openssl/crypto/sha/keccak1600.c

366 lines
12 KiB
C
Raw Normal View History

/*
* Copyright 2016 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdint.h>
#include <string.h>
#include <assert.h>
#define ROL64(a, offset) ((offset) ? (((a) << offset) | ((a) >> (64-offset))) \
: a)
static void Theta(uint64_t A[5][5])
{
uint64_t C[5], D[5];
size_t y;
C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0];
C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1];
C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2];
C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3];
C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4];
D[0] = ROL64(C[1], 1) ^ C[4];
D[1] = ROL64(C[2], 1) ^ C[0];
D[2] = ROL64(C[3], 1) ^ C[1];
D[3] = ROL64(C[4], 1) ^ C[2];
D[4] = ROL64(C[0], 1) ^ C[3];
for (y = 0; y < 5; y++) {
A[y][0] ^= D[0];
A[y][1] ^= D[1];
A[y][2] ^= D[2];
A[y][3] ^= D[3];
A[y][4] ^= D[4];
}
}
static void Rho(uint64_t A[5][5])
{
static const unsigned char rhotates[5][5] = {
{ 0, 1, 62, 28, 27 },
{ 36, 44, 6, 55, 20 },
{ 3, 10, 43, 25, 39 },
{ 41, 45, 15, 21, 8 },
{ 18, 2, 61, 56, 14 }
};
size_t y;
for (y = 0; y < 5; y++) {
A[y][0] = ROL64(A[y][0], rhotates[y][0]);
A[y][1] = ROL64(A[y][1], rhotates[y][1]);
A[y][2] = ROL64(A[y][2], rhotates[y][2]);
A[y][3] = ROL64(A[y][3], rhotates[y][3]);
A[y][4] = ROL64(A[y][4], rhotates[y][4]);
}
}
static void Pi(uint64_t A[5][5])
{
uint64_t T[5][5];
/*
* T = A
* A[y][x] = T[x][(3*y+x)%5]
*/
memcpy(T, A, sizeof(T));
A[0][0] = T[0][0];
A[0][1] = T[1][1];
A[0][2] = T[2][2];
A[0][3] = T[3][3];
A[0][4] = T[4][4];
A[1][0] = T[0][3];
A[1][1] = T[1][4];
A[1][2] = T[2][0];
A[1][3] = T[3][1];
A[1][4] = T[4][2];
A[2][0] = T[0][1];
A[2][1] = T[1][2];
A[2][2] = T[2][3];
A[2][3] = T[3][4];
A[2][4] = T[4][0];
A[3][0] = T[0][4];
A[3][1] = T[1][0];
A[3][2] = T[2][1];
A[3][3] = T[3][2];
A[3][4] = T[4][3];
A[4][0] = T[0][2];
A[4][1] = T[1][3];
A[4][2] = T[2][4];
A[4][3] = T[3][0];
A[4][4] = T[4][1];
}
static void Chi(uint64_t A[5][5])
{
uint64_t C[5];
size_t y;
for (y = 0; y < 5; y++) {
C[0] = A[y][0] ^ (~A[y][1] & A[y][2]);
C[1] = A[y][1] ^ (~A[y][2] & A[y][3]);
C[2] = A[y][2] ^ (~A[y][3] & A[y][4]);
C[3] = A[y][3] ^ (~A[y][4] & A[y][0]);
C[4] = A[y][4] ^ (~A[y][0] & A[y][1]);
A[y][0] = C[0];
A[y][1] = C[1];
A[y][2] = C[2];
A[y][3] = C[3];
A[y][4] = C[4];
}
}
static void Iota(uint64_t A[5][5], size_t i)
{
static const uint64_t iotas[] = {
0x0000000000000001U, 0x0000000000008082U, 0x800000000000808aU,
0x8000000080008000U, 0x000000000000808bU, 0x0000000080000001U,
0x8000000080008081U, 0x8000000000008009U, 0x000000000000008aU,
0x0000000000000088U, 0x0000000080008009U, 0x000000008000000aU,
0x000000008000808bU, 0x800000000000008bU, 0x8000000000008089U,
0x8000000000008003U, 0x8000000000008002U, 0x8000000000000080U,
0x000000000000800aU, 0x800000008000000aU, 0x8000000080008081U,
0x8000000000008080U, 0x0000000080000001U, 0x8000000080008008U
};
assert(i < (sizeof(iotas) / sizeof(iotas[0])));
A[0][0] ^= iotas[i];
}
void KeccakF1600(uint64_t A[5][5])
{
size_t i;
for (i = 0; i < 24; i++) {
Theta(A);
Rho(A);
Pi(A);
Chi(A);
Iota(A, i);
}
}
/*
* SHA3_absorb can be called multiple times, but at each invocation
* largest multiple of |r| out of |len| bytes are processed. Then
* remaining amount of bytes are returned. This is done to spare caller
* trouble of calculating the largest multiple of |r|, effectively the
* blocksize. It is commonly (1600 - 256*n)/8, e.g. 168, 136, 104, 72,
* but can also be (1600 - 448)/8 = 144. All this means that message
* padding and intermediate sub-block buffering, byte- or bitwise, is
* caller's reponsibility.
*/
size_t SHA3_absorb(uint64_t A[5][5], const unsigned char *inp, size_t len,
size_t r)
{
uint64_t *A_flat = (uint64_t *)A;
size_t i, w = r / 8;
assert(r < (25 * sizeof(A[0][0])) && (r % 8) == 0);
while (len >= r) {
for (i = 0; i < w; i++) {
A_flat[i] ^= (uint64_t)inp[0] | (uint64_t)inp[1] << 8 |
(uint64_t)inp[2] << 16 | (uint64_t)inp[3] << 24 |
(uint64_t)inp[4] << 32 | (uint64_t)inp[5] << 40 |
(uint64_t)inp[6] << 48 | (uint64_t)inp[7] << 56;
inp += 8;
}
KeccakF1600(A);
len -= r;
}
return len;
}
/*
* SHA3_squeeze is called once at the end to generate |out| hash value
* of |len| bytes.
*/
void SHA3_squeeze(uint64_t A[5][5], unsigned char *out, size_t len, size_t r)
{
uint64_t *A_flat = (uint64_t *)A;
size_t i, rem, w = r / 8;
assert(r < (25 * sizeof(A[0][0])) && (r % 8) == 0);
while (len >= r) {
for (i = 0; i < w; i++) {
uint64_t Ai = A_flat[i];
out[0] = (unsigned char)(Ai);
out[1] = (unsigned char)(Ai >> 8);
out[2] = (unsigned char)(Ai >> 16);
out[3] = (unsigned char)(Ai >> 24);
out[4] = (unsigned char)(Ai >> 32);
out[5] = (unsigned char)(Ai >> 40);
out[6] = (unsigned char)(Ai >> 48);
out[7] = (unsigned char)(Ai >> 56);
out += 8;
}
len -= r;
if (len)
KeccakF1600(A);
}
rem = len % 8;
len /= 8;
for (i = 0; i < len; i++) {
uint64_t Ai = A_flat[i];
out[0] = (unsigned char)(Ai);
out[1] = (unsigned char)(Ai >> 8);
out[2] = (unsigned char)(Ai >> 16);
out[3] = (unsigned char)(Ai >> 24);
out[4] = (unsigned char)(Ai >> 32);
out[5] = (unsigned char)(Ai >> 40);
out[6] = (unsigned char)(Ai >> 48);
out[7] = (unsigned char)(Ai >> 56);
out += 8;
}
if (rem) {
uint64_t Ai = A_flat[i];
for (i = 0; i < rem; i++) {
*out++ = (unsigned char)Ai;
Ai >>= 8;
}
}
}
#ifdef SELFTEST
/*
* Post-padding one-shot implementations would look as following:
*
* SHA3_224 SHA3_sponge(inp, len, out, 224/8, (1600-448)/8);
* SHA3_256 SHA3_sponge(inp, len, out, 256/8, (1600-512)/8);
* SHA3_384 SHA3_sponge(inp, len, out, 384/8, (1600-768)/8);
* SHA3_512 SHA3_sponge(inp, len, out, 512/8, (1600-1024)/8);
* SHAKE_128 SHA3_sponge(inp, len, out, d, (1600-256)/8);
* SHAKE_256 SHA3_sponge(inp, len, out, d, (1600-512)/8);
*/
void SHA3_sponge(const unsigned char *inp, size_t len,
unsigned char *out, size_t d, size_t r)
{
uint64_t A[5][5];
memset(A, 0, sizeof(A));
SHA3_absorb(A, inp, len, r);
SHA3_squeeze(A, out, d, r);
}
# include <stdio.h>
int main()
{
/*
* This is 5-bit SHAKE128 test from http://csrc.nist.gov/groups/ST/toolkit/examples.html#aHashing
*/
unsigned char test[168] = { '\xf3', '\x3' };
unsigned char out[512];
size_t i;
static const unsigned char result[512] = {
0x2E, 0x0A, 0xBF, 0xBA, 0x83, 0xE6, 0x72, 0x0B,
0xFB, 0xC2, 0x25, 0xFF, 0x6B, 0x7A, 0xB9, 0xFF,
0xCE, 0x58, 0xBA, 0x02, 0x7E, 0xE3, 0xD8, 0x98,
0x76, 0x4F, 0xEF, 0x28, 0x7D, 0xDE, 0xCC, 0xCA,
0x3E, 0x6E, 0x59, 0x98, 0x41, 0x1E, 0x7D, 0xDB,
0x32, 0xF6, 0x75, 0x38, 0xF5, 0x00, 0xB1, 0x8C,
0x8C, 0x97, 0xC4, 0x52, 0xC3, 0x70, 0xEA, 0x2C,
0xF0, 0xAF, 0xCA, 0x3E, 0x05, 0xDE, 0x7E, 0x4D,
0xE2, 0x7F, 0xA4, 0x41, 0xA9, 0xCB, 0x34, 0xFD,
0x17, 0xC9, 0x78, 0xB4, 0x2D, 0x5B, 0x7E, 0x7F,
0x9A, 0xB1, 0x8F, 0xFE, 0xFF, 0xC3, 0xC5, 0xAC,
0x2F, 0x3A, 0x45, 0x5E, 0xEB, 0xFD, 0xC7, 0x6C,
0xEA, 0xEB, 0x0A, 0x2C, 0xCA, 0x22, 0xEE, 0xF6,
0xE6, 0x37, 0xF4, 0xCA, 0xBE, 0x5C, 0x51, 0xDE,
0xD2, 0xE3, 0xFA, 0xD8, 0xB9, 0x52, 0x70, 0xA3,
0x21, 0x84, 0x56, 0x64, 0xF1, 0x07, 0xD1, 0x64,
0x96, 0xBB, 0x7A, 0xBF, 0xBE, 0x75, 0x04, 0xB6,
0xED, 0xE2, 0xE8, 0x9E, 0x4B, 0x99, 0x6F, 0xB5,
0x8E, 0xFD, 0xC4, 0x18, 0x1F, 0x91, 0x63, 0x38,
0x1C, 0xBE, 0x7B, 0xC0, 0x06, 0xA7, 0xA2, 0x05,
0x98, 0x9C, 0x52, 0x6C, 0xD1, 0xBD, 0x68, 0x98,
0x36, 0x93, 0xB4, 0xBD, 0xC5, 0x37, 0x28, 0xB2,
0x41, 0xC1, 0xCF, 0xF4, 0x2B, 0xB6, 0x11, 0x50,
0x2C, 0x35, 0x20, 0x5C, 0xAB, 0xB2, 0x88, 0x75,
0x56, 0x55, 0xD6, 0x20, 0xC6, 0x79, 0x94, 0xF0,
0x64, 0x51, 0x18, 0x7F, 0x6F, 0xD1, 0x7E, 0x04,
0x66, 0x82, 0xBA, 0x12, 0x86, 0x06, 0x3F, 0xF8,
0x8F, 0xE2, 0x50, 0x8D, 0x1F, 0xCA, 0xF9, 0x03,
0x5A, 0x12, 0x31, 0xAD, 0x41, 0x50, 0xA9, 0xC9,
0xB2, 0x4C, 0x9B, 0x2D, 0x66, 0xB2, 0xAD, 0x1B,
0xDE, 0x0B, 0xD0, 0xBB, 0xCB, 0x8B, 0xE0, 0x5B,
0x83, 0x52, 0x29, 0xEF, 0x79, 0x19, 0x73, 0x73,
0x23, 0x42, 0x44, 0x01, 0xE1, 0xD8, 0x37, 0xB6,
0x6E, 0xB4, 0xE6, 0x30, 0xFF, 0x1D, 0xE7, 0x0C,
0xB3, 0x17, 0xC2, 0xBA, 0xCB, 0x08, 0x00, 0x1D,
0x34, 0x77, 0xB7, 0xA7, 0x0A, 0x57, 0x6D, 0x20,
0x86, 0x90, 0x33, 0x58, 0x9D, 0x85, 0xA0, 0x1D,
0xDB, 0x2B, 0x66, 0x46, 0xC0, 0x43, 0xB5, 0x9F,
0xC0, 0x11, 0x31, 0x1D, 0xA6, 0x66, 0xFA, 0x5A,
0xD1, 0xD6, 0x38, 0x7F, 0xA9, 0xBC, 0x40, 0x15,
0xA3, 0x8A, 0x51, 0xD1, 0xDA, 0x1E, 0xA6, 0x1D,
0x64, 0x8D, 0xC8, 0xE3, 0x9A, 0x88, 0xB9, 0xD6,
0x22, 0xBD, 0xE2, 0x07, 0xFD, 0xAB, 0xC6, 0xF2,
0x82, 0x7A, 0x88, 0x0C, 0x33, 0x0B, 0xBF, 0x6D,
0xF7, 0x33, 0x77, 0x4B, 0x65, 0x3E, 0x57, 0x30,
0x5D, 0x78, 0xDC, 0xE1, 0x12, 0xF1, 0x0A, 0x2C,
0x71, 0xF4, 0xCD, 0xAD, 0x92, 0xED, 0x11, 0x3E,
0x1C, 0xEA, 0x63, 0xB9, 0x19, 0x25, 0xED, 0x28,
0x19, 0x1E, 0x6D, 0xBB, 0xB5, 0xAA, 0x5A, 0x2A,
0xFD, 0xA5, 0x1F, 0xC0, 0x5A, 0x3A, 0xF5, 0x25,
0x8B, 0x87, 0x66, 0x52, 0x43, 0x55, 0x0F, 0x28,
0x94, 0x8A, 0xE2, 0xB8, 0xBE, 0xB6, 0xBC, 0x9C,
0x77, 0x0B, 0x35, 0xF0, 0x67, 0xEA, 0xA6, 0x41,
0xEF, 0xE6, 0x5B, 0x1A, 0x44, 0x90, 0x9D, 0x1B,
0x14, 0x9F, 0x97, 0xEE, 0xA6, 0x01, 0x39, 0x1C,
0x60, 0x9E, 0xC8, 0x1D, 0x19, 0x30, 0xF5, 0x7C,
0x18, 0xA4, 0xE0, 0xFA, 0xB4, 0x91, 0xD1, 0xCA,
0xDF, 0xD5, 0x04, 0x83, 0x44, 0x9E, 0xDC, 0x0F,
0x07, 0xFF, 0xB2, 0x4D, 0x2C, 0x6F, 0x9A, 0x9A,
0x3B, 0xFF, 0x39, 0xAE, 0x3D, 0x57, 0xF5, 0x60,
0x65, 0x4D, 0x7D, 0x75, 0xC9, 0x08, 0xAB, 0xE6,
0x25, 0x64, 0x75, 0x3E, 0xAC, 0x39, 0xD7, 0x50,
0x3D, 0xA6, 0xD3, 0x7C, 0x2E, 0x32, 0xE1, 0xAF,
0x3B, 0x8A, 0xEC, 0x8A, 0xE3, 0x06, 0x9C, 0xD9
};
test[167] = '\x80';
SHA3_sponge(test, sizeof(test), out, sizeof(out), sizeof(test));
/*
* Rationale behind keeping output [formatted as below] is that
* one should be able to redirect it to a file, then copy-n-paste
* final "output val" from official example to another file, and
* compare the two with diff(1).
*/
for (i = 0; i < sizeof(out);) {
printf("%02X", out[i]);
printf(++i % 16 && i != sizeof(out) ? " " : "\n");
}
if (memcmp(out,result,sizeof(out))) {
fprintf(stderr,"failure\n");
return 1;
} else {
fprintf(stderr,"success\n");
return 0;
}
}
#endif