openssl/engines/e_aep.c

1122 lines
28 KiB
C
Raw Normal View History

/* ====================================================================
* Copyright (c) 1999 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* licensing@OpenSSL.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
#include <stdio.h>
#include <openssl/bn.h>
#include <string.h>
#include <openssl/e_os2.h>
#if !defined(OPENSSL_SYS_MSDOS) || defined(__DJGPP__)
#include <sys/types.h>
#include <unistd.h>
#else
#include <process.h>
typedef int pid_t;
#endif
#include <openssl/crypto.h>
#include <openssl/dso.h>
#include <openssl/engine.h>
#include <openssl/buffer.h>
#include <openssl/rsa.h>
#include <openssl/dsa.h>
#include <openssl/dh.h>
#ifndef OPENSSL_NO_HW
#ifndef OPENSSL_NO_HW_AEP
#ifdef FLAT_INC
#include "aep.h"
#else
#include "vendor_defns/aep.h"
#endif
#define AEP_LIB_NAME "aep engine"
#define FAIL_TO_SW 0x10101010
#include "e_aep_err.c"
static int aep_init(ENGINE *e);
static int aep_finish(ENGINE *e);
static int aep_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)(void));
static int aep_destroy(ENGINE *e);
static AEP_RV aep_get_connection(AEP_CONNECTION_HNDL_PTR hConnection);
static AEP_RV aep_return_connection(AEP_CONNECTION_HNDL hConnection);
static AEP_RV aep_close_connection(AEP_CONNECTION_HNDL hConnection);
static AEP_RV aep_close_all_connections(int use_engine_lock, int *in_use);
/* BIGNUM stuff */
static int aep_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
const BIGNUM *m, BN_CTX *ctx);
static AEP_RV aep_mod_exp_crt(BIGNUM *r,const BIGNUM *a, const BIGNUM *p,
const BIGNUM *q, const BIGNUM *dmp1,const BIGNUM *dmq1,
const BIGNUM *iqmp, BN_CTX *ctx);
/* RSA stuff */
#ifndef OPENSSL_NO_RSA
static int aep_rsa_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx);
#endif
/* This function is aliased to mod_exp (with the mont stuff dropped). */
static int aep_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx);
/* DSA stuff */
#ifndef OPENSSL_NO_DSA
static int aep_dsa_mod_exp(DSA *dsa, BIGNUM *rr, BIGNUM *a1,
BIGNUM *p1, BIGNUM *a2, BIGNUM *p2, BIGNUM *m,
BN_CTX *ctx, BN_MONT_CTX *in_mont);
static int aep_mod_exp_dsa(DSA *dsa, BIGNUM *r, BIGNUM *a,
const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx,
BN_MONT_CTX *m_ctx);
#endif
/* DH stuff */
/* This function is aliased to mod_exp (with the DH and mont dropped). */
#ifndef OPENSSL_NO_DH
static int aep_mod_exp_dh(const DH *dh, BIGNUM *r, const BIGNUM *a,
const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx);
#endif
/* rand stuff */
#ifdef AEPRAND
static int aep_rand(unsigned char *buf, int num);
static int aep_rand_status(void);
#endif
/* Bignum conversion stuff */
static AEP_RV GetBigNumSize(AEP_VOID_PTR ArbBigNum, AEP_U32* BigNumSize);
static AEP_RV MakeAEPBigNum(AEP_VOID_PTR ArbBigNum, AEP_U32 BigNumSize,
unsigned char* AEP_BigNum);
static AEP_RV ConvertAEPBigNum(void* ArbBigNum, AEP_U32 BigNumSize,
unsigned char* AEP_BigNum);
/* The definitions for control commands specific to this engine */
#define AEP_CMD_SO_PATH ENGINE_CMD_BASE
static const ENGINE_CMD_DEFN aep_cmd_defns[] =
{
{ AEP_CMD_SO_PATH,
"SO_PATH",
"Specifies the path to the 'aep' shared library",
ENGINE_CMD_FLAG_STRING
},
{0, NULL, NULL, 0}
};
#ifndef OPENSSL_NO_RSA
/* Our internal RSA_METHOD that we provide pointers to */
static RSA_METHOD aep_rsa =
{
"Aep RSA method",
NULL, /*rsa_pub_encrypt*/
NULL, /*rsa_pub_decrypt*/
NULL, /*rsa_priv_encrypt*/
NULL, /*rsa_priv_encrypt*/
aep_rsa_mod_exp, /*rsa_mod_exp*/
aep_mod_exp_mont, /*bn_mod_exp*/
NULL, /*init*/
NULL, /*finish*/
0, /*flags*/
NULL, /*app_data*/
NULL, /*rsa_sign*/
NULL, /*rsa_verify*/
NULL /*rsa_keygen*/
};
#endif
#ifndef OPENSSL_NO_DSA
/* Our internal DSA_METHOD that we provide pointers to */
static DSA_METHOD aep_dsa =
{
"Aep DSA method",
NULL, /* dsa_do_sign */
NULL, /* dsa_sign_setup */
NULL, /* dsa_do_verify */
aep_dsa_mod_exp, /* dsa_mod_exp */
aep_mod_exp_dsa, /* bn_mod_exp */
NULL, /* init */
NULL, /* finish */
0, /* flags */
NULL, /* app_data */
NULL, /* dsa_paramgen */
NULL /* dsa_keygen */
};
#endif
#ifndef OPENSSL_NO_DH
/* Our internal DH_METHOD that we provide pointers to */
static DH_METHOD aep_dh =
{
"Aep DH method",
NULL,
NULL,
aep_mod_exp_dh,
NULL,
NULL,
0,
NULL,
NULL
};
#endif
#ifdef AEPRAND
/* our internal RAND_method that we provide pointers to */
static RAND_METHOD aep_random =
{
/*"AEP RAND method", */
NULL,
aep_rand,
NULL,
NULL,
aep_rand,
aep_rand_status,
};
#endif
/*Define an array of structures to hold connections*/
static AEP_CONNECTION_ENTRY aep_app_conn_table[MAX_PROCESS_CONNECTIONS];
/*Used to determine if this is a new process*/
static pid_t recorded_pid = 0;
#ifdef AEPRAND
static AEP_U8 rand_block[RAND_BLK_SIZE];
static AEP_U32 rand_block_bytes = 0;
#endif
/* Constants used when creating the ENGINE */
static const char *engine_aep_id = "aep";
static const char *engine_aep_name = "Aep hardware engine support";
static int max_key_len = 2176;
/* This internal function is used by ENGINE_aep() and possibly by the
* "dynamic" ENGINE support too */
static int bind_aep(ENGINE *e)
{
#ifndef OPENSSL_NO_RSA
const RSA_METHOD *meth1;
#endif
#ifndef OPENSSL_NO_DSA
const DSA_METHOD *meth2;
#endif
#ifndef OPENSSL_NO_DH
const DH_METHOD *meth3;
#endif
if(!ENGINE_set_id(e, engine_aep_id) ||
!ENGINE_set_name(e, engine_aep_name) ||
#ifndef OPENSSL_NO_RSA
!ENGINE_set_RSA(e, &aep_rsa) ||
#endif
#ifndef OPENSSL_NO_DSA
!ENGINE_set_DSA(e, &aep_dsa) ||
#endif
#ifndef OPENSSL_NO_DH
!ENGINE_set_DH(e, &aep_dh) ||
#endif
#ifdef AEPRAND
!ENGINE_set_RAND(e, &aep_random) ||
#endif
!ENGINE_set_init_function(e, aep_init) ||
!ENGINE_set_destroy_function(e, aep_destroy) ||
!ENGINE_set_finish_function(e, aep_finish) ||
!ENGINE_set_ctrl_function(e, aep_ctrl) ||
!ENGINE_set_cmd_defns(e, aep_cmd_defns))
return 0;
#ifndef OPENSSL_NO_RSA
/* We know that the "PKCS1_SSLeay()" functions hook properly
* to the aep-specific mod_exp and mod_exp_crt so we use
* those functions. NB: We don't use ENGINE_openssl() or
* anything "more generic" because something like the RSAref
* code may not hook properly, and if you own one of these
* cards then you have the right to do RSA operations on it
* anyway! */
meth1 = RSA_PKCS1_SSLeay();
aep_rsa.rsa_pub_enc = meth1->rsa_pub_enc;
aep_rsa.rsa_pub_dec = meth1->rsa_pub_dec;
aep_rsa.rsa_priv_enc = meth1->rsa_priv_enc;
aep_rsa.rsa_priv_dec = meth1->rsa_priv_dec;
#endif
#ifndef OPENSSL_NO_DSA
/* Use the DSA_OpenSSL() method and just hook the mod_exp-ish
* bits. */
meth2 = DSA_OpenSSL();
aep_dsa.dsa_do_sign = meth2->dsa_do_sign;
aep_dsa.dsa_sign_setup = meth2->dsa_sign_setup;
aep_dsa.dsa_do_verify = meth2->dsa_do_verify;
aep_dsa = *DSA_get_default_method();
aep_dsa.dsa_mod_exp = aep_dsa_mod_exp;
aep_dsa.bn_mod_exp = aep_mod_exp_dsa;
#endif
#ifndef OPENSSL_NO_DH
/* Much the same for Diffie-Hellman */
meth3 = DH_OpenSSL();
aep_dh.generate_key = meth3->generate_key;
aep_dh.compute_key = meth3->compute_key;
aep_dh.bn_mod_exp = meth3->bn_mod_exp;
#endif
/* Ensure the aep error handling is set up */
ERR_load_AEPHK_strings();
return 1;
}
#ifndef OPENSSL_NO_DYNAMIC_ENGINE
static int bind_helper(ENGINE *e, const char *id)
{
if(id && (strcmp(id, engine_aep_id) != 0))
return 0;
if(!bind_aep(e))
return 0;
return 1;
}
IMPLEMENT_DYNAMIC_CHECK_FN()
IMPLEMENT_DYNAMIC_BIND_FN(bind_helper)
#else
static ENGINE *engine_aep(void)
{
ENGINE *ret = ENGINE_new();
if(!ret)
return NULL;
if(!bind_aep(ret))
{
ENGINE_free(ret);
return NULL;
}
return ret;
}
void ENGINE_load_aep(void)
{
/* Copied from eng_[openssl|dyn].c */
ENGINE *toadd = engine_aep();
if(!toadd) return;
ENGINE_add(toadd);
ENGINE_free(toadd);
ERR_clear_error();
}
#endif
/* This is a process-global DSO handle used for loading and unloading
* the Aep library. NB: This is only set (or unset) during an
* init() or finish() call (reference counts permitting) and they're
* operating with global locks, so this should be thread-safe
* implicitly. */
static DSO *aep_dso = NULL;
/* These are the static string constants for the DSO file name and the function
* symbol names to bind to.
*/
static const char *AEP_LIBNAME = NULL;
static const char *get_AEP_LIBNAME(void)
{
if(AEP_LIBNAME)
return AEP_LIBNAME;
return "aep";
}
static void free_AEP_LIBNAME(void)
{
if(AEP_LIBNAME)
OPENSSL_free((void*)AEP_LIBNAME);
AEP_LIBNAME = NULL;
}
static long set_AEP_LIBNAME(const char *name)
{
free_AEP_LIBNAME();
return ((AEP_LIBNAME = BUF_strdup(name)) != NULL ? 1 : 0);
}
static const char *AEP_F1 = "AEP_ModExp";
static const char *AEP_F2 = "AEP_ModExpCrt";
#ifdef AEPRAND
static const char *AEP_F3 = "AEP_GenRandom";
#endif
static const char *AEP_F4 = "AEP_Finalize";
static const char *AEP_F5 = "AEP_Initialize";
static const char *AEP_F6 = "AEP_OpenConnection";
static const char *AEP_F7 = "AEP_SetBNCallBacks";
static const char *AEP_F8 = "AEP_CloseConnection";
/* These are the function pointers that are (un)set when the library has
* successfully (un)loaded. */
static t_AEP_OpenConnection *p_AEP_OpenConnection = NULL;
static t_AEP_CloseConnection *p_AEP_CloseConnection = NULL;
static t_AEP_ModExp *p_AEP_ModExp = NULL;
static t_AEP_ModExpCrt *p_AEP_ModExpCrt = NULL;
#ifdef AEPRAND
static t_AEP_GenRandom *p_AEP_GenRandom = NULL;
#endif
static t_AEP_Initialize *p_AEP_Initialize = NULL;
static t_AEP_Finalize *p_AEP_Finalize = NULL;
static t_AEP_SetBNCallBacks *p_AEP_SetBNCallBacks = NULL;
/* (de)initialisation functions. */
static int aep_init(ENGINE *e)
{
t_AEP_ModExp *p1;
t_AEP_ModExpCrt *p2;
#ifdef AEPRAND
t_AEP_GenRandom *p3;
#endif
t_AEP_Finalize *p4;
t_AEP_Initialize *p5;
t_AEP_OpenConnection *p6;
t_AEP_SetBNCallBacks *p7;
t_AEP_CloseConnection *p8;
int to_return = 0;
if(aep_dso != NULL)
{
AEPHKerr(AEPHK_F_AEP_INIT,AEPHK_R_ALREADY_LOADED);
goto err;
}
/* Attempt to load libaep.so. */
aep_dso = DSO_load(NULL, get_AEP_LIBNAME(), NULL, 0);
if(aep_dso == NULL)
{
AEPHKerr(AEPHK_F_AEP_INIT,AEPHK_R_NOT_LOADED);
goto err;
}
if( !(p1 = (t_AEP_ModExp *) DSO_bind_func( aep_dso,AEP_F1)) ||
!(p2 = (t_AEP_ModExpCrt*) DSO_bind_func( aep_dso,AEP_F2)) ||
#ifdef AEPRAND
!(p3 = (t_AEP_GenRandom*) DSO_bind_func( aep_dso,AEP_F3)) ||
#endif
!(p4 = (t_AEP_Finalize*) DSO_bind_func( aep_dso,AEP_F4)) ||
!(p5 = (t_AEP_Initialize*) DSO_bind_func( aep_dso,AEP_F5)) ||
!(p6 = (t_AEP_OpenConnection*) DSO_bind_func( aep_dso,AEP_F6)) ||
!(p7 = (t_AEP_SetBNCallBacks*) DSO_bind_func( aep_dso,AEP_F7)) ||
!(p8 = (t_AEP_CloseConnection*) DSO_bind_func( aep_dso,AEP_F8)))
{
AEPHKerr(AEPHK_F_AEP_INIT,AEPHK_R_NOT_LOADED);
goto err;
}
/* Copy the pointers */
p_AEP_ModExp = p1;
p_AEP_ModExpCrt = p2;
#ifdef AEPRAND
p_AEP_GenRandom = p3;
#endif
p_AEP_Finalize = p4;
p_AEP_Initialize = p5;
p_AEP_OpenConnection = p6;
p_AEP_SetBNCallBacks = p7;
p_AEP_CloseConnection = p8;
to_return = 1;
return to_return;
err:
if(aep_dso)
DSO_free(aep_dso);
p_AEP_OpenConnection = NULL;
p_AEP_ModExp = NULL;
p_AEP_ModExpCrt = NULL;
#ifdef AEPRAND
p_AEP_GenRandom = NULL;
#endif
p_AEP_Initialize = NULL;
p_AEP_Finalize = NULL;
p_AEP_SetBNCallBacks = NULL;
p_AEP_CloseConnection = NULL;
return to_return;
}
/* Destructor (complements the "ENGINE_aep()" constructor) */
static int aep_destroy(ENGINE *e)
{
free_AEP_LIBNAME();
ERR_unload_AEPHK_strings();
return 1;
}
static int aep_finish(ENGINE *e)
{
int to_return = 0, in_use;
AEP_RV rv;
if(aep_dso == NULL)
{
AEPHKerr(AEPHK_F_AEP_FINISH,AEPHK_R_NOT_LOADED);
goto err;
}
rv = aep_close_all_connections(0, &in_use);
if (rv != AEP_R_OK)
{
AEPHKerr(AEPHK_F_AEP_FINISH,AEPHK_R_CLOSE_HANDLES_FAILED);
goto err;
}
if (in_use)
{
AEPHKerr(AEPHK_F_AEP_FINISH,AEPHK_R_CONNECTIONS_IN_USE);
goto err;
}
rv = p_AEP_Finalize();
if (rv != AEP_R_OK)
{
AEPHKerr(AEPHK_F_AEP_FINISH,AEPHK_R_FINALIZE_FAILED);
goto err;
}
if(!DSO_free(aep_dso))
{
AEPHKerr(AEPHK_F_AEP_FINISH,AEPHK_R_UNIT_FAILURE);
goto err;
}
aep_dso = NULL;
p_AEP_CloseConnection = NULL;
p_AEP_OpenConnection = NULL;
p_AEP_ModExp = NULL;
p_AEP_ModExpCrt = NULL;
#ifdef AEPRAND
p_AEP_GenRandom = NULL;
#endif
p_AEP_Initialize = NULL;
p_AEP_Finalize = NULL;
p_AEP_SetBNCallBacks = NULL;
to_return = 1;
err:
return to_return;
}
static int aep_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)(void))
{
int initialised = ((aep_dso == NULL) ? 0 : 1);
switch(cmd)
{
case AEP_CMD_SO_PATH:
if(p == NULL)
{
AEPHKerr(AEPHK_F_AEP_CTRL,
ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
if(initialised)
{
AEPHKerr(AEPHK_F_AEP_CTRL,
AEPHK_R_ALREADY_LOADED);
return 0;
}
return set_AEP_LIBNAME((const char*)p);
default:
break;
}
AEPHKerr(AEPHK_F_AEP_CTRL,AEPHK_R_CTRL_COMMAND_NOT_IMPLEMENTED);
return 0;
}
static int aep_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
const BIGNUM *m, BN_CTX *ctx)
{
int to_return = 0;
int r_len = 0;
AEP_CONNECTION_HNDL hConnection;
AEP_RV rv;
r_len = BN_num_bits(m);
/* Perform in software if modulus is too large for hardware. */
if (r_len > max_key_len){
AEPHKerr(AEPHK_F_AEP_MOD_EXP, AEPHK_R_SIZE_TOO_LARGE_OR_TOO_SMALL);
return BN_mod_exp(r, a, p, m, ctx);
}
/*Grab a connection from the pool*/
rv = aep_get_connection(&hConnection);
if (rv != AEP_R_OK)
{
AEPHKerr(AEPHK_F_AEP_MOD_EXP,AEPHK_R_GET_HANDLE_FAILED);
return BN_mod_exp(r, a, p, m, ctx);
}
/*To the card with the mod exp*/
rv = p_AEP_ModExp(hConnection,(void*)a, (void*)p,(void*)m, (void*)r,NULL);
if (rv != AEP_R_OK)
{
AEPHKerr(AEPHK_F_AEP_MOD_EXP,AEPHK_R_MOD_EXP_FAILED);
rv = aep_close_connection(hConnection);
return BN_mod_exp(r, a, p, m, ctx);
}
/*Return the connection to the pool*/
rv = aep_return_connection(hConnection);
if (rv != AEP_R_OK)
{
AEPHKerr(AEPHK_F_AEP_RAND,AEPHK_R_RETURN_CONNECTION_FAILED);
goto err;
}
to_return = 1;
err:
return to_return;
}
static AEP_RV aep_mod_exp_crt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
const BIGNUM *q, const BIGNUM *dmp1,
const BIGNUM *dmq1,const BIGNUM *iqmp, BN_CTX *ctx)
{
AEP_RV rv = AEP_R_OK;
AEP_CONNECTION_HNDL hConnection;
/*Grab a connection from the pool*/
rv = aep_get_connection(&hConnection);
if (rv != AEP_R_OK)
{
AEPHKerr(AEPHK_F_AEP_MOD_EXP_CRT,AEPHK_R_GET_HANDLE_FAILED);
return FAIL_TO_SW;
}
/*To the card with the mod exp*/
rv = p_AEP_ModExpCrt(hConnection,(void*)a, (void*)p, (void*)q, (void*)dmp1,(void*)dmq1,
(void*)iqmp,(void*)r,NULL);
if (rv != AEP_R_OK)
{
AEPHKerr(AEPHK_F_AEP_MOD_EXP_CRT,AEPHK_R_MOD_EXP_CRT_FAILED);
rv = aep_close_connection(hConnection);
return FAIL_TO_SW;
}
/*Return the connection to the pool*/
rv = aep_return_connection(hConnection);
if (rv != AEP_R_OK)
{
AEPHKerr(AEPHK_F_AEP_RAND,AEPHK_R_RETURN_CONNECTION_FAILED);
goto err;
}
err:
return rv;
}
#ifdef AEPRAND
static int aep_rand(unsigned char *buf,int len )
{
AEP_RV rv = AEP_R_OK;
AEP_CONNECTION_HNDL hConnection;
CRYPTO_w_lock(CRYPTO_LOCK_RAND);
/*Can the request be serviced with what's already in the buffer?*/
if (len <= rand_block_bytes)
{
memcpy(buf, &rand_block[RAND_BLK_SIZE - rand_block_bytes], len);
rand_block_bytes -= len;
CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
}
else
/*If not the get another block of random bytes*/
{
CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
rv = aep_get_connection(&hConnection);
if (rv != AEP_R_OK)
{
AEPHKerr(AEPHK_F_AEP_RAND,AEPHK_R_GET_HANDLE_FAILED);
goto err_nounlock;
}
if (len > RAND_BLK_SIZE)
{
rv = p_AEP_GenRandom(hConnection, len, 2, buf, NULL);
if (rv != AEP_R_OK)
{
AEPHKerr(AEPHK_F_AEP_RAND,AEPHK_R_GET_RANDOM_FAILED);
goto err_nounlock;
}
}
else
{
CRYPTO_w_lock(CRYPTO_LOCK_RAND);
rv = p_AEP_GenRandom(hConnection, RAND_BLK_SIZE, 2, &rand_block[0], NULL);
if (rv != AEP_R_OK)
{
AEPHKerr(AEPHK_F_AEP_RAND,AEPHK_R_GET_RANDOM_FAILED);
goto err;
}
rand_block_bytes = RAND_BLK_SIZE;
memcpy(buf, &rand_block[RAND_BLK_SIZE - rand_block_bytes], len);
rand_block_bytes -= len;
CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
}
rv = aep_return_connection(hConnection);
if (rv != AEP_R_OK)
{
AEPHKerr(AEPHK_F_AEP_RAND,AEPHK_R_RETURN_CONNECTION_FAILED);
goto err_nounlock;
}
}
return 1;
err:
CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
err_nounlock:
return 0;
}
static int aep_rand_status(void)
{
return 1;
}
#endif
#ifndef OPENSSL_NO_RSA
static int aep_rsa_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx)
{
int to_return = 0;
AEP_RV rv = AEP_R_OK;
if (!aep_dso)
{
AEPHKerr(AEPHK_F_AEP_RSA_MOD_EXP,AEPHK_R_NOT_LOADED);
goto err;
}
/*See if we have all the necessary bits for a crt*/
if (rsa->q && rsa->dmp1 && rsa->dmq1 && rsa->iqmp)
{
rv = aep_mod_exp_crt(r0,I,rsa->p,rsa->q, rsa->dmp1,rsa->dmq1,rsa->iqmp,ctx);
if (rv == FAIL_TO_SW){
const RSA_METHOD *meth = RSA_PKCS1_SSLeay();
to_return = (*meth->rsa_mod_exp)(r0, I, rsa, ctx);
goto err;
}
else if (rv != AEP_R_OK)
goto err;
}
else
{
if (!rsa->d || !rsa->n)
{
AEPHKerr(AEPHK_F_AEP_RSA_MOD_EXP,AEPHK_R_MISSING_KEY_COMPONENTS);
goto err;
}
rv = aep_mod_exp(r0,I,rsa->d,rsa->n,ctx);
if (rv != AEP_R_OK)
goto err;
}
to_return = 1;
err:
return to_return;
}
#endif
#ifndef OPENSSL_NO_DSA
static int aep_dsa_mod_exp(DSA *dsa, BIGNUM *rr, BIGNUM *a1,
BIGNUM *p1, BIGNUM *a2, BIGNUM *p2, BIGNUM *m,
BN_CTX *ctx, BN_MONT_CTX *in_mont)
{
BIGNUM t;
int to_return = 0;
BN_init(&t);
/* let rr = a1 ^ p1 mod m */
if (!aep_mod_exp(rr,a1,p1,m,ctx)) goto end;
/* let t = a2 ^ p2 mod m */
if (!aep_mod_exp(&t,a2,p2,m,ctx)) goto end;
/* let rr = rr * t mod m */
if (!BN_mod_mul(rr,rr,&t,m,ctx)) goto end;
to_return = 1;
end:
BN_free(&t);
return to_return;
}
static int aep_mod_exp_dsa(DSA *dsa, BIGNUM *r, BIGNUM *a,
const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx,
BN_MONT_CTX *m_ctx)
{
return aep_mod_exp(r, a, p, m, ctx);
}
#endif
/* This function is aliased to mod_exp (with the mont stuff dropped). */
static int aep_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx)
{
return aep_mod_exp(r, a, p, m, ctx);
}
#ifndef OPENSSL_NO_DH
/* This function is aliased to mod_exp (with the dh and mont dropped). */
static int aep_mod_exp_dh(const DH *dh, BIGNUM *r, const BIGNUM *a,
const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx,
BN_MONT_CTX *m_ctx)
{
return aep_mod_exp(r, a, p, m, ctx);
}
#endif
static AEP_RV aep_get_connection(AEP_CONNECTION_HNDL_PTR phConnection)
{
int count;
AEP_RV rv = AEP_R_OK;
/*Get the current process id*/
pid_t curr_pid;
CRYPTO_w_lock(CRYPTO_LOCK_ENGINE);
#ifndef NETWARE_CLIB
curr_pid = getpid();
#else
curr_pid = GetThreadID();
#endif
/*Check if this is the first time this is being called from the current
process*/
if (recorded_pid != curr_pid)
{
/*Remember our pid so we can check if we're in a new process*/
recorded_pid = curr_pid;
/*Call Finalize to make sure we have not inherited some data
from a parent process*/
p_AEP_Finalize();
/*Initialise the AEP API*/
rv = p_AEP_Initialize(NULL);
if (rv != AEP_R_OK)
{
AEPHKerr(AEPHK_F_AEP_GET_CONNECTION,AEPHK_R_INIT_FAILURE);
recorded_pid = 0;
goto end;
}
/*Set the AEP big num call back functions*/
rv = p_AEP_SetBNCallBacks(&GetBigNumSize, &MakeAEPBigNum,
&ConvertAEPBigNum);
if (rv != AEP_R_OK)
{
AEPHKerr(AEPHK_F_AEP_GET_CONNECTION,AEPHK_R_SETBNCALLBACK_FAILURE);
recorded_pid = 0;
goto end;
}
#ifdef AEPRAND
/*Reset the rand byte count*/
rand_block_bytes = 0;
#endif
/*Init the structures*/
for (count = 0;count < MAX_PROCESS_CONNECTIONS;count ++)
{
aep_app_conn_table[count].conn_state = NotConnected;
aep_app_conn_table[count].conn_hndl = 0;
}
/*Open a connection*/
rv = p_AEP_OpenConnection(phConnection);
if (rv != AEP_R_OK)
{
AEPHKerr(AEPHK_F_AEP_GET_CONNECTION,AEPHK_R_UNIT_FAILURE);
recorded_pid = 0;
goto end;
}
aep_app_conn_table[0].conn_state = InUse;
aep_app_conn_table[0].conn_hndl = *phConnection;
goto end;
}
/*Check the existing connections to see if we can find a free one*/
for (count = 0;count < MAX_PROCESS_CONNECTIONS;count ++)
{
if (aep_app_conn_table[count].conn_state == Connected)
{
aep_app_conn_table[count].conn_state = InUse;
*phConnection = aep_app_conn_table[count].conn_hndl;
goto end;
}
}
/*If no connections available, we're going to have to try
to open a new one*/
for (count = 0;count < MAX_PROCESS_CONNECTIONS;count ++)
{
if (aep_app_conn_table[count].conn_state == NotConnected)
{
/*Open a connection*/
rv = p_AEP_OpenConnection(phConnection);
if (rv != AEP_R_OK)
{
AEPHKerr(AEPHK_F_AEP_GET_CONNECTION,AEPHK_R_UNIT_FAILURE);
goto end;
}
aep_app_conn_table[count].conn_state = InUse;
aep_app_conn_table[count].conn_hndl = *phConnection;
goto end;
}
}
rv = AEP_R_GENERAL_ERROR;
end:
CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
return rv;
}
static AEP_RV aep_return_connection(AEP_CONNECTION_HNDL hConnection)
{
int count;
CRYPTO_w_lock(CRYPTO_LOCK_ENGINE);
/*Find the connection item that matches this connection handle*/
for(count = 0;count < MAX_PROCESS_CONNECTIONS;count ++)
{
if (aep_app_conn_table[count].conn_hndl == hConnection)
{
aep_app_conn_table[count].conn_state = Connected;
break;
}
}
CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
return AEP_R_OK;
}
static AEP_RV aep_close_connection(AEP_CONNECTION_HNDL hConnection)
{
int count;
AEP_RV rv = AEP_R_OK;
CRYPTO_w_lock(CRYPTO_LOCK_ENGINE);
/*Find the connection item that matches this connection handle*/
for(count = 0;count < MAX_PROCESS_CONNECTIONS;count ++)
{
if (aep_app_conn_table[count].conn_hndl == hConnection)
{
rv = p_AEP_CloseConnection(aep_app_conn_table[count].conn_hndl);
if (rv != AEP_R_OK)
goto end;
aep_app_conn_table[count].conn_state = NotConnected;
aep_app_conn_table[count].conn_hndl = 0;
break;
}
}
end:
CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
return rv;
}
static AEP_RV aep_close_all_connections(int use_engine_lock, int *in_use)
{
int count;
AEP_RV rv = AEP_R_OK;
*in_use = 0;
if (use_engine_lock) CRYPTO_w_lock(CRYPTO_LOCK_ENGINE);
for (count = 0;count < MAX_PROCESS_CONNECTIONS;count ++)
{
switch (aep_app_conn_table[count].conn_state)
{
case Connected:
rv = p_AEP_CloseConnection(aep_app_conn_table[count].conn_hndl);
if (rv != AEP_R_OK)
goto end;
aep_app_conn_table[count].conn_state = NotConnected;
aep_app_conn_table[count].conn_hndl = 0;
break;
case InUse:
(*in_use)++;
break;
case NotConnected:
break;
}
}
end:
if (use_engine_lock) CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
return rv;
}
/*BigNum call back functions, used to convert OpenSSL bignums into AEP bignums.
Note only 32bit Openssl build support*/
static AEP_RV GetBigNumSize(AEP_VOID_PTR ArbBigNum, AEP_U32* BigNumSize)
{
BIGNUM* bn;
/*Cast the ArbBigNum pointer to our BIGNUM struct*/
bn = (BIGNUM*) ArbBigNum;
#ifdef SIXTY_FOUR_BIT_LONG
*BigNumSize = bn->top << 3;
#else
/*Size of the bignum in bytes is equal to the bn->top (no of 32 bit
words) multiplies by 4*/
*BigNumSize = bn->top << 2;
#endif
return AEP_R_OK;
}
static AEP_RV MakeAEPBigNum(AEP_VOID_PTR ArbBigNum, AEP_U32 BigNumSize,
unsigned char* AEP_BigNum)
{
BIGNUM* bn;
#ifndef SIXTY_FOUR_BIT_LONG
unsigned char* buf;
int i;
#endif
/*Cast the ArbBigNum pointer to our BIGNUM struct*/
bn = (BIGNUM*) ArbBigNum;
#ifdef SIXTY_FOUR_BIT_LONG
memcpy(AEP_BigNum, bn->d, BigNumSize);
#else
/*Must copy data into a (monotone) least significant byte first format
performing endian conversion if necessary*/
for(i=0;i<bn->top;i++)
{
buf = (unsigned char*)&bn->d[i];
*((AEP_U32*)AEP_BigNum) = (AEP_U32)
((unsigned) buf[1] << 8 | buf[0]) |
((unsigned) buf[3] << 8 | buf[2]) << 16;
AEP_BigNum += 4;
}
#endif
return AEP_R_OK;
}
/*Turn an AEP Big Num back to a user big num*/
static AEP_RV ConvertAEPBigNum(void* ArbBigNum, AEP_U32 BigNumSize,
unsigned char* AEP_BigNum)
{
BIGNUM* bn;
#ifndef SIXTY_FOUR_BIT_LONG
int i;
#endif
bn = (BIGNUM*)ArbBigNum;
/*Expand the result bn so that it can hold our big num.
Size is in bits*/
bn_expand(bn, (int)(BigNumSize << 3));
#ifdef SIXTY_FOUR_BIT_LONG
bn->top = BigNumSize >> 3;
if((BigNumSize & 7) != 0)
bn->top++;
memset(bn->d, 0, bn->top << 3);
memcpy(bn->d, AEP_BigNum, BigNumSize);
#else
bn->top = BigNumSize >> 2;
for(i=0;i<bn->top;i++)
{
bn->d[i] = (AEP_U32)
((unsigned) AEP_BigNum[3] << 8 | AEP_BigNum[2]) << 16 |
((unsigned) AEP_BigNum[1] << 8 | AEP_BigNum[0]);
AEP_BigNum += 4;
}
#endif
return AEP_R_OK;
}
#endif /* !OPENSSL_NO_HW_AEP */
#endif /* !OPENSSL_NO_HW */