openssl/doc/man3/EVP_KDF.pod

280 lines
10 KiB
Plaintext
Raw Normal View History

=pod
=head1 NAME
EVP_KDF, EVP_KDF_fetch, EVP_KDF_free, EVP_KDF_up_ref,
EVP_KDF_CTX, EVP_KDF_CTX_new, EVP_KDF_CTX_free, EVP_KDF_CTX_dup,
EVP_KDF_CTX_reset, EVP_KDF_derive,
EVP_KDF_CTX_get_kdf_size, EVP_KDF_provider, EVP_KDF_CTX_kdf, EVP_KDF_is_a,
EVP_KDF_number, EVP_KDF_name, EVP_KDF_names_do_all,
EVP_KDF_CTX_get_params, EVP_KDF_CTX_set_params, EVP_KDF_do_all_provided,
EVP_KDF_get_params, EVP_KDF_gettable_ctx_params, EVP_KDF_settable_ctx_params,
EVP_KDF_gettable_params - EVP KDF routines
=head1 SYNOPSIS
#include <openssl/kdf.h>
typedef struct evp_kdf_st EVP_KDF;
typedef struct evp_kdf_ctx_st EVP_KDF_CTX;
EVP_KDF_CTX *EVP_KDF_CTX_new(const EVP_KDF *kdf);
const EVP_KDF *EVP_KDF_CTX_kdf(EVP_KDF_CTX *ctx);
void EVP_KDF_CTX_free(EVP_KDF_CTX *ctx);
EVP_KDF_CTX *EVP_KDF_CTX_dup(const EVP_KDF_CTX *src);
void EVP_KDF_CTX_reset(EVP_KDF_CTX *ctx);
size_t EVP_KDF_CTX_get_kdf_size(EVP_KDF_CTX *ctx);
int EVP_KDF_derive(EVP_KDF_CTX *ctx, unsigned char *key, size_t keylen);
int EVP_KDF_up_ref(EVP_KDF *kdf);
void EVP_KDF_free(EVP_KDF *kdf);
EVP_KDF *EVP_KDF_fetch(OSSL_LIB_CTX *libctx, const char *algorithm,
const char *properties);
int EVP_KDF_number(const EVP_KDF *kdf);
int EVP_KDF_is_a(const EVP_KDF *kdf, const char *name);
const char *EVP_KDF_name(const EVP_KDF *kdf);
const OSSL_PROVIDER *EVP_KDF_provider(const EVP_KDF *kdf);
void EVP_KDF_do_all_provided(OSSL_LIB_CTX *libctx,
void (*fn)(EVP_KDF *kdf, void *arg),
void *arg);
int EVP_KDF_names_do_all(const EVP_KDF *kdf,
void (*fn)(const char *name, void *data),
void *data);
int EVP_KDF_get_params(EVP_KDF *kdf, OSSL_PARAM params[]);
int EVP_KDF_CTX_get_params(EVP_KDF_CTX *ctx, OSSL_PARAM params[]);
int EVP_KDF_CTX_set_params(EVP_KDF_CTX *ctx, const OSSL_PARAM params[]);
const OSSL_PARAM *EVP_KDF_gettable_params(const EVP_KDF *kdf);
const OSSL_PARAM *EVP_KDF_gettable_ctx_params(const EVP_KDF *kdf);
const OSSL_PARAM *EVP_KDF_settable_ctx_params(const EVP_KDF *kdf);
const OSSL_PROVIDER *EVP_KDF_provider(const EVP_KDF *kdf);
=head1 DESCRIPTION
The EVP KDF routines are a high-level interface to Key Derivation Function
algorithms and should be used instead of algorithm-specific functions.
After creating a B<EVP_KDF_CTX> for the required algorithm using
EVP_KDF_CTX_new(), inputs to the algorithm are supplied
using calls to EVP_KDF_CTX_set_params() before
calling EVP_KDF_derive() to derive the key.
=head2 Types
B<EVP_KDF> is a type that holds the implementation of a KDF.
B<EVP_KDF_CTX> is a context type that holds the algorithm inputs.
=head2 Algorithm implementation fetching
EVP_KDF_fetch() fetches an implementation of a KDF I<algorithm>, given
a library context I<libctx> and a set of I<properties>.
See L<provider(7)/Fetching algorithms> for further information.
See L<OSSL_PROVIDER-default(7)/Key Derivation Function (KDF)> for the lists of
algorithms supported by the default provider.
The returned value must eventually be freed with
L<EVP_KDF_free(3)>.
EVP_KDF_up_ref() increments the reference count of an already fetched
KDF.
EVP_KDF_free() frees a fetched algorithm.
NULL is a valid parameter, for which this function is a no-op.
=head2 Context manipulation functions
EVP_KDF_CTX_new() creates a new context for the KDF implementation I<kdf>.
EVP_KDF_CTX_free() frees up the context I<ctx>. If I<ctx> is NULL, nothing
is done.
EVP_KDF_CTX_kdf() returns the B<EVP_KDF> associated with the context
I<ctx>.
=head2 Computing functions
EVP_KDF_CTX_reset() resets the context to the default state as if the context
had just been created.
EVP_KDF_derive() derives I<keylen> bytes of key material and places it in the
I<key> buffer. If the algorithm produces a fixed amount of output then an
error will occur unless the I<keylen> parameter is equal to that output size,
as returned by EVP_KDF_CTX_get_kdf_size().
EVP_KDF_get_params() retrieves details about the implementation
I<kdf>.
The set of parameters given with I<params> determine exactly what
parameters should be retrieved.
Note that a parameter that is unknown in the underlying context is
simply ignored.
EVP_KDF_CTX_get_params() retrieves chosen parameters, given the
context I<ctx> and its underlying context.
The set of parameters given with I<params> determine exactly what
parameters should be retrieved.
Note that a parameter that is unknown in the underlying context is
simply ignored.
EVP_KDF_CTX_set_params() passes chosen parameters to the underlying
context, given a context I<ctx>.
The set of parameters given with I<params> determine exactly what
parameters are passed down.
Note that a parameter that is unknown in the underlying context is
simply ignored.
Also, what happens when a needed parameter isn't passed down is
defined by the implementation.
EVP_KDF_gettable_params(), EVP_KDF_gettable_ctx_params() and
EVP_KDF_settable_ctx_params() get a constant B<OSSL_PARAM> array that
describes the retrievable and settable parameters, i.e. parameters that
can be used with EVP_KDF_get_params(), EVP_KDF_CTX_get_params()
and EVP_KDF_CTX_set_params(), respectively.
See L<OSSL_PARAM(3)> for the use of B<OSSL_PARAM> as parameter descriptor.
=head2 Information functions
EVP_KDF_CTX_get_kdf_size() returns the output size if the algorithm produces a fixed amount
of output and B<SIZE_MAX> otherwise. If an error occurs then 0 is returned.
For some algorithms an error may result if input parameters necessary to
calculate a fixed output size have not yet been supplied.
EVP_KDF_is_a() returns 1 if I<kdf> is an implementation of an
algorithm that's identifiable with I<name>, otherwise 0.
EVP_KDF_provider() returns the provider that holds the implementation
of the given I<kdf>.
EVP_KDF_do_all_provided() traverses all KDF implemented by all activated
providers in the given library context I<libctx>, and for each of the
implementations, calls the given function I<fn> with the implementation method
and the given I<arg> as argument.
EVP_KDF_number() returns the internal dynamic number assigned to
I<kdf>.
EVP_KDF_name() return the name of the given KDF. For fetched KDFs
with multiple names, only one of them is returned; it's
recommended to use EVP_KDF_names_do_all() instead.
EVP_KDF_names_do_all() traverses all names for I<kdf>, and calls
I<fn> with each name and I<data>.
=head1 PARAMETERS
The standard parameter names are:
=over 4
=item "pass" (B<OSSL_KDF_PARAM_PASSWORD>) <octet string>
Some KDF implementations require a password.
For those KDF implementations that support it, this parameter sets the password.
=item "salt" (B<OSSL_KDF_PARAM_SALT>) <octet string>
Some KDF implementations can take a salt.
For those KDF implementations that support it, this parameter sets the salt.
The default value, if any, is implementation dependent.
=item "iter" (B<OSSL_KDF_PARAM_ITER>) <unsigned integer>
Some KDF implementations require an iteration count.
For those KDF implementations that support it, this parameter sets the
iteration count.
The default value, if any, is implementation dependent.
=item "properties" (B<OSSL_KDF_PARAM_PROPERTIES>) <UTF8 string>
=item "mac" (B<OSSL_KDF_PARAM_MAC>) <UTF8 string>
=item "digest" (B<OSSL_KDF_PARAM_DIGEST>) <UTF8 string>
=item "cipher" (B<OSSL_KDF_PARAM_CIPHER>) <UTF8 string>
For KDF implementations that use an underlying computation MAC, digest or
cipher, these parameters set what the algorithm should be.
The value is always the name of the intended algorithm,
or the properties.
Note that not all algorithms may support all possible underlying
implementations.
=item "key" (B<OSSL_KDF_PARAM_KEY>) <octet string>
Some KDF implementations require a key.
For those KDF implementations that support it, this octet string parameter
sets the key.
=item "maclen" (B<OSSL_KDF_PARAM_MAC_SIZE>) <unsigned integer>
Used by implementations that use a MAC with a variable output size (KMAC).
For those KDF implementations that support it, this parameter
sets the MAC output size.
The default value, if any, is implementation dependent.
The length must never exceed what can be given with a B<size_t>.
=item "maxmem_bytes" (B<OSSL_KDF_PARAM_SCRYPT_MAXMEM>) <unsigned integer>
Memory-hard password-based KDF algorithms, such as scrypt, use an amount of
memory that depends on the load factors provided as input.
For those KDF implementations that support it, this B<uint64_t> parameter sets
an upper limit on the amount of memory that may be consumed while performing
a key derivation.
If this memory usage limit is exceeded because the load factors are chosen
too high, the key derivation will fail.
The default value is implementation dependent.
The memory size must never exceed what can be given with a B<size_t>.
=back
=head1 RETURN VALUES
EVP_KDF_fetch() returns a pointer to a newly fetched B<EVP_KDF>, or
NULL if allocation failed.
EVP_KDF_provider() returns a pointer to the provider for the KDF, or
NULL on error.
EVP_KDF_up_ref() returns 1 on success, 0 on error.
EVP_KDF_CTX_new() returns either the newly allocated
B<EVP_KDF_CTX> structure or NULL if an error occurred.
EVP_KDF_CTX_free() and EVP_KDF_CTX_reset() do not return a value.
EVP_KDF_CTX_get_kdf_size() returns the output size. B<SIZE_MAX> is returned to indicate
that the algorithm produces a variable amount of output; 0 to indicate failure.
EVP_KDF_name() returns the name of the KDF, or NULL on error.
EVP_KDF_names_do_all() returns 1 if the callback was called for all names. A
return value of 0 means that the callback was not called for any names.
The remaining functions return 1 for success and 0 or a negative value for
failure. In particular, a return value of -2 indicates the operation is not
supported by the KDF algorithm.
=head1 SEE ALSO
L<OSSL_PROVIDER-default(7)/Key Derivation Function (KDF)>
=head1 HISTORY
This functionality was added to OpenSSL 3.0.
=head1 COPYRIGHT
Copyright 2019-2020 The OpenSSL Project Authors. All Rights Reserved.
Licensed under the Apache License 2.0 (the "License"). You may not use
this file except in compliance with the License. You can obtain a copy
in the file LICENSE in the source distribution or at
L<https://www.openssl.org/source/license.html>.
=cut