openssl/test/dhkem_test.inc

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

718 lines
27 KiB
PHP
Raw Normal View History

Add HPKE DHKEM provider support for EC, X25519 and X448. The code is derived from @sftcd's work in PR #17172. This PR puts the DHKEM algorithms into the provider layer as KEM algorithms for EC and ECX. This PR only implements the DHKEM component of HPKE as specified in RFC 9180. crypto/hpke/hpke_util.c has been added for fuctions that will be shared between DHKEM and HPKE. API's for EVP_PKEY_auth_encapsulate_init() and EVP_PKEY_auth_decapsulate_init() have been added to support authenticated encapsulation. auth_init() functions were chosen rather that a EVP_PKEY_KEM_set_auth() interface to support future algorithms that could possibly need different init functions. Internal code has been refactored, so that it can be shared between the DHKEM and other systems. Since DHKEM operates on low level keys it needs to be able to do low level ECDH and ECXDH calls without converting the keys back into EVP_PKEY/EVP_PKEY_CTX form. See ossl_ecx_compute_key(), ossl_ec_public_from_private() DHKEM requires API's to derive a key using a seed (IKM). This did not sit well inside the DHKEM itself as dispatch functions. This functionality fits better inside the EC and ECX keymanagers keygen, since they are just variations of keygen where the private key is generated in a different manner. This should mainly be used for testing purposes. See ossl_ec_generate_key_dhkem(). It supports this by allowing a settable param to be passed to keygen (See OSSL_PKEY_PARAM_DHKEM_IKM). The keygen calls code within ec and ecx dhkem implementation to handle this. See ossl_ecx_dhkem_derive_private() and ossl_ec_dhkem_derive_private(). These 2 functions are also used by the EC/ECX DHKEM implementations to generate the sender ephemeral keys. Reviewed-by: Hugo Landau <hlandau@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/19068)
2022-08-26 09:54:35 +08:00
/*
* Copyright 2022-2023 The OpenSSL Project Authors. All Rights Reserved.
Add HPKE DHKEM provider support for EC, X25519 and X448. The code is derived from @sftcd's work in PR #17172. This PR puts the DHKEM algorithms into the provider layer as KEM algorithms for EC and ECX. This PR only implements the DHKEM component of HPKE as specified in RFC 9180. crypto/hpke/hpke_util.c has been added for fuctions that will be shared between DHKEM and HPKE. API's for EVP_PKEY_auth_encapsulate_init() and EVP_PKEY_auth_decapsulate_init() have been added to support authenticated encapsulation. auth_init() functions were chosen rather that a EVP_PKEY_KEM_set_auth() interface to support future algorithms that could possibly need different init functions. Internal code has been refactored, so that it can be shared between the DHKEM and other systems. Since DHKEM operates on low level keys it needs to be able to do low level ECDH and ECXDH calls without converting the keys back into EVP_PKEY/EVP_PKEY_CTX form. See ossl_ecx_compute_key(), ossl_ec_public_from_private() DHKEM requires API's to derive a key using a seed (IKM). This did not sit well inside the DHKEM itself as dispatch functions. This functionality fits better inside the EC and ECX keymanagers keygen, since they are just variations of keygen where the private key is generated in a different manner. This should mainly be used for testing purposes. See ossl_ec_generate_key_dhkem(). It supports this by allowing a settable param to be passed to keygen (See OSSL_PKEY_PARAM_DHKEM_IKM). The keygen calls code within ec and ecx dhkem implementation to handle this. See ossl_ecx_dhkem_derive_private() and ossl_ec_dhkem_derive_private(). These 2 functions are also used by the EC/ECX DHKEM implementations to generate the sender ephemeral keys. Reviewed-by: Hugo Landau <hlandau@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/19068)
2022-08-26 09:54:35 +08:00
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
typedef struct {
const char *curvename;
/* seed */
const unsigned char *ikm;
size_t ikmlen;
/* expected public key */
const unsigned char *pub;
size_t publen;
/* expected private key */
const unsigned char *priv;
size_t privlen;
} TEST_DERIVEKEY_DATA;
typedef struct {
const char *curve;
/* The seed for the senders ephemeral key */
const unsigned char *ikmE;
size_t ikmElen;
/* Recipient key */
const unsigned char *rpub;
size_t rpublen;
const unsigned char *rpriv;
size_t rprivlen;
/* The senders generated ephemeral public key */
const unsigned char *expected_enc;
size_t expected_enclen;
/* The generated shared secret */
const unsigned char *expected_secret;
size_t expected_secretlen;
/* Senders Auth key */
const unsigned char *spub;
size_t spublen;
const unsigned char *spriv;
size_t sprivlen;
} TEST_ENCAPDATA;
static const char *dhkem_supported_curves[] = {
"P-256",
"P-384",
"P-521",
#ifndef OPENSSL_NO_ECX
Add HPKE DHKEM provider support for EC, X25519 and X448. The code is derived from @sftcd's work in PR #17172. This PR puts the DHKEM algorithms into the provider layer as KEM algorithms for EC and ECX. This PR only implements the DHKEM component of HPKE as specified in RFC 9180. crypto/hpke/hpke_util.c has been added for fuctions that will be shared between DHKEM and HPKE. API's for EVP_PKEY_auth_encapsulate_init() and EVP_PKEY_auth_decapsulate_init() have been added to support authenticated encapsulation. auth_init() functions were chosen rather that a EVP_PKEY_KEM_set_auth() interface to support future algorithms that could possibly need different init functions. Internal code has been refactored, so that it can be shared between the DHKEM and other systems. Since DHKEM operates on low level keys it needs to be able to do low level ECDH and ECXDH calls without converting the keys back into EVP_PKEY/EVP_PKEY_CTX form. See ossl_ecx_compute_key(), ossl_ec_public_from_private() DHKEM requires API's to derive a key using a seed (IKM). This did not sit well inside the DHKEM itself as dispatch functions. This functionality fits better inside the EC and ECX keymanagers keygen, since they are just variations of keygen where the private key is generated in a different manner. This should mainly be used for testing purposes. See ossl_ec_generate_key_dhkem(). It supports this by allowing a settable param to be passed to keygen (See OSSL_PKEY_PARAM_DHKEM_IKM). The keygen calls code within ec and ecx dhkem implementation to handle this. See ossl_ecx_dhkem_derive_private() and ossl_ec_dhkem_derive_private(). These 2 functions are also used by the EC/ECX DHKEM implementations to generate the sender ephemeral keys. Reviewed-by: Hugo Landau <hlandau@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/19068)
2022-08-26 09:54:35 +08:00
"X25519",
"X448",
#endif
Add HPKE DHKEM provider support for EC, X25519 and X448. The code is derived from @sftcd's work in PR #17172. This PR puts the DHKEM algorithms into the provider layer as KEM algorithms for EC and ECX. This PR only implements the DHKEM component of HPKE as specified in RFC 9180. crypto/hpke/hpke_util.c has been added for fuctions that will be shared between DHKEM and HPKE. API's for EVP_PKEY_auth_encapsulate_init() and EVP_PKEY_auth_decapsulate_init() have been added to support authenticated encapsulation. auth_init() functions were chosen rather that a EVP_PKEY_KEM_set_auth() interface to support future algorithms that could possibly need different init functions. Internal code has been refactored, so that it can be shared between the DHKEM and other systems. Since DHKEM operates on low level keys it needs to be able to do low level ECDH and ECXDH calls without converting the keys back into EVP_PKEY/EVP_PKEY_CTX form. See ossl_ecx_compute_key(), ossl_ec_public_from_private() DHKEM requires API's to derive a key using a seed (IKM). This did not sit well inside the DHKEM itself as dispatch functions. This functionality fits better inside the EC and ECX keymanagers keygen, since they are just variations of keygen where the private key is generated in a different manner. This should mainly be used for testing purposes. See ossl_ec_generate_key_dhkem(). It supports this by allowing a settable param to be passed to keygen (See OSSL_PKEY_PARAM_DHKEM_IKM). The keygen calls code within ec and ecx dhkem implementation to handle this. See ossl_ecx_dhkem_derive_private() and ossl_ec_dhkem_derive_private(). These 2 functions are also used by the EC/ECX DHKEM implementations to generate the sender ephemeral keys. Reviewed-by: Hugo Landau <hlandau@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/19068)
2022-08-26 09:54:35 +08:00
};
/* TEST vectors extracted from RFC 9180 */
/* Base test values */
#ifndef OPENSSL_NO_ECX
Add HPKE DHKEM provider support for EC, X25519 and X448. The code is derived from @sftcd's work in PR #17172. This PR puts the DHKEM algorithms into the provider layer as KEM algorithms for EC and ECX. This PR only implements the DHKEM component of HPKE as specified in RFC 9180. crypto/hpke/hpke_util.c has been added for fuctions that will be shared between DHKEM and HPKE. API's for EVP_PKEY_auth_encapsulate_init() and EVP_PKEY_auth_decapsulate_init() have been added to support authenticated encapsulation. auth_init() functions were chosen rather that a EVP_PKEY_KEM_set_auth() interface to support future algorithms that could possibly need different init functions. Internal code has been refactored, so that it can be shared between the DHKEM and other systems. Since DHKEM operates on low level keys it needs to be able to do low level ECDH and ECXDH calls without converting the keys back into EVP_PKEY/EVP_PKEY_CTX form. See ossl_ecx_compute_key(), ossl_ec_public_from_private() DHKEM requires API's to derive a key using a seed (IKM). This did not sit well inside the DHKEM itself as dispatch functions. This functionality fits better inside the EC and ECX keymanagers keygen, since they are just variations of keygen where the private key is generated in a different manner. This should mainly be used for testing purposes. See ossl_ec_generate_key_dhkem(). It supports this by allowing a settable param to be passed to keygen (See OSSL_PKEY_PARAM_DHKEM_IKM). The keygen calls code within ec and ecx dhkem implementation to handle this. See ossl_ecx_dhkem_derive_private() and ossl_ec_dhkem_derive_private(). These 2 functions are also used by the EC/ECX DHKEM implementations to generate the sender ephemeral keys. Reviewed-by: Hugo Landau <hlandau@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/19068)
2022-08-26 09:54:35 +08:00
static const unsigned char x25519_ikme[] = {
0x72, 0x68, 0x60, 0x0d, 0x40, 0x3f, 0xce, 0x43,
0x15, 0x61, 0xae, 0xf5, 0x83, 0xee, 0x16, 0x13,
0x52, 0x7c, 0xff, 0x65, 0x5c, 0x13, 0x43, 0xf2,
0x98, 0x12, 0xe6, 0x67, 0x06, 0xdf, 0x32, 0x34
};
static const unsigned char x25519_ikme_priv[] = {
0x52, 0xc4, 0xa7, 0x58, 0xa8, 0x02, 0xcd, 0x8b,
0x93, 0x6e, 0xce, 0xea, 0x31, 0x44, 0x32, 0x79,
0x8d, 0x5b, 0xaf, 0x2d, 0x7e, 0x92, 0x35, 0xdc,
0x08, 0x4a, 0xb1, 0xb9, 0xcf, 0xa2, 0xf7, 0x36
};
static const unsigned char x25519_ikme_pub[] = {
0x37, 0xfd, 0xa3, 0x56, 0x7b, 0xdb, 0xd6, 0x28,
0xe8, 0x86, 0x68, 0xc3, 0xc8, 0xd7, 0xe9, 0x7d,
0x1d, 0x12, 0x53, 0xb6, 0xd4, 0xea, 0x6d, 0x44,
0xc1, 0x50, 0xf7, 0x41, 0xf1, 0xbf, 0x44, 0x31
};
static const unsigned char x25519_rpub[] = {
0x39, 0x48, 0xcf, 0xe0, 0xad, 0x1d, 0xdb, 0x69,
0x5d, 0x78, 0x0e, 0x59, 0x07, 0x71, 0x95, 0xda,
0x6c, 0x56, 0x50, 0x6b, 0x02, 0x73, 0x29, 0x79,
0x4a, 0xb0, 0x2b, 0xca, 0x80, 0x81, 0x5c, 0x4d
};
static const unsigned char x25519_rpriv[] = {
0x46, 0x12, 0xc5, 0x50, 0x26, 0x3f, 0xc8, 0xad,
0x58, 0x37, 0x5d, 0xf3, 0xf5, 0x57, 0xaa, 0xc5,
0x31, 0xd2, 0x68, 0x50, 0x90, 0x3e, 0x55, 0xa9,
0xf2, 0x3f, 0x21, 0xd8, 0x53, 0x4e, 0x8a, 0xc8
};
static const unsigned char x25519_expected_enc[] = {
0x37, 0xfd, 0xa3, 0x56, 0x7b, 0xdb, 0xd6, 0x28,
0xe8, 0x86, 0x68, 0xc3, 0xc8, 0xd7, 0xe9, 0x7d,
0x1d, 0x12, 0x53, 0xb6, 0xd4, 0xea, 0x6d, 0x44,
0xc1, 0x50, 0xf7, 0x41, 0xf1, 0xbf, 0x44, 0x31
};
static const unsigned char x25519_expected_secret[] = {
0xfe, 0x0e, 0x18, 0xc9, 0xf0, 0x24, 0xce, 0x43,
0x79, 0x9a, 0xe3, 0x93, 0xc7, 0xe8, 0xfe, 0x8f,
0xce, 0x9d, 0x21, 0x88, 0x75, 0xe8, 0x22, 0x7b,
0x01, 0x87, 0xc0, 0x4e, 0x7d, 0x2e, 0xa1, 0xfc
};
static const unsigned char x25519_auth_ikme[] = {
0x6e, 0x6d, 0x8f, 0x20, 0x0e, 0xa2, 0xfb, 0x20,
0xc3, 0x0b, 0x00, 0x3a, 0x8b, 0x4f, 0x43, 0x3d,
0x2f, 0x4e, 0xd4, 0xc2, 0x65, 0x8d, 0x5b, 0xc8,
0xce, 0x2f, 0xef, 0x71, 0x80, 0x59, 0xc9, 0xf7
};
static const unsigned char x25519_auth_rpub[] = {
0x16, 0x32, 0xd5, 0xc2, 0xf7, 0x1c, 0x2b, 0x38,
0xd0, 0xa8, 0xfc, 0xc3, 0x59, 0x35, 0x52, 0x00,
0xca, 0xa8, 0xb1, 0xff, 0xdf, 0x28, 0x61, 0x80,
0x80, 0x46, 0x6c, 0x90, 0x9c, 0xb6, 0x9b, 0x2e
};
static const unsigned char x25519_auth_rpriv[] = {
0xfd, 0xea, 0x67, 0xcf, 0x83, 0x1f, 0x1c, 0xa9,
0x8d, 0x8e, 0x27, 0xb1, 0xf6, 0xab, 0xeb, 0x5b,
0x77, 0x45, 0xe9, 0xd3, 0x53, 0x48, 0xb8, 0x0f,
0xa4, 0x07, 0xff, 0x69, 0x58, 0xf9, 0x13, 0x7e
};
static const unsigned char x25519_auth_spub[] = {
0x8b, 0x0c, 0x70, 0x87, 0x3d, 0xc5, 0xae, 0xcb,
0x7f, 0x9e, 0xe4, 0xe6, 0x24, 0x06, 0xa3, 0x97,
0xb3, 0x50, 0xe5, 0x70, 0x12, 0xbe, 0x45, 0xcf,
0x53, 0xb7, 0x10, 0x5a, 0xe7, 0x31, 0x79, 0x0b
};
static const unsigned char x25519_auth_spriv[] = {
0xdc, 0x4a, 0x14, 0x63, 0x13, 0xcc, 0xe6, 0x0a,
0x27, 0x8a, 0x53, 0x23, 0xd3, 0x21, 0xf0, 0x51,
0xc5, 0x70, 0x7e, 0x9c, 0x45, 0xba, 0x21, 0xa3,
0x47, 0x9f, 0xec, 0xdf, 0x76, 0xfc, 0x69, 0xdd
};
static const unsigned char x25519_auth_expected_enc[] = {
0x23, 0xfb, 0x95, 0x25, 0x71, 0xa1, 0x4a, 0x25,
0xe3, 0xd6, 0x78, 0x14, 0x0c, 0xd0, 0xe5, 0xeb,
0x47, 0xa0, 0x96, 0x1b, 0xb1, 0x8a, 0xfc, 0xf8,
0x58, 0x96, 0xe5, 0x45, 0x3c, 0x31, 0x2e, 0x76
};
static const unsigned char x25519_auth_expected_secret[] = {
0x2d, 0x6d, 0xb4, 0xcf, 0x71, 0x9d, 0xc7, 0x29,
0x3f, 0xcb, 0xf3, 0xfa, 0x64, 0x69, 0x07, 0x08,
0xe4, 0x4e, 0x2b, 0xeb, 0xc8, 0x1f, 0x84, 0x60,
0x86, 0x77, 0x95, 0x8c, 0x0d, 0x44, 0x48, 0xa7
};
#endif
Add HPKE DHKEM provider support for EC, X25519 and X448. The code is derived from @sftcd's work in PR #17172. This PR puts the DHKEM algorithms into the provider layer as KEM algorithms for EC and ECX. This PR only implements the DHKEM component of HPKE as specified in RFC 9180. crypto/hpke/hpke_util.c has been added for fuctions that will be shared between DHKEM and HPKE. API's for EVP_PKEY_auth_encapsulate_init() and EVP_PKEY_auth_decapsulate_init() have been added to support authenticated encapsulation. auth_init() functions were chosen rather that a EVP_PKEY_KEM_set_auth() interface to support future algorithms that could possibly need different init functions. Internal code has been refactored, so that it can be shared between the DHKEM and other systems. Since DHKEM operates on low level keys it needs to be able to do low level ECDH and ECXDH calls without converting the keys back into EVP_PKEY/EVP_PKEY_CTX form. See ossl_ecx_compute_key(), ossl_ec_public_from_private() DHKEM requires API's to derive a key using a seed (IKM). This did not sit well inside the DHKEM itself as dispatch functions. This functionality fits better inside the EC and ECX keymanagers keygen, since they are just variations of keygen where the private key is generated in a different manner. This should mainly be used for testing purposes. See ossl_ec_generate_key_dhkem(). It supports this by allowing a settable param to be passed to keygen (See OSSL_PKEY_PARAM_DHKEM_IKM). The keygen calls code within ec and ecx dhkem implementation to handle this. See ossl_ecx_dhkem_derive_private() and ossl_ec_dhkem_derive_private(). These 2 functions are also used by the EC/ECX DHKEM implementations to generate the sender ephemeral keys. Reviewed-by: Hugo Landau <hlandau@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/19068)
2022-08-26 09:54:35 +08:00
static const unsigned char p256_ikme[] = {
0x42, 0x70, 0xe5, 0x4f, 0xfd, 0x08, 0xd7, 0x9d,
0x59, 0x28, 0x02, 0x0a, 0xf4, 0x68, 0x6d, 0x8f,
0x6b, 0x7d, 0x35, 0xdb, 0xe4, 0x70, 0x26, 0x5f,
0x1f, 0x5a, 0xa2, 0x28, 0x16, 0xce, 0x86, 0x0e
};
static const unsigned char p256_ikme_pub[] = {
0x04, 0xa9, 0x27, 0x19, 0xc6, 0x19, 0x5d, 0x50,
0x85, 0x10, 0x4f, 0x46, 0x9a, 0x8b, 0x98, 0x14,
0xd5, 0x83, 0x8f, 0xf7, 0x2b, 0x60, 0x50, 0x1e,
0x2c, 0x44, 0x66, 0xe5, 0xe6, 0x7b, 0x32, 0x5a,
0xc9, 0x85, 0x36, 0xd7, 0xb6, 0x1a, 0x1a, 0xf4,
0xb7, 0x8e, 0x5b, 0x7f, 0x95, 0x1c, 0x09, 0x00,
0xbe, 0x86, 0x3c, 0x40, 0x3c, 0xe6, 0x5c, 0x9b,
0xfc, 0xb9, 0x38, 0x26, 0x57, 0x22, 0x2d, 0x18,
0xc4
};
static const unsigned char p256_ikme_priv[] = {
0x49, 0x95, 0x78, 0x8e, 0xf4, 0xb9, 0xd6, 0x13,
0x2b, 0x24, 0x9c, 0xe5, 0x9a, 0x77, 0x28, 0x14,
0x93, 0xeb, 0x39, 0xaf, 0x37, 0x3d, 0x23, 0x6a,
0x1f, 0xe4, 0x15, 0xcb, 0x0c, 0x2d, 0x7b, 0xeb
};
static const unsigned char p256_ikmr[] = {
0x66, 0x8b, 0x37, 0x17, 0x1f, 0x10, 0x72, 0xf3,
0xcf, 0x12, 0xea, 0x8a, 0x23, 0x6a, 0x45, 0xdf,
0x23, 0xfc, 0x13, 0xb8, 0x2a, 0xf3, 0x60, 0x9a,
0xd1, 0xe3, 0x54, 0xf6, 0xef, 0x81, 0x75, 0x50
};
static const unsigned char p256_ikmr_pub[] = {
0x04, 0xfe, 0x8c, 0x19, 0xce, 0x09, 0x05, 0x19,
0x1e, 0xbc, 0x29, 0x8a, 0x92, 0x45, 0x79, 0x25,
0x31, 0xf2, 0x6f, 0x0c, 0xec, 0xe2, 0x46, 0x06,
0x39, 0xe8, 0xbc, 0x39, 0xcb, 0x7f, 0x70, 0x6a,
0x82, 0x6a, 0x77, 0x9b, 0x4c, 0xf9, 0x69, 0xb8,
0xa0, 0xe5, 0x39, 0xc7, 0xf6, 0x2f, 0xb3, 0xd3,
0x0a, 0xd6, 0xaa, 0x8f, 0x80, 0xe3, 0x0f, 0x1d,
0x12, 0x8a, 0xaf, 0xd6, 0x8a, 0x2c, 0xe7, 0x2e,
0xa0
};
static const unsigned char p256_ikmr_priv[] = {
0xf3, 0xce, 0x7f, 0xda, 0xe5, 0x7e, 0x1a, 0x31,
0x0d, 0x87, 0xf1, 0xeb, 0xbd, 0xe6, 0xf3, 0x28,
0xbe, 0x0a, 0x99, 0xcd, 0xbc, 0xad, 0xf4, 0xd6,
0x58, 0x9c, 0xf2, 0x9d, 0xe4, 0xb8, 0xff, 0xd2
};
static const unsigned char p256_expected_enc[] = {
0x04, 0xa9, 0x27, 0x19, 0xc6, 0x19, 0x5d, 0x50,
0x85, 0x10, 0x4f, 0x46, 0x9a, 0x8b, 0x98, 0x14,
0xd5, 0x83, 0x8f, 0xf7, 0x2b, 0x60, 0x50, 0x1e,
0x2c, 0x44, 0x66, 0xe5, 0xe6, 0x7b, 0x32, 0x5a,
0xc9, 0x85, 0x36, 0xd7, 0xb6, 0x1a, 0x1a, 0xf4,
0xb7, 0x8e, 0x5b, 0x7f, 0x95, 0x1c, 0x09, 0x00,
0xbe, 0x86, 0x3c, 0x40, 0x3c, 0xe6, 0x5c, 0x9b,
0xfc, 0xb9, 0x38, 0x26, 0x57, 0x22, 0x2d, 0x18,
0xc4
};
static const unsigned char p256_expected_secret[] = {
0xc0, 0xd2, 0x6a, 0xea, 0xb5, 0x36, 0x60, 0x9a,
0x57, 0x2b, 0x07, 0x69, 0x5d, 0x93, 0x3b, 0x58,
0x9d, 0xcf, 0x36, 0x3f, 0xf9, 0xd9, 0x3c, 0x93,
0xad, 0xea, 0x53, 0x7a, 0xea, 0xbb, 0x8c, 0xb8
};
static const unsigned char p521_ikme[] = {
0x7f, 0x06, 0xab, 0x82, 0x15, 0x10, 0x5f, 0xc4,
0x6a, 0xce, 0xeb, 0x2e, 0x3d, 0xc5, 0x02, 0x8b,
0x44, 0x36, 0x4f, 0x96, 0x04, 0x26, 0xeb, 0x0d,
0x8e, 0x40, 0x26, 0xc2, 0xf8, 0xb5, 0xd7, 0xe7,
0xa9, 0x86, 0x68, 0x8f, 0x15, 0x91, 0xab, 0xf5,
0xab, 0x75, 0x3c, 0x35, 0x7a, 0x5d, 0x6f, 0x04,
0x40, 0x41, 0x4b, 0x4e, 0xd4, 0xed, 0xe7, 0x13,
0x17, 0x77, 0x2a, 0xc9, 0x8d, 0x92, 0x39, 0xf7,
0x09, 0x04
};
static const unsigned char p521_ikme_pub[] = {
0x04, 0x01, 0x38, 0xb3, 0x85, 0xca, 0x16, 0xbb,
0x0d, 0x5f, 0xa0, 0xc0, 0x66, 0x5f, 0xbb, 0xd7,
0xe6, 0x9e, 0x3e, 0xe2, 0x9f, 0x63, 0x99, 0x1d,
0x3e, 0x9b, 0x5f, 0xa7, 0x40, 0xaa, 0xb8, 0x90,
0x0a, 0xae, 0xed, 0x46, 0xed, 0x73, 0xa4, 0x90,
0x55, 0x75, 0x84, 0x25, 0xa0, 0xce, 0x36, 0x50,
0x7c, 0x54, 0xb2, 0x9c, 0xc5, 0xb8, 0x5a, 0x5c,
0xee, 0x6b, 0xae, 0x0c, 0xf1, 0xc2, 0x1f, 0x27,
0x31, 0xec, 0xe2, 0x01, 0x3d, 0xc3, 0xfb, 0x7c,
0x8d, 0x21, 0x65, 0x4b, 0xb1, 0x61, 0xb4, 0x63,
0x96, 0x2c, 0xa1, 0x9e, 0x8c, 0x65, 0x4f, 0xf2,
0x4c, 0x94, 0xdd, 0x28, 0x98, 0xde, 0x12, 0x05,
0x1f, 0x1e, 0xd0, 0x69, 0x22, 0x37, 0xfb, 0x02,
0xb2, 0xf8, 0xd1, 0xdc, 0x1c, 0x73, 0xe9, 0xb3,
0x66, 0xb5, 0x29, 0xeb, 0x43, 0x6e, 0x98, 0xa9,
0x96, 0xee, 0x52, 0x2a, 0xef, 0x86, 0x3d, 0xd5,
0x73, 0x9d, 0x2f, 0x29, 0xb0
};
static const unsigned char p521_ikme_priv[] = {
0x01, 0x47, 0x84, 0xc6, 0x92, 0xda, 0x35, 0xdf,
0x6e, 0xcd, 0xe9, 0x8e, 0xe4, 0x3a, 0xc4, 0x25,
0xdb, 0xdd, 0x09, 0x69, 0xc0, 0xc7, 0x2b, 0x42,
0xf2, 0xe7, 0x08, 0xab, 0x9d, 0x53, 0x54, 0x15,
0xa8, 0x56, 0x9b, 0xda, 0xcf, 0xcc, 0x0a, 0x11,
0x4c, 0x85, 0xb8, 0xe3, 0xf2, 0x6a, 0xcf, 0x4d,
0x68, 0x11, 0x5f, 0x8c, 0x91, 0xa6, 0x61, 0x78,
0xcd, 0xbd, 0x03, 0xb7, 0xbc, 0xc5, 0x29, 0x1e,
0x37, 0x4b
};
static const unsigned char p521_ikmr_pub[] = {
0x04, 0x01, 0xb4, 0x54, 0x98, 0xc1, 0x71, 0x4e,
0x2d, 0xce, 0x16, 0x7d, 0x3c, 0xaf, 0x16, 0x2e,
0x45, 0xe0, 0x64, 0x2a, 0xfc, 0x7e, 0xd4, 0x35,
0xdf, 0x79, 0x02, 0xcc, 0xae, 0x0e, 0x84, 0xba,
0x0f, 0x7d, 0x37, 0x3f, 0x64, 0x6b, 0x77, 0x38,
0xbb, 0xbd, 0xca, 0x11, 0xed, 0x91, 0xbd, 0xea,
0xe3, 0xcd, 0xcb, 0xa3, 0x30, 0x1f, 0x24, 0x57,
0xbe, 0x45, 0x2f, 0x27, 0x1f, 0xa6, 0x83, 0x75,
0x80, 0xe6, 0x61, 0x01, 0x2a, 0xf4, 0x95, 0x83,
0xa6, 0x2e, 0x48, 0xd4, 0x4b, 0xed, 0x35, 0x0c,
0x71, 0x18, 0xc0, 0xd8, 0xdc, 0x86, 0x1c, 0x23,
0x8c, 0x72, 0xa2, 0xbd, 0xa1, 0x7f, 0x64, 0x70,
0x4f, 0x46, 0x4b, 0x57, 0x33, 0x8e, 0x7f, 0x40,
0xb6, 0x09, 0x59, 0x48, 0x0c, 0x0e, 0x58, 0xe6,
0x55, 0x9b, 0x19, 0x0d, 0x81, 0x66, 0x3e, 0xd8,
0x16, 0xe5, 0x23, 0xb6, 0xb6, 0xa4, 0x18, 0xf6,
0x6d, 0x24, 0x51, 0xec, 0x64
};
static const unsigned char p521_ikmr_priv[] = {
0x01, 0x46, 0x26, 0x80, 0x36, 0x9a, 0xe3, 0x75,
0xe4, 0xb3, 0x79, 0x10, 0x70, 0xa7, 0x45, 0x8e,
0xd5, 0x27, 0x84, 0x2f, 0x6a, 0x98, 0xa7, 0x9f,
0xf5, 0xe0, 0xd4, 0xcb, 0xde, 0x83, 0xc2, 0x71,
0x96, 0xa3, 0x91, 0x69, 0x56, 0x65, 0x55, 0x23,
0xa6, 0xa2, 0x55, 0x6a, 0x7a, 0xf6, 0x2c, 0x5c,
0xad, 0xab, 0xe2, 0xef, 0x9d, 0xa3, 0x76, 0x0b,
0xb2, 0x1e, 0x00, 0x52, 0x02, 0xf7, 0xb2, 0x46,
0x28, 0x47
};
static const unsigned char p521_expected_enc[] = {
0x04, 0x01, 0x38, 0xb3, 0x85, 0xca, 0x16, 0xbb,
0x0d, 0x5f, 0xa0, 0xc0, 0x66, 0x5f, 0xbb, 0xd7,
0xe6, 0x9e, 0x3e, 0xe2, 0x9f, 0x63, 0x99, 0x1d,
0x3e, 0x9b, 0x5f, 0xa7, 0x40, 0xaa, 0xb8, 0x90,
0x0a, 0xae, 0xed, 0x46, 0xed, 0x73, 0xa4, 0x90,
0x55, 0x75, 0x84, 0x25, 0xa0, 0xce, 0x36, 0x50,
0x7c, 0x54, 0xb2, 0x9c, 0xc5, 0xb8, 0x5a, 0x5c,
0xee, 0x6b, 0xae, 0x0c, 0xf1, 0xc2, 0x1f, 0x27,
0x31, 0xec, 0xe2, 0x01, 0x3d, 0xc3, 0xfb, 0x7c,
0x8d, 0x21, 0x65, 0x4b, 0xb1, 0x61, 0xb4, 0x63,
0x96, 0x2c, 0xa1, 0x9e, 0x8c, 0x65, 0x4f, 0xf2,
0x4c, 0x94, 0xdd, 0x28, 0x98, 0xde, 0x12, 0x05,
0x1f, 0x1e, 0xd0, 0x69, 0x22, 0x37, 0xfb, 0x02,
0xb2, 0xf8, 0xd1, 0xdc, 0x1c, 0x73, 0xe9, 0xb3,
0x66, 0xb5, 0x29, 0xeb, 0x43, 0x6e, 0x98, 0xa9,
0x96, 0xee, 0x52, 0x2a, 0xef, 0x86, 0x3d, 0xd5,
0x73, 0x9d, 0x2f, 0x29, 0xb0
};
static const unsigned char p521_expected_secret[] = {
0x77, 0x6a, 0xb4, 0x21, 0x30, 0x2f, 0x6e, 0xff,
0x7d, 0x7c, 0xb5, 0xcb, 0x1a, 0xda, 0xea, 0x0c,
0xd5, 0x08, 0x72, 0xc7, 0x1c, 0x2d, 0x63, 0xc3,
0x0c, 0x4f, 0x1d, 0x5e, 0x43, 0x65, 0x33, 0x36,
0xfe, 0xf3, 0x3b, 0x10, 0x3c, 0x67, 0xe7, 0xa9,
0x8a, 0xdd, 0x2d, 0x3b, 0x66, 0xe2, 0xfd, 0xa9,
0x5b, 0x5b, 0x2a, 0x66, 0x7a, 0xa9, 0xda, 0xc7,
0xe5, 0x9c, 0xc1, 0xd4, 0x6d, 0x30, 0xe8, 0x18
};
static const unsigned char p521_auth_ikme[] = {
0xfe, 0x1c, 0x58, 0x9c, 0x2a, 0x05, 0x89, 0x38,
0x95, 0xa5, 0x37, 0xf3, 0x8c, 0x7c, 0xb4, 0x30,
0x0b, 0x5a, 0x7e, 0x8f, 0xef, 0x3d, 0x6c, 0xcb,
0x8f, 0x07, 0xa4, 0x98, 0x02, 0x9c, 0x61, 0xe9,
0x02, 0x62, 0xe0, 0x09, 0xdc, 0x25, 0x4c, 0x7f,
0x62, 0x35, 0xf9, 0xc6, 0xb2, 0xfd, 0x6a, 0xef,
0xf0, 0xa7, 0x14, 0xdb, 0x13, 0x1b, 0x09, 0x25,
0x8c, 0x16, 0xe2, 0x17, 0xb7, 0xbd, 0x2a, 0xa6,
0x19, 0xb0
};
static const unsigned char p521_auth_ikmr_pub[] = {
0x04, 0x00, 0x7d, 0x41, 0x9b, 0x88, 0x34, 0xe7,
0x51, 0x3d, 0x0e, 0x7c, 0xc6, 0x64, 0x24, 0xa1,
0x36, 0xec, 0x5e, 0x11, 0x39, 0x5a, 0xb3, 0x53,
0xda, 0x32, 0x4e, 0x35, 0x86, 0x67, 0x3e, 0xe7,
0x3d, 0x53, 0xab, 0x34, 0xf3, 0x0a, 0x0b, 0x42,
0xa9, 0x2d, 0x05, 0x4d, 0x0d, 0xb3, 0x21, 0xb8,
0x0f, 0x62, 0x17, 0xe6, 0x55, 0xe3, 0x04, 0xf7,
0x27, 0x93, 0x76, 0x7c, 0x42, 0x31, 0x78, 0x5c,
0x4a, 0x4a, 0x6e, 0x00, 0x8f, 0x31, 0xb9, 0x3b,
0x7a, 0x4f, 0x2b, 0x8c, 0xd1, 0x2e, 0x5f, 0xe5,
0xa0, 0x52, 0x3d, 0xc7, 0x13, 0x53, 0xc6, 0x6c,
0xbd, 0xad, 0x51, 0xc8, 0x6b, 0x9e, 0x0b, 0xdf,
0xcd, 0x9a, 0x45, 0x69, 0x8f, 0x2d, 0xab, 0x18,
0x09, 0xab, 0x1b, 0x0f, 0x88, 0xf5, 0x42, 0x27,
0x23, 0x2c, 0x85, 0x8a, 0xcc, 0xc4, 0x4d, 0x9a,
0x8d, 0x41, 0x77, 0x5a, 0xc0, 0x26, 0x34, 0x15,
0x64, 0xa2, 0xd7, 0x49, 0xf4
};
static const unsigned char p521_auth_ikmr_priv[] = {
0x01, 0x3e, 0xf3, 0x26, 0x94, 0x09, 0x98, 0x54,
0x4a, 0x89, 0x9e, 0x15, 0xe1, 0x72, 0x65, 0x48,
0xff, 0x43, 0xbb, 0xdb, 0x23, 0xa8, 0x58, 0x7a,
0xa3, 0xbe, 0xf9, 0xd1, 0xb8, 0x57, 0x33, 0x8d,
0x87, 0x28, 0x7d, 0xf5, 0x66, 0x70, 0x37, 0xb5,
0x19, 0xd6, 0xa1, 0x46, 0x61, 0xe9, 0x50, 0x3c,
0xfc, 0x95, 0xa1, 0x54, 0xd9, 0x35, 0x66, 0xd8,
0xc8, 0x4e, 0x95, 0xce, 0x93, 0xad, 0x05, 0x29,
0x3a, 0x0b
};
static const unsigned char p521_auth_ikms_pub[] = {
0x04, 0x01, 0x5c, 0xc3, 0x63, 0x66, 0x32, 0xea,
0x9a, 0x38, 0x79, 0xe4, 0x32, 0x40, 0xbe, 0xae,
0x5d, 0x15, 0xa4, 0x4f, 0xba, 0x81, 0x92, 0x82,
0xfa, 0xc2, 0x6a, 0x19, 0xc9, 0x89, 0xfa, 0xfd,
0xd0, 0xf3, 0x30, 0xb8, 0x52, 0x1d, 0xff, 0x7d,
0xc3, 0x93, 0x10, 0x1b, 0x01, 0x8c, 0x1e, 0x65,
0xb0, 0x7b, 0xe9, 0xf5, 0xfc, 0x9a, 0x28, 0xa1,
0xf4, 0x50, 0xd6, 0xa5, 0x41, 0xee, 0x0d, 0x76,
0x22, 0x11, 0x33, 0x00, 0x1e, 0x8f, 0x0f, 0x6a,
0x05, 0xab, 0x79, 0xf9, 0xb9, 0xbb, 0x9c, 0xcc,
0xe1, 0x42, 0xa4, 0x53, 0xd5, 0x9c, 0x5a, 0xbe,
0xbb, 0x56, 0x74, 0x83, 0x9d, 0x93, 0x5a, 0x3c,
0xa1, 0xa3, 0xfb, 0xc3, 0x28, 0x53, 0x9a, 0x60,
0xb3, 0xbc, 0x3c, 0x05, 0xfe, 0xd2, 0x28, 0x38,
0x58, 0x4a, 0x72, 0x6b, 0x9c, 0x17, 0x67, 0x96,
0xca, 0xd0, 0x16, 0x9b, 0xa4, 0x09, 0x33, 0x32,
0xcb, 0xd2, 0xdc, 0x3a, 0x9f
};
static const unsigned char p521_auth_ikms_priv[] = {
0x00, 0x10, 0x18, 0x58, 0x45, 0x99, 0x62, 0x5f,
0xf9, 0x95, 0x3b, 0x93, 0x05, 0x84, 0x98, 0x50,
0xd5, 0xe3, 0x4b, 0xd7, 0x89, 0xd4, 0xb8, 0x11,
0x01, 0x13, 0x96, 0x62, 0xfb, 0xea, 0x8b, 0x65,
0x08, 0xdd, 0xb9, 0xd0, 0x19, 0xb0, 0xd6, 0x92,
0xe7, 0x37, 0xf6, 0x6b, 0xea, 0xe3, 0xf1, 0xf7,
0x83, 0xe7, 0x44, 0x20, 0x2a, 0xaf, 0x6f, 0xea,
0x01, 0x50, 0x6c, 0x27, 0x28, 0x7e, 0x35, 0x9f,
0xe7, 0x76
};
static const unsigned char p521_auth_expected_enc[] = {
0x04, 0x01, 0x7d, 0xe1, 0x2e, 0xde, 0x7f, 0x72,
0xcb, 0x10, 0x1d, 0xab, 0x36, 0xa1, 0x11, 0x26,
0x5c, 0x97, 0xb3, 0x65, 0x48, 0x16, 0xdc, 0xd6,
0x18, 0x3f, 0x80, 0x9d, 0x4b, 0x3d, 0x11, 0x1f,
0xe7, 0x59, 0x49, 0x7f, 0x8a, 0xef, 0xdc, 0x5d,
0xbb, 0x40, 0xd3, 0xe6, 0xd2, 0x1d, 0xb1, 0x5b,
0xdc, 0x60, 0xf1, 0x5f, 0x2a, 0x42, 0x07, 0x61,
0xbc, 0xae, 0xef, 0x73, 0xb8, 0x91, 0xc2, 0xb1,
0x17, 0xe9, 0xcf, 0x01, 0xe2, 0x93, 0x20, 0xb7,
0x99, 0xbb, 0xc8, 0x6a, 0xfd, 0xc5, 0xea, 0x97,
0xd9, 0x41, 0xea, 0x1c, 0x5b, 0xd5, 0xeb, 0xee,
0xac, 0x7a, 0x78, 0x4b, 0x3b, 0xab, 0x52, 0x47,
0x46, 0xf3, 0xe6, 0x40, 0xec, 0x26, 0xee, 0x1b,
0xd9, 0x12, 0x55, 0xf9, 0x33, 0x0d, 0x97, 0x4f,
0x84, 0x50, 0x84, 0x63, 0x7e, 0xe0, 0xe6, 0xfe,
0x9f, 0x50, 0x5c, 0x5b, 0x87, 0xc8, 0x6a, 0x4e,
0x1a, 0x6c, 0x30, 0x96, 0xdd
};
static const unsigned char p521_auth_expected_secret[] = {
0x26, 0x64, 0x8f, 0xa2, 0xa2, 0xde, 0xb0, 0xbf,
0xc5, 0x63, 0x49, 0xa5, 0x90, 0xfd, 0x4c, 0xb7,
0x10, 0x8a, 0x51, 0x79, 0x7b, 0x63, 0x46, 0x94,
0xfc, 0x02, 0x06, 0x1e, 0x8d, 0x91, 0xb3, 0x57,
0x6a, 0xc7, 0x36, 0xa6, 0x8b, 0xf8, 0x48, 0xfe,
0x2a, 0x58, 0xdf, 0xb1, 0x95, 0x6d, 0x26, 0x6e,
0x68, 0x20, 0x9a, 0x4d, 0x63, 0x1e, 0x51, 0x3b,
0xad, 0xf8, 0xf4, 0xdc, 0xfc, 0x00, 0xf3, 0x0a
};
static const TEST_DERIVEKEY_DATA ec_derivekey_data[] = {
{
"P-256",
p256_ikme, sizeof(p256_ikme),
p256_ikme_pub, sizeof(p256_ikme_pub),
p256_ikme_priv, sizeof(p256_ikme_priv)
},
{
"P-256",
p256_ikmr, sizeof(p256_ikmr),
p256_ikmr_pub, sizeof(p256_ikmr_pub),
p256_ikmr_priv, sizeof(p256_ikmr_priv)
},
{
"P-521",
p521_ikme, sizeof(p521_ikme),
p521_ikme_pub, sizeof(p521_ikme_pub),
p521_ikme_priv, sizeof(p521_ikme_priv)
}
};
static const TEST_ENCAPDATA ec_encapdata[] = {
{
"P-256",
p256_ikme, sizeof(p256_ikme),
p256_ikmr_pub, sizeof(p256_ikmr_pub),
p256_ikmr_priv, sizeof(p256_ikmr_priv),
p256_expected_enc, sizeof(p256_expected_enc),
p256_expected_secret, sizeof(p256_expected_secret),
},
#ifndef OPENSSL_NO_ECX
Add HPKE DHKEM provider support for EC, X25519 and X448. The code is derived from @sftcd's work in PR #17172. This PR puts the DHKEM algorithms into the provider layer as KEM algorithms for EC and ECX. This PR only implements the DHKEM component of HPKE as specified in RFC 9180. crypto/hpke/hpke_util.c has been added for fuctions that will be shared between DHKEM and HPKE. API's for EVP_PKEY_auth_encapsulate_init() and EVP_PKEY_auth_decapsulate_init() have been added to support authenticated encapsulation. auth_init() functions were chosen rather that a EVP_PKEY_KEM_set_auth() interface to support future algorithms that could possibly need different init functions. Internal code has been refactored, so that it can be shared between the DHKEM and other systems. Since DHKEM operates on low level keys it needs to be able to do low level ECDH and ECXDH calls without converting the keys back into EVP_PKEY/EVP_PKEY_CTX form. See ossl_ecx_compute_key(), ossl_ec_public_from_private() DHKEM requires API's to derive a key using a seed (IKM). This did not sit well inside the DHKEM itself as dispatch functions. This functionality fits better inside the EC and ECX keymanagers keygen, since they are just variations of keygen where the private key is generated in a different manner. This should mainly be used for testing purposes. See ossl_ec_generate_key_dhkem(). It supports this by allowing a settable param to be passed to keygen (See OSSL_PKEY_PARAM_DHKEM_IKM). The keygen calls code within ec and ecx dhkem implementation to handle this. See ossl_ecx_dhkem_derive_private() and ossl_ec_dhkem_derive_private(). These 2 functions are also used by the EC/ECX DHKEM implementations to generate the sender ephemeral keys. Reviewed-by: Hugo Landau <hlandau@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/19068)
2022-08-26 09:54:35 +08:00
{
"X25519",
x25519_ikme, sizeof(x25519_ikme),
x25519_rpub, sizeof(x25519_rpub),
x25519_rpriv, sizeof(x25519_rpriv),
x25519_expected_enc, sizeof(x25519_expected_enc),
x25519_expected_secret, sizeof(x25519_expected_secret),
},
#endif
Add HPKE DHKEM provider support for EC, X25519 and X448. The code is derived from @sftcd's work in PR #17172. This PR puts the DHKEM algorithms into the provider layer as KEM algorithms for EC and ECX. This PR only implements the DHKEM component of HPKE as specified in RFC 9180. crypto/hpke/hpke_util.c has been added for fuctions that will be shared between DHKEM and HPKE. API's for EVP_PKEY_auth_encapsulate_init() and EVP_PKEY_auth_decapsulate_init() have been added to support authenticated encapsulation. auth_init() functions were chosen rather that a EVP_PKEY_KEM_set_auth() interface to support future algorithms that could possibly need different init functions. Internal code has been refactored, so that it can be shared between the DHKEM and other systems. Since DHKEM operates on low level keys it needs to be able to do low level ECDH and ECXDH calls without converting the keys back into EVP_PKEY/EVP_PKEY_CTX form. See ossl_ecx_compute_key(), ossl_ec_public_from_private() DHKEM requires API's to derive a key using a seed (IKM). This did not sit well inside the DHKEM itself as dispatch functions. This functionality fits better inside the EC and ECX keymanagers keygen, since they are just variations of keygen where the private key is generated in a different manner. This should mainly be used for testing purposes. See ossl_ec_generate_key_dhkem(). It supports this by allowing a settable param to be passed to keygen (See OSSL_PKEY_PARAM_DHKEM_IKM). The keygen calls code within ec and ecx dhkem implementation to handle this. See ossl_ecx_dhkem_derive_private() and ossl_ec_dhkem_derive_private(). These 2 functions are also used by the EC/ECX DHKEM implementations to generate the sender ephemeral keys. Reviewed-by: Hugo Landau <hlandau@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/19068)
2022-08-26 09:54:35 +08:00
{
"P-521",
p521_ikme, sizeof(p521_ikme),
p521_ikmr_pub, sizeof(p521_ikmr_pub),
p521_ikmr_priv, sizeof(p521_ikmr_priv),
p521_expected_enc, sizeof(p521_expected_enc),
p521_expected_secret, sizeof(p521_expected_secret),
},
{
"P-521",
p521_auth_ikme, sizeof(p521_auth_ikme),
p521_auth_ikmr_pub, sizeof(p521_auth_ikmr_pub),
p521_auth_ikmr_priv, sizeof(p521_auth_ikmr_priv),
p521_auth_expected_enc, sizeof(p521_auth_expected_enc),
p521_auth_expected_secret, sizeof(p521_auth_expected_secret),
p521_auth_ikms_pub, sizeof(p521_auth_ikms_pub),
p521_auth_ikms_priv, sizeof(p521_auth_ikms_priv)
},
#ifndef OPENSSL_NO_ECX
Add HPKE DHKEM provider support for EC, X25519 and X448. The code is derived from @sftcd's work in PR #17172. This PR puts the DHKEM algorithms into the provider layer as KEM algorithms for EC and ECX. This PR only implements the DHKEM component of HPKE as specified in RFC 9180. crypto/hpke/hpke_util.c has been added for fuctions that will be shared between DHKEM and HPKE. API's for EVP_PKEY_auth_encapsulate_init() and EVP_PKEY_auth_decapsulate_init() have been added to support authenticated encapsulation. auth_init() functions were chosen rather that a EVP_PKEY_KEM_set_auth() interface to support future algorithms that could possibly need different init functions. Internal code has been refactored, so that it can be shared between the DHKEM and other systems. Since DHKEM operates on low level keys it needs to be able to do low level ECDH and ECXDH calls without converting the keys back into EVP_PKEY/EVP_PKEY_CTX form. See ossl_ecx_compute_key(), ossl_ec_public_from_private() DHKEM requires API's to derive a key using a seed (IKM). This did not sit well inside the DHKEM itself as dispatch functions. This functionality fits better inside the EC and ECX keymanagers keygen, since they are just variations of keygen where the private key is generated in a different manner. This should mainly be used for testing purposes. See ossl_ec_generate_key_dhkem(). It supports this by allowing a settable param to be passed to keygen (See OSSL_PKEY_PARAM_DHKEM_IKM). The keygen calls code within ec and ecx dhkem implementation to handle this. See ossl_ecx_dhkem_derive_private() and ossl_ec_dhkem_derive_private(). These 2 functions are also used by the EC/ECX DHKEM implementations to generate the sender ephemeral keys. Reviewed-by: Hugo Landau <hlandau@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/19068)
2022-08-26 09:54:35 +08:00
{
"X25519",
x25519_auth_ikme, sizeof(x25519_auth_ikme),
x25519_auth_rpub, sizeof(x25519_auth_rpub),
x25519_auth_rpriv, sizeof(x25519_auth_rpriv),
x25519_auth_expected_enc, sizeof(x25519_auth_expected_enc),
x25519_auth_expected_secret, sizeof(x25519_auth_expected_secret),
x25519_auth_spub, sizeof(x25519_auth_spub),
x25519_auth_spriv, sizeof(x25519_auth_spriv)
}
#endif
Add HPKE DHKEM provider support for EC, X25519 and X448. The code is derived from @sftcd's work in PR #17172. This PR puts the DHKEM algorithms into the provider layer as KEM algorithms for EC and ECX. This PR only implements the DHKEM component of HPKE as specified in RFC 9180. crypto/hpke/hpke_util.c has been added for fuctions that will be shared between DHKEM and HPKE. API's for EVP_PKEY_auth_encapsulate_init() and EVP_PKEY_auth_decapsulate_init() have been added to support authenticated encapsulation. auth_init() functions were chosen rather that a EVP_PKEY_KEM_set_auth() interface to support future algorithms that could possibly need different init functions. Internal code has been refactored, so that it can be shared between the DHKEM and other systems. Since DHKEM operates on low level keys it needs to be able to do low level ECDH and ECXDH calls without converting the keys back into EVP_PKEY/EVP_PKEY_CTX form. See ossl_ecx_compute_key(), ossl_ec_public_from_private() DHKEM requires API's to derive a key using a seed (IKM). This did not sit well inside the DHKEM itself as dispatch functions. This functionality fits better inside the EC and ECX keymanagers keygen, since they are just variations of keygen where the private key is generated in a different manner. This should mainly be used for testing purposes. See ossl_ec_generate_key_dhkem(). It supports this by allowing a settable param to be passed to keygen (See OSSL_PKEY_PARAM_DHKEM_IKM). The keygen calls code within ec and ecx dhkem implementation to handle this. See ossl_ecx_dhkem_derive_private() and ossl_ec_dhkem_derive_private(). These 2 functions are also used by the EC/ECX DHKEM implementations to generate the sender ephemeral keys. Reviewed-by: Hugo Landau <hlandau@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/19068)
2022-08-26 09:54:35 +08:00
};
/* Test vector from https://github.com/cfrg/draft-irtf-cfrg-hpke */
#ifndef OPENSSL_NO_ECX
Add HPKE DHKEM provider support for EC, X25519 and X448. The code is derived from @sftcd's work in PR #17172. This PR puts the DHKEM algorithms into the provider layer as KEM algorithms for EC and ECX. This PR only implements the DHKEM component of HPKE as specified in RFC 9180. crypto/hpke/hpke_util.c has been added for fuctions that will be shared between DHKEM and HPKE. API's for EVP_PKEY_auth_encapsulate_init() and EVP_PKEY_auth_decapsulate_init() have been added to support authenticated encapsulation. auth_init() functions were chosen rather that a EVP_PKEY_KEM_set_auth() interface to support future algorithms that could possibly need different init functions. Internal code has been refactored, so that it can be shared between the DHKEM and other systems. Since DHKEM operates on low level keys it needs to be able to do low level ECDH and ECXDH calls without converting the keys back into EVP_PKEY/EVP_PKEY_CTX form. See ossl_ecx_compute_key(), ossl_ec_public_from_private() DHKEM requires API's to derive a key using a seed (IKM). This did not sit well inside the DHKEM itself as dispatch functions. This functionality fits better inside the EC and ECX keymanagers keygen, since they are just variations of keygen where the private key is generated in a different manner. This should mainly be used for testing purposes. See ossl_ec_generate_key_dhkem(). It supports this by allowing a settable param to be passed to keygen (See OSSL_PKEY_PARAM_DHKEM_IKM). The keygen calls code within ec and ecx dhkem implementation to handle this. See ossl_ecx_dhkem_derive_private() and ossl_ec_dhkem_derive_private(). These 2 functions are also used by the EC/ECX DHKEM implementations to generate the sender ephemeral keys. Reviewed-by: Hugo Landau <hlandau@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/19068)
2022-08-26 09:54:35 +08:00
static const unsigned char x448_ikmr[] = {
0xd4, 0x5d, 0x16, 0x52, 0xdf, 0x74, 0x92, 0x0a,
0xbf, 0x94, 0xa2, 0x88, 0x3c, 0x83, 0x05, 0x0f,
0x50, 0x2f, 0xf5, 0x12, 0xff, 0xb5, 0x6f, 0x07,
0xb6, 0xd8, 0x33, 0xec, 0x8d, 0xda, 0x74, 0xb6,
0xa1, 0xc1, 0xcc, 0x4d, 0x42, 0xa2, 0x26, 0x41,
0xc0, 0x96, 0x3d, 0x3c, 0x21, 0xed, 0x82, 0x61,
0xf3, 0x44, 0xdc, 0x9e, 0x05, 0x01, 0xa8, 0x1c
};
static const unsigned char x448_ikmr_priv[] = {
0x27, 0xa4, 0x35, 0x46, 0x08, 0xf3, 0xbd, 0xd3,
0x8f, 0x1f, 0x5a, 0xf3, 0x05, 0xf3, 0xe0, 0x68,
0x2e, 0xfe, 0x4e, 0x25, 0x80, 0x82, 0x49, 0xd8,
0xfc, 0xb5, 0x59, 0x27, 0xf6, 0xa9, 0xf4, 0x46,
0xb8, 0xdc, 0x1d, 0x0a, 0x2c, 0x3b, 0x8c, 0xb1,
0x33, 0xa5, 0x67, 0x3b, 0x59, 0xa6, 0xd5, 0x5c,
0xe7, 0x54, 0xec, 0x0c, 0x9a, 0x55, 0x54, 0x01
};
static const unsigned char x448_ikmr_pub[] = {
0x14, 0x5d, 0x08, 0x3e, 0xa7, 0xa6, 0x37, 0x9d,
0xbb, 0x32, 0xdc, 0xbd, 0x8a, 0xff, 0x4c, 0x20,
0x6e, 0xa5, 0xd0, 0x69, 0xb7, 0x5e, 0x96, 0xc6,
0xdd, 0x2a, 0x3e, 0x38, 0xf4, 0x41, 0x47, 0x1a,
0xc9, 0x7a, 0xdc, 0xa6, 0x41, 0xfd, 0xad, 0x66,
0x68, 0x5a, 0x96, 0xf3, 0x2b, 0x7c, 0x3e, 0x06,
0x46, 0x35, 0xfa, 0xb3, 0xcc, 0x89, 0x23, 0x4e
};
static const TEST_DERIVEKEY_DATA ecx_derivekey_data[] = {
{
"X25519",
x25519_ikme, sizeof(x25519_ikme),
x25519_ikme_pub, sizeof(x25519_ikme_pub),
x25519_ikme_priv, sizeof(x25519_ikme_priv)
},
{
"X448",
x448_ikmr, sizeof(x448_ikmr),
x448_ikmr_pub, sizeof(x448_ikmr_pub),
x448_ikmr_priv, sizeof(x448_ikmr_priv)
},
};
#endif
Add HPKE DHKEM provider support for EC, X25519 and X448. The code is derived from @sftcd's work in PR #17172. This PR puts the DHKEM algorithms into the provider layer as KEM algorithms for EC and ECX. This PR only implements the DHKEM component of HPKE as specified in RFC 9180. crypto/hpke/hpke_util.c has been added for fuctions that will be shared between DHKEM and HPKE. API's for EVP_PKEY_auth_encapsulate_init() and EVP_PKEY_auth_decapsulate_init() have been added to support authenticated encapsulation. auth_init() functions were chosen rather that a EVP_PKEY_KEM_set_auth() interface to support future algorithms that could possibly need different init functions. Internal code has been refactored, so that it can be shared between the DHKEM and other systems. Since DHKEM operates on low level keys it needs to be able to do low level ECDH and ECXDH calls without converting the keys back into EVP_PKEY/EVP_PKEY_CTX form. See ossl_ecx_compute_key(), ossl_ec_public_from_private() DHKEM requires API's to derive a key using a seed (IKM). This did not sit well inside the DHKEM itself as dispatch functions. This functionality fits better inside the EC and ECX keymanagers keygen, since they are just variations of keygen where the private key is generated in a different manner. This should mainly be used for testing purposes. See ossl_ec_generate_key_dhkem(). It supports this by allowing a settable param to be passed to keygen (See OSSL_PKEY_PARAM_DHKEM_IKM). The keygen calls code within ec and ecx dhkem implementation to handle this. See ossl_ecx_dhkem_derive_private() and ossl_ec_dhkem_derive_private(). These 2 functions are also used by the EC/ECX DHKEM implementations to generate the sender ephemeral keys. Reviewed-by: Hugo Landau <hlandau@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/19068)
2022-08-26 09:54:35 +08:00
/*
* Helper function to create a EC or ECX private key from bytes.
* The public key can optionally be NULL.
*/
static EVP_PKEY *new_raw_private_key(const char *curvename,
const unsigned char *priv, size_t privlen,
const unsigned char *pub, size_t publen)
{
int ok = 0;
EVP_PKEY_CTX *ctx;
EVP_PKEY *key = NULL;
OSSL_PARAM *params = NULL;
BIGNUM *privbn = NULL;
OSSL_PARAM_BLD *bld = NULL;
int ecx = (curvename[0] == 'X');
if (ecx)
ctx = EVP_PKEY_CTX_new_from_name(libctx, curvename, NULL);
else
ctx = EVP_PKEY_CTX_new_from_name(libctx, "EC", NULL);
if (ctx == NULL)
return 0;
bld = OSSL_PARAM_BLD_new();
if (bld == NULL)
goto err;
if (ecx) {
if (!OSSL_PARAM_BLD_push_octet_string(bld, OSSL_PKEY_PARAM_PRIV_KEY,
(char *)priv, privlen))
goto err;
} else {
privbn = BN_bin2bn(priv, privlen, NULL);
if (privbn == NULL)
goto err;
if (!OSSL_PARAM_BLD_push_utf8_string(bld, OSSL_PKEY_PARAM_GROUP_NAME,
curvename, 0))
goto err;
if (!OSSL_PARAM_BLD_push_BN(bld, OSSL_PKEY_PARAM_PRIV_KEY, privbn))
goto err;
}
if (pub != NULL) {
if (!OSSL_PARAM_BLD_push_octet_string(bld, OSSL_PKEY_PARAM_PUB_KEY,
(char *)pub, publen))
goto err;
}
params = OSSL_PARAM_BLD_to_param(bld);
if (params == NULL)
goto err;
if (EVP_PKEY_fromdata_init(ctx) <= 0)
goto err;
if (EVP_PKEY_fromdata(ctx, &key, EVP_PKEY_KEYPAIR, params) <= 0)
goto err;
ok = 1;
err:
if (!ok) {
EVP_PKEY_free(key);
key = NULL;
}
BN_free(privbn);
OSSL_PARAM_free(params);
OSSL_PARAM_BLD_free(bld);
EVP_PKEY_CTX_free(ctx);
return key;
}
static EVP_PKEY *new_raw_public_key(const char *curvename,
const unsigned char *pub, size_t publen)
{
int ok = 0;
EVP_PKEY_CTX *ctx;
EVP_PKEY *key = NULL;
OSSL_PARAM params[3], *p = params;
int ecx = (curvename[0] == 'X');
if (ecx)
ctx = EVP_PKEY_CTX_new_from_name(libctx, curvename, NULL);
else
ctx = EVP_PKEY_CTX_new_from_name(libctx, "EC", NULL);
if (ctx == NULL)
return 0;
if (!ecx)
*p++ = OSSL_PARAM_construct_utf8_string(OSSL_PKEY_PARAM_GROUP_NAME,
(char *)curvename, 0);
*p++ = OSSL_PARAM_construct_octet_string(OSSL_PKEY_PARAM_PUB_KEY,
(char *)pub, publen);
*p = OSSL_PARAM_construct_end();
if (EVP_PKEY_fromdata_init(ctx) <= 0)
goto err;
if (EVP_PKEY_fromdata(ctx, &key, EVP_PKEY_PUBLIC_KEY, params) <= 0)
goto err;
ok = 1;
err:
if (!ok) {
EVP_PKEY_free(key);
key = NULL;
}
EVP_PKEY_CTX_free(ctx);
return key;
}
/* Helper function to perform encapsulation */
static int do_encap(const TEST_ENCAPDATA *t, EVP_PKEY *rpub, EVP_PKEY *spriv)
{
int ret = 0;
unsigned char secret[256] = { 0, };
unsigned char enc[256] = { 0, };
size_t secretlen = 0, enclen = 0;
EVP_PKEY_CTX *sctx = NULL;
OSSL_PARAM params[3], *p = params;
*p++ = OSSL_PARAM_construct_utf8_string(OSSL_KEM_PARAM_OPERATION,
(char *)OSSL_KEM_PARAM_OPERATION_DHKEM,
0);
*p++ = OSSL_PARAM_construct_octet_string(OSSL_KEM_PARAM_IKME,
(char *)t->ikmE, t->ikmElen);
*p = OSSL_PARAM_construct_end();
if (!TEST_ptr(sctx = EVP_PKEY_CTX_new_from_pkey(libctx, rpub, NULL)))
goto err;
if (t->spriv == NULL) {
if (!TEST_int_eq(EVP_PKEY_encapsulate_init(sctx, params), 1))
goto err;
} else {
if (!TEST_int_eq(EVP_PKEY_auth_encapsulate_init(sctx, spriv, params), 1))
goto err;
}
ret = TEST_int_eq(EVP_PKEY_encapsulate(sctx, NULL, &enclen, NULL,
&secretlen), 1)
&& TEST_int_eq(EVP_PKEY_encapsulate(sctx, enc, &enclen, secret,
&secretlen), 1)
&& TEST_mem_eq(enc, enclen, t->expected_enc, t->expected_enclen)
&& TEST_mem_eq(secret, secretlen,
t->expected_secret, t->expected_secretlen);
err:
EVP_PKEY_CTX_free(sctx);
return ret;
}
/* Helper function to perform decapsulation */
static int do_decap(const TEST_ENCAPDATA *t, EVP_PKEY *rpriv, EVP_PKEY *spub)
{
int ret = 0;
EVP_PKEY_CTX *recipctx = NULL;
unsigned char secret[256] = { 0, };
size_t secretlen = 0;
if (!TEST_ptr(recipctx = EVP_PKEY_CTX_new_from_pkey(libctx, rpriv, NULL)))
goto err;
if (t->spub == NULL) {
if (!TEST_int_eq(EVP_PKEY_decapsulate_init(recipctx, opparam), 1))
goto err;
} else {
if (!TEST_int_eq(EVP_PKEY_auth_decapsulate_init(recipctx, spub,
opparam), 1))
goto err;
}
ret = TEST_int_eq(EVP_PKEY_decapsulate(recipctx, NULL, &secretlen,
t->expected_enc,
t->expected_enclen), 1)
&& TEST_int_eq(EVP_PKEY_decapsulate(recipctx, secret, &secretlen,
t->expected_enc,
t->expected_enclen), 1)
&& TEST_mem_eq(secret, secretlen,
t->expected_secret, t->expected_secretlen);
err:
EVP_PKEY_CTX_free(recipctx);
return ret;
}