openssl/crypto/evp/e_aes_cbc_hmac_sha1.c

963 lines
31 KiB
C
Raw Normal View History

/*
* Copyright 2011-2016 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdio.h>
#include <string.h>
#include <openssl/opensslconf.h>
#include <openssl/evp.h>
#include <openssl/objects.h>
#include <openssl/aes.h>
#include <openssl/sha.h>
#include <openssl/rand.h>
#include "internal/cryptlib.h"
#include "internal/modes_int.h"
#include "internal/evp_int.h"
#include "internal/constant_time_locl.h"
typedef struct {
AES_KEY ks;
SHA_CTX head, tail, md;
size_t payload_length; /* AAD length in decrypt case */
union {
unsigned int tls_ver;
unsigned char tls_aad[16]; /* 13 used */
} aux;
} EVP_AES_HMAC_SHA1;
#define NO_PAYLOAD_LENGTH ((size_t)-1)
#if defined(AES_ASM) && ( \
defined(__x86_64) || defined(__x86_64__) || \
defined(_M_AMD64) || defined(_M_X64) )
# define AESNI_CAPABLE (1<<(57-32))
int aesni_set_encrypt_key(const unsigned char *userKey, int bits,
AES_KEY *key);
int aesni_set_decrypt_key(const unsigned char *userKey, int bits,
AES_KEY *key);
void aesni_cbc_encrypt(const unsigned char *in,
unsigned char *out,
size_t length,
const AES_KEY *key, unsigned char *ivec, int enc);
void aesni_cbc_sha1_enc(const void *inp, void *out, size_t blocks,
const AES_KEY *key, unsigned char iv[16],
SHA_CTX *ctx, const void *in0);
void aesni256_cbc_sha1_dec(const void *inp, void *out, size_t blocks,
const AES_KEY *key, unsigned char iv[16],
SHA_CTX *ctx, const void *in0);
# define data(ctx) ((EVP_AES_HMAC_SHA1 *)EVP_CIPHER_CTX_get_cipher_data(ctx))
static int aesni_cbc_hmac_sha1_init_key(EVP_CIPHER_CTX *ctx,
const unsigned char *inkey,
const unsigned char *iv, int enc)
{
EVP_AES_HMAC_SHA1 *key = data(ctx);
int ret;
if (enc)
ret = aesni_set_encrypt_key(inkey,
EVP_CIPHER_CTX_key_length(ctx) * 8,
&key->ks);
else
ret = aesni_set_decrypt_key(inkey,
EVP_CIPHER_CTX_key_length(ctx) * 8,
&key->ks);
SHA1_Init(&key->head); /* handy when benchmarking */
key->tail = key->head;
key->md = key->head;
key->payload_length = NO_PAYLOAD_LENGTH;
return ret < 0 ? 0 : 1;
}
# define STITCHED_CALL
# undef STITCHED_DECRYPT_CALL
# if !defined(STITCHED_CALL)
# define aes_off 0
# endif
void sha1_block_data_order(void *c, const void *p, size_t len);
static void sha1_update(SHA_CTX *c, const void *data, size_t len)
{
const unsigned char *ptr = data;
size_t res;
if ((res = c->num)) {
res = SHA_CBLOCK - res;
if (len < res)
res = len;
SHA1_Update(c, ptr, res);
ptr += res;
len -= res;
}
res = len % SHA_CBLOCK;
len -= res;
if (len) {
sha1_block_data_order(c, ptr, len / SHA_CBLOCK);
ptr += len;
c->Nh += len >> 29;
c->Nl += len <<= 3;
if (c->Nl < (unsigned int)len)
c->Nh++;
}
if (res)
SHA1_Update(c, ptr, res);
}
# ifdef SHA1_Update
# undef SHA1_Update
# endif
# define SHA1_Update sha1_update
# if !defined(OPENSSL_NO_MULTIBLOCK)
typedef struct {
unsigned int A[8], B[8], C[8], D[8], E[8];
} SHA1_MB_CTX;
typedef struct {
const unsigned char *ptr;
int blocks;
} HASH_DESC;
void sha1_multi_block(SHA1_MB_CTX *, const HASH_DESC *, int);
typedef struct {
const unsigned char *inp;
unsigned char *out;
int blocks;
u64 iv[2];
} CIPH_DESC;
void aesni_multi_cbc_encrypt(CIPH_DESC *, void *, int);
static size_t tls1_1_multi_block_encrypt(EVP_AES_HMAC_SHA1 *key,
unsigned char *out,
const unsigned char *inp,
size_t inp_len, int n4x)
{ /* n4x is 1 or 2 */
HASH_DESC hash_d[8], edges[8];
CIPH_DESC ciph_d[8];
unsigned char storage[sizeof(SHA1_MB_CTX) + 32];
union {
u64 q[16];
u32 d[32];
u8 c[128];
} blocks[8];
SHA1_MB_CTX *ctx;
unsigned int frag, last, packlen, i, x4 = 4 * n4x, minblocks, processed =
0;
size_t ret = 0;
u8 *IVs;
# if defined(BSWAP8)
u64 seqnum;
# endif
/* ask for IVs in bulk */
if (RAND_bytes((IVs = blocks[0].c), 16 * x4) <= 0)
return 0;
ctx = (SHA1_MB_CTX *) (storage + 32 - ((size_t)storage % 32)); /* align */
frag = (unsigned int)inp_len >> (1 + n4x);
last = (unsigned int)inp_len + frag - (frag << (1 + n4x));
if (last > frag && ((last + 13 + 9) % 64) < (x4 - 1)) {
frag++;
last -= x4 - 1;
}
packlen = 5 + 16 + ((frag + 20 + 16) & -16);
/* populate descriptors with pointers and IVs */
hash_d[0].ptr = inp;
ciph_d[0].inp = inp;
/* 5+16 is place for header and explicit IV */
ciph_d[0].out = out + 5 + 16;
memcpy(ciph_d[0].out - 16, IVs, 16);
memcpy(ciph_d[0].iv, IVs, 16);
IVs += 16;
for (i = 1; i < x4; i++) {
ciph_d[i].inp = hash_d[i].ptr = hash_d[i - 1].ptr + frag;
ciph_d[i].out = ciph_d[i - 1].out + packlen;
memcpy(ciph_d[i].out - 16, IVs, 16);
memcpy(ciph_d[i].iv, IVs, 16);
IVs += 16;
}
# if defined(BSWAP8)
memcpy(blocks[0].c, key->md.data, 8);
seqnum = BSWAP8(blocks[0].q[0]);
# endif
for (i = 0; i < x4; i++) {
unsigned int len = (i == (x4 - 1) ? last : frag);
# if !defined(BSWAP8)
unsigned int carry, j;
# endif
ctx->A[i] = key->md.h0;
ctx->B[i] = key->md.h1;
ctx->C[i] = key->md.h2;
ctx->D[i] = key->md.h3;
ctx->E[i] = key->md.h4;
/* fix seqnum */
# if defined(BSWAP8)
blocks[i].q[0] = BSWAP8(seqnum + i);
# else
for (carry = i, j = 8; j--;) {
blocks[i].c[j] = ((u8 *)key->md.data)[j] + carry;
carry = (blocks[i].c[j] - carry) >> (sizeof(carry) * 8 - 1);
}
# endif
blocks[i].c[8] = ((u8 *)key->md.data)[8];
blocks[i].c[9] = ((u8 *)key->md.data)[9];
blocks[i].c[10] = ((u8 *)key->md.data)[10];
/* fix length */
blocks[i].c[11] = (u8)(len >> 8);
blocks[i].c[12] = (u8)(len);
memcpy(blocks[i].c + 13, hash_d[i].ptr, 64 - 13);
hash_d[i].ptr += 64 - 13;
hash_d[i].blocks = (len - (64 - 13)) / 64;
edges[i].ptr = blocks[i].c;
edges[i].blocks = 1;
}
/* hash 13-byte headers and first 64-13 bytes of inputs */
sha1_multi_block(ctx, edges, n4x);
/* hash bulk inputs */
# define MAXCHUNKSIZE 2048
# if MAXCHUNKSIZE%64
# error "MAXCHUNKSIZE is not divisible by 64"
# elif MAXCHUNKSIZE
/*
* goal is to minimize pressure on L1 cache by moving in shorter steps,
* so that hashed data is still in the cache by the time we encrypt it
*/
minblocks = ((frag <= last ? frag : last) - (64 - 13)) / 64;
if (minblocks > MAXCHUNKSIZE / 64) {
for (i = 0; i < x4; i++) {
edges[i].ptr = hash_d[i].ptr;
edges[i].blocks = MAXCHUNKSIZE / 64;
ciph_d[i].blocks = MAXCHUNKSIZE / 16;
}
do {
sha1_multi_block(ctx, edges, n4x);
aesni_multi_cbc_encrypt(ciph_d, &key->ks, n4x);
for (i = 0; i < x4; i++) {
edges[i].ptr = hash_d[i].ptr += MAXCHUNKSIZE;
hash_d[i].blocks -= MAXCHUNKSIZE / 64;
edges[i].blocks = MAXCHUNKSIZE / 64;
ciph_d[i].inp += MAXCHUNKSIZE;
ciph_d[i].out += MAXCHUNKSIZE;
ciph_d[i].blocks = MAXCHUNKSIZE / 16;
memcpy(ciph_d[i].iv, ciph_d[i].out - 16, 16);
}
processed += MAXCHUNKSIZE;
minblocks -= MAXCHUNKSIZE / 64;
} while (minblocks > MAXCHUNKSIZE / 64);
}
# endif
# undef MAXCHUNKSIZE
sha1_multi_block(ctx, hash_d, n4x);
memset(blocks, 0, sizeof(blocks));
for (i = 0; i < x4; i++) {
unsigned int len = (i == (x4 - 1) ? last : frag),
off = hash_d[i].blocks * 64;
const unsigned char *ptr = hash_d[i].ptr + off;
off = (len - processed) - (64 - 13) - off; /* remainder actually */
memcpy(blocks[i].c, ptr, off);
blocks[i].c[off] = 0x80;
len += 64 + 13; /* 64 is HMAC header */
len *= 8; /* convert to bits */
if (off < (64 - 8)) {
# ifdef BSWAP4
blocks[i].d[15] = BSWAP4(len);
# else
PUTU32(blocks[i].c + 60, len);
# endif
edges[i].blocks = 1;
} else {
# ifdef BSWAP4
blocks[i].d[31] = BSWAP4(len);
# else
PUTU32(blocks[i].c + 124, len);
# endif
edges[i].blocks = 2;
}
edges[i].ptr = blocks[i].c;
}
/* hash input tails and finalize */
sha1_multi_block(ctx, edges, n4x);
memset(blocks, 0, sizeof(blocks));
for (i = 0; i < x4; i++) {
# ifdef BSWAP4
blocks[i].d[0] = BSWAP4(ctx->A[i]);
ctx->A[i] = key->tail.h0;
blocks[i].d[1] = BSWAP4(ctx->B[i]);
ctx->B[i] = key->tail.h1;
blocks[i].d[2] = BSWAP4(ctx->C[i]);
ctx->C[i] = key->tail.h2;
blocks[i].d[3] = BSWAP4(ctx->D[i]);
ctx->D[i] = key->tail.h3;
blocks[i].d[4] = BSWAP4(ctx->E[i]);
ctx->E[i] = key->tail.h4;
blocks[i].c[20] = 0x80;
blocks[i].d[15] = BSWAP4((64 + 20) * 8);
# else
PUTU32(blocks[i].c + 0, ctx->A[i]);
ctx->A[i] = key->tail.h0;
PUTU32(blocks[i].c + 4, ctx->B[i]);
ctx->B[i] = key->tail.h1;
PUTU32(blocks[i].c + 8, ctx->C[i]);
ctx->C[i] = key->tail.h2;
PUTU32(blocks[i].c + 12, ctx->D[i]);
ctx->D[i] = key->tail.h3;
PUTU32(blocks[i].c + 16, ctx->E[i]);
ctx->E[i] = key->tail.h4;
blocks[i].c[20] = 0x80;
PUTU32(blocks[i].c + 60, (64 + 20) * 8);
# endif
edges[i].ptr = blocks[i].c;
edges[i].blocks = 1;
}
/* finalize MACs */
sha1_multi_block(ctx, edges, n4x);
for (i = 0; i < x4; i++) {
unsigned int len = (i == (x4 - 1) ? last : frag), pad, j;
unsigned char *out0 = out;
memcpy(ciph_d[i].out, ciph_d[i].inp, len - processed);
ciph_d[i].inp = ciph_d[i].out;
out += 5 + 16 + len;
/* write MAC */
PUTU32(out + 0, ctx->A[i]);
PUTU32(out + 4, ctx->B[i]);
PUTU32(out + 8, ctx->C[i]);
PUTU32(out + 12, ctx->D[i]);
PUTU32(out + 16, ctx->E[i]);
out += 20;
len += 20;
/* pad */
pad = 15 - len % 16;
for (j = 0; j <= pad; j++)
*(out++) = pad;
len += pad + 1;
ciph_d[i].blocks = (len - processed) / 16;
len += 16; /* account for explicit iv */
/* arrange header */
out0[0] = ((u8 *)key->md.data)[8];
out0[1] = ((u8 *)key->md.data)[9];
out0[2] = ((u8 *)key->md.data)[10];
out0[3] = (u8)(len >> 8);
out0[4] = (u8)(len);
ret += len + 5;
inp += frag;
}
aesni_multi_cbc_encrypt(ciph_d, &key->ks, n4x);
OPENSSL_cleanse(blocks, sizeof(blocks));
OPENSSL_cleanse(ctx, sizeof(*ctx));
return ret;
}
# endif
static int aesni_cbc_hmac_sha1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len)
{
EVP_AES_HMAC_SHA1 *key = data(ctx);
unsigned int l;
size_t plen = key->payload_length, iv = 0, /* explicit IV in TLS 1.1 and
* later */
sha_off = 0;
# if defined(STITCHED_CALL)
size_t aes_off = 0, blocks;
sha_off = SHA_CBLOCK - key->md.num;
# endif
key->payload_length = NO_PAYLOAD_LENGTH;
if (len % AES_BLOCK_SIZE)
return 0;
if (EVP_CIPHER_CTX_encrypting(ctx)) {
if (plen == NO_PAYLOAD_LENGTH)
plen = len;
else if (len !=
((plen + SHA_DIGEST_LENGTH +
AES_BLOCK_SIZE) & -AES_BLOCK_SIZE))
return 0;
else if (key->aux.tls_ver >= TLS1_1_VERSION)
iv = AES_BLOCK_SIZE;
# if defined(STITCHED_CALL)
if (plen > (sha_off + iv)
&& (blocks = (plen - (sha_off + iv)) / SHA_CBLOCK)) {
SHA1_Update(&key->md, in + iv, sha_off);
aesni_cbc_sha1_enc(in, out, blocks, &key->ks,
EVP_CIPHER_CTX_iv_noconst(ctx),
&key->md, in + iv + sha_off);
blocks *= SHA_CBLOCK;
aes_off += blocks;
sha_off += blocks;
key->md.Nh += blocks >> 29;
key->md.Nl += blocks <<= 3;
if (key->md.Nl < (unsigned int)blocks)
key->md.Nh++;
} else {
sha_off = 0;
}
# endif
sha_off += iv;
SHA1_Update(&key->md, in + sha_off, plen - sha_off);
if (plen != len) { /* "TLS" mode of operation */
if (in != out)
memcpy(out + aes_off, in + aes_off, plen - aes_off);
/* calculate HMAC and append it to payload */
SHA1_Final(out + plen, &key->md);
key->md = key->tail;
SHA1_Update(&key->md, out + plen, SHA_DIGEST_LENGTH);
SHA1_Final(out + plen, &key->md);
/* pad the payload|hmac */
plen += SHA_DIGEST_LENGTH;
for (l = len - plen - 1; plen < len; plen++)
out[plen] = l;
/* encrypt HMAC|padding at once */
aesni_cbc_encrypt(out + aes_off, out + aes_off, len - aes_off,
&key->ks, EVP_CIPHER_CTX_iv_noconst(ctx), 1);
} else {
aesni_cbc_encrypt(in + aes_off, out + aes_off, len - aes_off,
&key->ks, EVP_CIPHER_CTX_iv_noconst(ctx), 1);
}
} else {
union {
unsigned int u[SHA_DIGEST_LENGTH / sizeof(unsigned int)];
unsigned char c[32 + SHA_DIGEST_LENGTH];
} mac, *pmac;
/* arrange cache line alignment */
pmac = (void *)(((size_t)mac.c + 31) & ((size_t)0 - 32));
if (plen != NO_PAYLOAD_LENGTH) { /* "TLS" mode of operation */
size_t inp_len, mask, j, i;
unsigned int res, maxpad, pad, bitlen;
int ret = 1;
union {
unsigned int u[SHA_LBLOCK];
unsigned char c[SHA_CBLOCK];
} *data = (void *)key->md.data;
# if defined(STITCHED_DECRYPT_CALL)
unsigned char tail_iv[AES_BLOCK_SIZE];
int stitch = 0;
# endif
if ((key->aux.tls_aad[plen - 4] << 8 | key->aux.tls_aad[plen - 3])
>= TLS1_1_VERSION) {
if (len < (AES_BLOCK_SIZE + SHA_DIGEST_LENGTH + 1))
return 0;
/* omit explicit iv */
memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), in, AES_BLOCK_SIZE);
in += AES_BLOCK_SIZE;
out += AES_BLOCK_SIZE;
len -= AES_BLOCK_SIZE;
} else if (len < (SHA_DIGEST_LENGTH + 1))
return 0;
# if defined(STITCHED_DECRYPT_CALL)
if (len >= 1024 && ctx->key_len == 32) {
/* decrypt last block */
memcpy(tail_iv, in + len - 2 * AES_BLOCK_SIZE,
AES_BLOCK_SIZE);
aesni_cbc_encrypt(in + len - AES_BLOCK_SIZE,
out + len - AES_BLOCK_SIZE, AES_BLOCK_SIZE,
&key->ks, tail_iv, 0);
stitch = 1;
} else
# endif
/* decrypt HMAC|padding at once */
aesni_cbc_encrypt(in, out, len, &key->ks,
EVP_CIPHER_CTX_iv_noconst(ctx), 0);
/* figure out payload length */
pad = out[len - 1];
maxpad = len - (SHA_DIGEST_LENGTH + 1);
maxpad |= (255 - maxpad) >> (sizeof(maxpad) * 8 - 8);
maxpad &= 255;
mask = constant_time_ge(maxpad, pad);
ret &= mask;
/*
* If pad is invalid then we will fail the above test but we must
* continue anyway because we are in constant time code. However,
* we'll use the maxpad value instead of the supplied pad to make
* sure we perform well defined pointer arithmetic.
*/
pad = constant_time_select(mask, pad, maxpad);
inp_len = len - (SHA_DIGEST_LENGTH + pad + 1);
key->aux.tls_aad[plen - 2] = inp_len >> 8;
key->aux.tls_aad[plen - 1] = inp_len;
/* calculate HMAC */
key->md = key->head;
SHA1_Update(&key->md, key->aux.tls_aad, plen);
# if defined(STITCHED_DECRYPT_CALL)
if (stitch) {
blocks = (len - (256 + 32 + SHA_CBLOCK)) / SHA_CBLOCK;
aes_off = len - AES_BLOCK_SIZE - blocks * SHA_CBLOCK;
sha_off = SHA_CBLOCK - plen;
aesni_cbc_encrypt(in, out, aes_off, &key->ks, ctx->iv, 0);
SHA1_Update(&key->md, out, sha_off);
aesni256_cbc_sha1_dec(in + aes_off,
out + aes_off, blocks, &key->ks,
ctx->iv, &key->md, out + sha_off);
sha_off += blocks *= SHA_CBLOCK;
out += sha_off;
len -= sha_off;
inp_len -= sha_off;
key->md.Nl += (blocks << 3); /* at most 18 bits */
memcpy(ctx->iv, tail_iv, AES_BLOCK_SIZE);
}
# endif
# if 1 /* see original reference version in #else */
len -= SHA_DIGEST_LENGTH; /* amend mac */
if (len >= (256 + SHA_CBLOCK)) {
j = (len - (256 + SHA_CBLOCK)) & (0 - SHA_CBLOCK);
j += SHA_CBLOCK - key->md.num;
SHA1_Update(&key->md, out, j);
out += j;
len -= j;
inp_len -= j;
}
/* but pretend as if we hashed padded payload */
bitlen = key->md.Nl + (inp_len << 3); /* at most 18 bits */
# ifdef BSWAP4
bitlen = BSWAP4(bitlen);
# else
mac.c[0] = 0;
mac.c[1] = (unsigned char)(bitlen >> 16);
mac.c[2] = (unsigned char)(bitlen >> 8);
mac.c[3] = (unsigned char)bitlen;
bitlen = mac.u[0];
# endif
pmac->u[0] = 0;
pmac->u[1] = 0;
pmac->u[2] = 0;
pmac->u[3] = 0;
pmac->u[4] = 0;
for (res = key->md.num, j = 0; j < len; j++) {
size_t c = out[j];
mask = (j - inp_len) >> (sizeof(j) * 8 - 8);
c &= mask;
c |= 0x80 & ~mask & ~((inp_len - j) >> (sizeof(j) * 8 - 8));
data->c[res++] = (unsigned char)c;
if (res != SHA_CBLOCK)
continue;
/* j is not incremented yet */
mask = 0 - ((inp_len + 7 - j) >> (sizeof(j) * 8 - 1));
data->u[SHA_LBLOCK - 1] |= bitlen & mask;
sha1_block_data_order(&key->md, data, 1);
mask &= 0 - ((j - inp_len - 72) >> (sizeof(j) * 8 - 1));
pmac->u[0] |= key->md.h0 & mask;
pmac->u[1] |= key->md.h1 & mask;
pmac->u[2] |= key->md.h2 & mask;
pmac->u[3] |= key->md.h3 & mask;
pmac->u[4] |= key->md.h4 & mask;
res = 0;
}
for (i = res; i < SHA_CBLOCK; i++, j++)
data->c[i] = 0;
if (res > SHA_CBLOCK - 8) {
mask = 0 - ((inp_len + 8 - j) >> (sizeof(j) * 8 - 1));
data->u[SHA_LBLOCK - 1] |= bitlen & mask;
sha1_block_data_order(&key->md, data, 1);
mask &= 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1));
pmac->u[0] |= key->md.h0 & mask;
pmac->u[1] |= key->md.h1 & mask;
pmac->u[2] |= key->md.h2 & mask;
pmac->u[3] |= key->md.h3 & mask;
pmac->u[4] |= key->md.h4 & mask;
memset(data, 0, SHA_CBLOCK);
j += 64;
}
data->u[SHA_LBLOCK - 1] = bitlen;
sha1_block_data_order(&key->md, data, 1);
mask = 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1));
pmac->u[0] |= key->md.h0 & mask;
pmac->u[1] |= key->md.h1 & mask;
pmac->u[2] |= key->md.h2 & mask;
pmac->u[3] |= key->md.h3 & mask;
pmac->u[4] |= key->md.h4 & mask;
# ifdef BSWAP4
pmac->u[0] = BSWAP4(pmac->u[0]);
pmac->u[1] = BSWAP4(pmac->u[1]);
pmac->u[2] = BSWAP4(pmac->u[2]);
pmac->u[3] = BSWAP4(pmac->u[3]);
pmac->u[4] = BSWAP4(pmac->u[4]);
# else
for (i = 0; i < 5; i++) {
res = pmac->u[i];
pmac->c[4 * i + 0] = (unsigned char)(res >> 24);
pmac->c[4 * i + 1] = (unsigned char)(res >> 16);
pmac->c[4 * i + 2] = (unsigned char)(res >> 8);
pmac->c[4 * i + 3] = (unsigned char)res;
}
# endif
len += SHA_DIGEST_LENGTH;
# else /* pre-lucky-13 reference version of above */
SHA1_Update(&key->md, out, inp_len);
res = key->md.num;
SHA1_Final(pmac->c, &key->md);
{
unsigned int inp_blocks, pad_blocks;
/* but pretend as if we hashed padded payload */
inp_blocks =
1 + ((SHA_CBLOCK - 9 - res) >> (sizeof(res) * 8 - 1));
res += (unsigned int)(len - inp_len);
pad_blocks = res / SHA_CBLOCK;
res %= SHA_CBLOCK;
pad_blocks +=
1 + ((SHA_CBLOCK - 9 - res) >> (sizeof(res) * 8 - 1));
for (; inp_blocks < pad_blocks; inp_blocks++)
sha1_block_data_order(&key->md, data, 1);
}
# endif
key->md = key->tail;
SHA1_Update(&key->md, pmac->c, SHA_DIGEST_LENGTH);
SHA1_Final(pmac->c, &key->md);
/* verify HMAC */
out += inp_len;
len -= inp_len;
# if 1 /* see original reference version in #else */
{
unsigned char *p = out + len - 1 - maxpad - SHA_DIGEST_LENGTH;
size_t off = out - p;
unsigned int c, cmask;
maxpad += SHA_DIGEST_LENGTH;
for (res = 0, i = 0, j = 0; j < maxpad; j++) {
c = p[j];
cmask =
((int)(j - off - SHA_DIGEST_LENGTH)) >> (sizeof(int) *
8 - 1);
res |= (c ^ pad) & ~cmask; /* ... and padding */
cmask &= ((int)(off - 1 - j)) >> (sizeof(int) * 8 - 1);
res |= (c ^ pmac->c[i]) & cmask;
i += 1 & cmask;
}
maxpad -= SHA_DIGEST_LENGTH;
res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1));
ret &= (int)~res;
}
# else /* pre-lucky-13 reference version of above */
for (res = 0, i = 0; i < SHA_DIGEST_LENGTH; i++)
res |= out[i] ^ pmac->c[i];
res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1));
ret &= (int)~res;
/* verify padding */
pad = (pad & ~res) | (maxpad & res);
out = out + len - 1 - pad;
for (res = 0, i = 0; i < pad; i++)
res |= out[i] ^ pad;
res = (0 - res) >> (sizeof(res) * 8 - 1);
ret &= (int)~res;
# endif
return ret;
} else {
# if defined(STITCHED_DECRYPT_CALL)
if (len >= 1024 && ctx->key_len == 32) {
if (sha_off %= SHA_CBLOCK)
blocks = (len - 3 * SHA_CBLOCK) / SHA_CBLOCK;
else
blocks = (len - 2 * SHA_CBLOCK) / SHA_CBLOCK;
aes_off = len - blocks * SHA_CBLOCK;
aesni_cbc_encrypt(in, out, aes_off, &key->ks, ctx->iv, 0);
SHA1_Update(&key->md, out, sha_off);
aesni256_cbc_sha1_dec(in + aes_off,
out + aes_off, blocks, &key->ks,
ctx->iv, &key->md, out + sha_off);
sha_off += blocks *= SHA_CBLOCK;
out += sha_off;
len -= sha_off;
key->md.Nh += blocks >> 29;
key->md.Nl += blocks <<= 3;
if (key->md.Nl < (unsigned int)blocks)
key->md.Nh++;
} else
# endif
/* decrypt HMAC|padding at once */
aesni_cbc_encrypt(in, out, len, &key->ks,
EVP_CIPHER_CTX_iv_noconst(ctx), 0);
SHA1_Update(&key->md, out, len);
}
}
return 1;
}
static int aesni_cbc_hmac_sha1_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg,
void *ptr)
{
EVP_AES_HMAC_SHA1 *key = data(ctx);
switch (type) {
case EVP_CTRL_AEAD_SET_MAC_KEY:
{
unsigned int i;
unsigned char hmac_key[64];
memset(hmac_key, 0, sizeof(hmac_key));
if (arg > (int)sizeof(hmac_key)) {
SHA1_Init(&key->head);
SHA1_Update(&key->head, ptr, arg);
SHA1_Final(hmac_key, &key->head);
} else {
memcpy(hmac_key, ptr, arg);
}
for (i = 0; i < sizeof(hmac_key); i++)
hmac_key[i] ^= 0x36; /* ipad */
SHA1_Init(&key->head);
SHA1_Update(&key->head, hmac_key, sizeof(hmac_key));
for (i = 0; i < sizeof(hmac_key); i++)
hmac_key[i] ^= 0x36 ^ 0x5c; /* opad */
SHA1_Init(&key->tail);
SHA1_Update(&key->tail, hmac_key, sizeof(hmac_key));
OPENSSL_cleanse(hmac_key, sizeof(hmac_key));
return 1;
}
case EVP_CTRL_AEAD_TLS1_AAD:
{
unsigned char *p = ptr;
unsigned int len;
if (arg != EVP_AEAD_TLS1_AAD_LEN)
return -1;
len = p[arg - 2] << 8 | p[arg - 1];
if (EVP_CIPHER_CTX_encrypting(ctx)) {
key->payload_length = len;
if ((key->aux.tls_ver =
p[arg - 4] << 8 | p[arg - 3]) >= TLS1_1_VERSION) {
if (len < AES_BLOCK_SIZE)
return 0;
len -= AES_BLOCK_SIZE;
p[arg - 2] = len >> 8;
p[arg - 1] = len;
}
key->md = key->head;
SHA1_Update(&key->md, p, arg);
return (int)(((len + SHA_DIGEST_LENGTH +
AES_BLOCK_SIZE) & -AES_BLOCK_SIZE)
- len);
} else {
memcpy(key->aux.tls_aad, ptr, arg);
key->payload_length = arg;
return SHA_DIGEST_LENGTH;
}
}
# if !defined(OPENSSL_NO_MULTIBLOCK)
case EVP_CTRL_TLS1_1_MULTIBLOCK_MAX_BUFSIZE:
return (int)(5 + 16 + ((arg + 20 + 16) & -16));
case EVP_CTRL_TLS1_1_MULTIBLOCK_AAD:
{
EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param =
(EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *) ptr;
unsigned int n4x = 1, x4;
unsigned int frag, last, packlen, inp_len;
if (arg < (int)sizeof(EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM))
return -1;
inp_len = param->inp[11] << 8 | param->inp[12];
if (EVP_CIPHER_CTX_encrypting(ctx)) {
if ((param->inp[9] << 8 | param->inp[10]) < TLS1_1_VERSION)
return -1;
if (inp_len) {
if (inp_len < 4096)
return 0; /* too short */
if (inp_len >= 8192 && OPENSSL_ia32cap_P[2] & (1 << 5))
n4x = 2; /* AVX2 */
} else if ((n4x = param->interleave / 4) && n4x <= 2)
inp_len = param->len;
else
return -1;
key->md = key->head;
SHA1_Update(&key->md, param->inp, 13);
x4 = 4 * n4x;
n4x += 1;
frag = inp_len >> n4x;
last = inp_len + frag - (frag << n4x);
if (last > frag && ((last + 13 + 9) % 64 < (x4 - 1))) {
frag++;
last -= x4 - 1;
}
packlen = 5 + 16 + ((frag + 20 + 16) & -16);
packlen = (packlen << n4x) - packlen;
packlen += 5 + 16 + ((last + 20 + 16) & -16);
param->interleave = x4;
return (int)packlen;
} else
return -1; /* not yet */
}
case EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT:
{
EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param =
(EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *) ptr;
return (int)tls1_1_multi_block_encrypt(key, param->out,
param->inp, param->len,
param->interleave / 4);
}
case EVP_CTRL_TLS1_1_MULTIBLOCK_DECRYPT:
# endif
default:
return -1;
}
}
static EVP_CIPHER aesni_128_cbc_hmac_sha1_cipher = {
# ifdef NID_aes_128_cbc_hmac_sha1
NID_aes_128_cbc_hmac_sha1,
# else
NID_undef,
# endif
AES_BLOCK_SIZE, 16, AES_BLOCK_SIZE,
EVP_CIPH_CBC_MODE | EVP_CIPH_FLAG_DEFAULT_ASN1 |
EVP_CIPH_FLAG_AEAD_CIPHER | EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK,
aesni_cbc_hmac_sha1_init_key,
aesni_cbc_hmac_sha1_cipher,
NULL,
sizeof(EVP_AES_HMAC_SHA1),
EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_set_asn1_iv,
EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_get_asn1_iv,
aesni_cbc_hmac_sha1_ctrl,
NULL
};
static EVP_CIPHER aesni_256_cbc_hmac_sha1_cipher = {
# ifdef NID_aes_256_cbc_hmac_sha1
NID_aes_256_cbc_hmac_sha1,
# else
NID_undef,
# endif
AES_BLOCK_SIZE, 32, AES_BLOCK_SIZE,
EVP_CIPH_CBC_MODE | EVP_CIPH_FLAG_DEFAULT_ASN1 |
EVP_CIPH_FLAG_AEAD_CIPHER | EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK,
aesni_cbc_hmac_sha1_init_key,
aesni_cbc_hmac_sha1_cipher,
NULL,
sizeof(EVP_AES_HMAC_SHA1),
EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_set_asn1_iv,
EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_get_asn1_iv,
aesni_cbc_hmac_sha1_ctrl,
NULL
};
const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha1(void)
{
return (OPENSSL_ia32cap_P[1] & AESNI_CAPABLE ?
&aesni_128_cbc_hmac_sha1_cipher : NULL);
}
const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha1(void)
{
return (OPENSSL_ia32cap_P[1] & AESNI_CAPABLE ?
&aesni_256_cbc_hmac_sha1_cipher : NULL);
}
#else
const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha1(void)
{
return NULL;
}
const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha1(void)
{
return NULL;
}
#endif