake, try to advance it.
* We don't accept writes until the handshake is completed.
*/
if (ossl_quic_do_handshake(qc) < 1)
return 0;
if (qc->stream0 == NULL || qc->stream0->sstream == NULL)
return QUIC_RAISE_NON_NORMAL_ERROR(qc, ERR_R_INTERNAL_ERROR, NULL);
if (blocking_mode(qc))
return quic_write_blocking(qc, buf, len, written);
else if (partial_write)
return quic_write_nonblocking_epw(qc, buf, len, written);
else
return quic_write_nonblocking_aon(qc, buf, len, written);
}
/*
* SSL_read
* --------
*/
struct quic_read_again_args {
QUIC_CONNECTION *qc;
QUIC_STREAM *stream;
void *buf;
size_t len;
size_t *bytes_read;
int peek;
};
static int quic_read_actual(QUIC_CONNECTION *qc,
QUIC_STREAM *stream,
void *buf, size_t buf_len,
size_t *bytes_read,
int peek)
{
int is_fin = 0;
/* If the receive part of the stream is over, issue EOF. */
if (stream->recv_fin_retired)
return QUIC_RAISE_NORMAL_ERROR(qc, SSL_ERROR_ZERO_RETURN);
if (stream->rstream == NULL)
return QUIC_RAISE_NON_NORMAL_ERROR(qc, ERR_R_INTERNAL_ERROR, NULL);
if (peek) {
if (!ossl_quic_rstream_peek(stream->rstream, buf, buf_len,
bytes_read, &is_fin))
return QUIC_RAISE_NON_NORMAL_ERROR(qc, ERR_R_INTERNAL_ERROR, NULL);
} else {
if (!ossl_quic_rstream_read(stream->rstream, buf, buf_len,
bytes_read, &is_fin))
return QUIC_RAISE_NON_NORMAL_ERROR(qc, ERR_R_INTERNAL_ERROR, NULL);
}
if (!peek) {
if (*bytes_read > 0) {
/*
* We have read at least one byte from the stream. Inform stream-level
* RXFC of the retirement of controlled bytes. Update the active stream
* status (the RXFC may now want to emit a frame granting more credit to
* the peer).
*/
OSSL_RTT_INFO rtt_info;
ossl_statm_get_rtt_info(ossl_quic_channel_get_statm(qc->ch), &rtt_info);
if (!ossl_quic_rxfc_on_retire(&qc->stream0->rxfc, *bytes_read,
rtt_info.smoothed_rtt))
return QUIC_RAISE_NON_NORMAL_ERROR(qc, ERR_R_INTERNAL_ERROR, NULL);
}
if (is_fin)
stream->recv_fin_retired = 1;
if (*bytes_read > 0)
ossl_quic_stream_map_update_state(ossl_quic_channel_get_qsm(qc->ch),
qc->stream0);
}
return 1;
}
static int quic_read_again(void *arg)
{
struct quic_read_again_args *args = arg;
if (!ossl_quic_channel_is_active(args->qc->ch)) {
/* If connection is torn down due to an error while blocking, stop. */
QUIC_RAISE_NON_NORMAL_ERROR(args->qc, SSL_R_PROTOCOL_IS_SHUTDOWN, NULL);
return -1;
}
if (!quic_read_actual(args->qc, args->stream,
args->buf, args->len, args->bytes_read,
args->peek))
return -1;
if (*args->bytes_read > 0)
/* got at least one byte, the SSL_read op can finish now */
return 1;
return 0; /* did not read anything, keep trying */
}
static int quic_read(SSL *s, void *buf, size_t len, size_t *bytes_read, int peek)
{
int res;
QUIC_CONNECTION *qc = QUIC_CONNECTION_FROM_SSL(s);
struct quic_read_again_args args;
*bytes_read = 0;
if (!expect_quic_conn(qc))
return 0;
if (qc->ch != NULL && ossl_quic_channel_is_term_any(qc->ch))
return QUIC_RAISE_NON_NORMAL_ERROR(qc, SSL_R_PROTOCOL_IS_SHUTDOWN, NULL);
/* If we haven't finished the handshake, try to advance it. */
if (ossl_quic_do_handshake(qc) < 1)
return 0; /* ossl_quic_do_handshake raised error here */
if (qc->stream0 == NULL)
return QUIC_RAISE_NON_NORMAL_ERROR(qc, ERR_R_INTERNAL_ERROR, NULL);
if (!quic_read_actual(qc, qc->stream0, buf, len, bytes_read, peek))
return 0; /* quic_read_actual raised error here */
if (*bytes_read > 0) {
/*
* Even though we succeeded, tick the reactor here to ensure we are
* handling other aspects of the QUIC connection.
*/
ossl_quic_reactor_tick(ossl_quic_channel_get_reactor(qc->ch));
return 1;
} else if (blocking_mode(qc)) {
/*
* We were not able to read anything immediately, so our stream
* buffer is empty. This means we need to block until we get
* at least one byte.
*/
args.qc = qc;
args.stream = qc->stream0;
args.buf = buf;
args.len = len;
args.bytes_read = bytes_read;
args.peek = peek;
res = block_until_pred(qc, quic_read_again, &args, 0);
if (res == 0)
return QUIC_RAISE_NON_NORMAL_ERROR(qc, ERR_R_INTERNAL_ERROR, NULL);
else if (res < 0)
return 0; /* quic_read_again raised error here */
return 1;
} else {
/* We did not get any bytes and are not in blocking mode. */
return QUIC_RAISE_NORMAL_ERROR(qc, SSL_ERROR_WANT_READ);
}
}
int ossl_quic_read(SSL *s, void *buf, size_t len, size_t *bytes_read)
{
return quic_read(s, buf, len, bytes_read, 0);
}
int ossl_quic_peek(SSL *s, void *buf, size_t len, size_t *bytes_read)
{
return quic_read(s, buf, len, bytes_read, 1);
}
/*
* SSL_pending
* -----------
*/
static size_t ossl_quic_pending_int(const QUIC_CONNECTION *qc)
{
size_t avail = 0;
int fin = 0;
if (!expect_quic_conn(qc))
return 0;
if (qc->stream0 == NULL || qc->stream0->rstream == NULL)
/* Cannot raise errors here because we are const, just fail. */
return 0;
if (!ossl_quic_rstream_available(qc->stream0->rstream, &avail, &fin))
return 0;
return avail;
}
size_t ossl_quic_pending(const SSL *s)
{
const QUIC_CONNECTION *qc = QUIC_CONNECTION_FROM_CONST_SSL(s);
return ossl_quic_pending_int(qc);
}
int ossl_quic_has_pending(const QUIC_CONNECTION *qc)
{
return ossl_quic_pending_int(qc) > 0;
}
/*
* SSL_stream_conclude
* -------------------
*/
int ossl_quic_conn_stream_conclude(QUIC_CONNECTION *qc)
{
QUIC_STREAM *qs = qc->stream0;
if (qs == NULL || qs->sstream == NULL)
return 0;
if (!ossl_quic_channel_is_active(qc->ch)
|| ossl_quic_sstream_get_final_size(qs->sstream, NULL))
return 1;
ossl_quic_sstream_fin(qs->sstream);
quic_post_write(qc, 1, 1);
return 1;
}
/*
* QUIC Front-End I/O API: SSL_CTX Management
* ==========================================
*/
long ossl_quic_ctx_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg)
{
switch (cmd) {
default:
return ssl3_ctx_ctrl(ctx, cmd, larg, parg);
}
}
long ossl_quic_callback_ctrl(SSL *s, int cmd, void (*fp) (void))
{
return ssl3_callback_ctrl(s, cmd, fp);
}
long ossl_quic_ctx_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp) (void))
{
return ssl3_ctx_callback_ctrl(ctx, cmd, fp);
}
int ossl_quic_renegotiate_check(SSL *ssl, int initok)
{
/* We never do renegotiation. */
return 0;
}
/*
* These functions define the TLSv1.2 (and below) ciphers that are supported by
* the SSL_METHOD. Since QUIC only supports TLSv1.3 we don't support any.
*/
int ossl_quic_num_ciphers(void)
{
return 0;
}
const SSL_CIPHER *ossl_quic_get_cipher(unsigned int u)
{
return NULL;
}