2000-01-12 06:35:21 +08:00
|
|
|
=pod
|
|
|
|
|
|
|
|
=head1 NAME
|
|
|
|
|
2017-08-02 02:19:43 +08:00
|
|
|
RSA_generate_key_ex, RSA_generate_key,
|
|
|
|
RSA_generate_multi_prime_key - generate RSA key pair
|
2000-01-12 06:35:21 +08:00
|
|
|
|
|
|
|
=head1 SYNOPSIS
|
|
|
|
|
|
|
|
#include <openssl/rsa.h>
|
|
|
|
|
2020-02-12 13:23:01 +08:00
|
|
|
Deprecated since OpenSSL 3.0, can be hidden entirely by defining
|
|
|
|
B<OPENSSL_API_COMPAT> with a suitable version value, see
|
|
|
|
L<openssl_user_macros(7)>:
|
|
|
|
|
2013-06-13 06:42:08 +08:00
|
|
|
int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e, BN_GENCB *cb);
|
2017-08-02 02:19:43 +08:00
|
|
|
int RSA_generate_multi_prime_key(RSA *rsa, int bits, int primes, BIGNUM *e, BN_GENCB *cb);
|
2013-06-13 06:42:08 +08:00
|
|
|
|
2018-12-03 17:59:11 +08:00
|
|
|
Deprecated since OpenSSL 0.9.8, can be hidden entirely by defining
|
|
|
|
B<OPENSSL_API_COMPAT> with a suitable version value, see
|
|
|
|
L<openssl_user_macros(7)>:
|
2013-06-13 06:42:08 +08:00
|
|
|
|
2019-06-27 18:50:26 +08:00
|
|
|
RSA *RSA_generate_key(int bits, unsigned long e,
|
2017-01-21 02:58:49 +08:00
|
|
|
void (*callback)(int, int, void *), void *cb_arg);
|
2000-01-12 06:35:21 +08:00
|
|
|
|
|
|
|
=head1 DESCRIPTION
|
|
|
|
|
2020-02-12 13:23:01 +08:00
|
|
|
All of the functions described on this page are deprecated.
|
|
|
|
Applications should instead use L<EVP_PKEY_keygen_init(3)> and
|
|
|
|
L<EVP_PKEY_keygen(3)>.
|
|
|
|
|
2017-08-02 02:19:43 +08:00
|
|
|
RSA_generate_key_ex() generates a 2-prime RSA key pair and stores it in the
|
|
|
|
B<RSA> structure provided in B<rsa>. The pseudo-random number generator must
|
2013-06-13 06:42:08 +08:00
|
|
|
be seeded prior to calling RSA_generate_key_ex().
|
2000-01-12 06:35:21 +08:00
|
|
|
|
2017-08-02 02:19:43 +08:00
|
|
|
RSA_generate_multi_prime_key() generates a multi-prime RSA key pair and stores
|
|
|
|
it in the B<RSA> structure provided in B<rsa>. The number of primes is given by
|
2019-06-27 16:12:08 +08:00
|
|
|
the B<primes> parameter. The random number generator must be seeded when
|
|
|
|
calling RSA_generate_multi_prime_key().
|
|
|
|
If the automatic seeding or reseeding of the OpenSSL CSPRNG fails due to
|
|
|
|
external circumstances (see L<RAND(7)>), the operation will fail.
|
2017-08-02 02:19:43 +08:00
|
|
|
|
|
|
|
The modulus size will be of length B<bits>, the number of primes to form the
|
|
|
|
modulus will be B<primes>, and the public exponent will be B<e>. Key sizes
|
|
|
|
with B<num> E<lt> 1024 should be considered insecure. The exponent is an odd
|
|
|
|
number, typically 3, 17 or 65537.
|
2000-01-12 06:35:21 +08:00
|
|
|
|
2017-11-25 05:45:45 +08:00
|
|
|
In order to maintain adequate security level, the maximum number of permitted
|
|
|
|
B<primes> depends on modulus bit length:
|
|
|
|
|
|
|
|
<1024 | >=1024 | >=4096 | >=8192
|
|
|
|
------+--------+--------+-------
|
|
|
|
2 | 3 | 4 | 5
|
|
|
|
|
2000-01-12 06:35:21 +08:00
|
|
|
A callback function may be used to provide feedback about the
|
2013-06-13 06:42:08 +08:00
|
|
|
progress of the key generation. If B<cb> is not B<NULL>, it
|
|
|
|
will be called as follows using the BN_GENCB_call() function
|
2015-08-18 03:21:33 +08:00
|
|
|
described on the L<BN_generate_prime(3)> page.
|
2000-01-12 06:35:21 +08:00
|
|
|
|
2019-06-27 18:50:26 +08:00
|
|
|
RSA_generate_key() is similar to RSA_generate_key_ex() but
|
2017-09-02 21:35:50 +08:00
|
|
|
expects an old-style callback function; see
|
|
|
|
L<BN_generate_prime(3)> for information on the old-style callback.
|
|
|
|
|
2017-04-08 01:37:47 +08:00
|
|
|
=over 2
|
2000-01-12 06:35:21 +08:00
|
|
|
|
|
|
|
=item *
|
|
|
|
|
|
|
|
While a random prime number is generated, it is called as
|
2015-08-18 03:21:33 +08:00
|
|
|
described in L<BN_generate_prime(3)>.
|
2000-01-12 06:35:21 +08:00
|
|
|
|
|
|
|
=item *
|
|
|
|
|
|
|
|
When the n-th randomly generated prime is rejected as not
|
2013-06-13 06:42:08 +08:00
|
|
|
suitable for the key, B<BN_GENCB_call(cb, 2, n)> is called.
|
2000-01-12 06:35:21 +08:00
|
|
|
|
|
|
|
=item *
|
|
|
|
|
|
|
|
When a random p has been found with p-1 relatively prime to B<e>,
|
2013-06-13 06:42:08 +08:00
|
|
|
it is called as B<BN_GENCB_call(cb, 3, 0)>.
|
2000-01-12 06:35:21 +08:00
|
|
|
|
|
|
|
=back
|
|
|
|
|
2017-08-02 02:19:43 +08:00
|
|
|
The process is then repeated for prime q and other primes (if any)
|
|
|
|
with B<BN_GENCB_call(cb, 3, i)> where B<i> indicates the i-th prime.
|
2013-06-13 06:42:08 +08:00
|
|
|
|
2017-12-25 17:50:39 +08:00
|
|
|
=head1 RETURN VALUES
|
2000-01-12 06:35:21 +08:00
|
|
|
|
2017-08-02 02:19:43 +08:00
|
|
|
RSA_generate_multi_prime_key() returns 1 on success or 0 on error.
|
2017-02-05 23:29:22 +08:00
|
|
|
RSA_generate_key_ex() returns 1 on success or 0 on error.
|
2015-08-18 03:21:33 +08:00
|
|
|
The error codes can be obtained by L<ERR_get_error(3)>.
|
2000-01-12 06:35:21 +08:00
|
|
|
|
2017-09-02 21:35:50 +08:00
|
|
|
RSA_generate_key() returns a pointer to the RSA structure or
|
|
|
|
B<NULL> if the key generation fails.
|
|
|
|
|
2000-01-12 06:35:21 +08:00
|
|
|
=head1 BUGS
|
|
|
|
|
2013-06-13 06:42:08 +08:00
|
|
|
B<BN_GENCB_call(cb, 2, x)> is used with two different meanings.
|
2000-01-12 06:35:21 +08:00
|
|
|
|
|
|
|
=head1 SEE ALSO
|
|
|
|
|
2019-06-27 16:12:08 +08:00
|
|
|
L<ERR_get_error(3)>, L<RAND_bytes(3)>, L<BN_generate_prime(3)>,
|
|
|
|
L<RAND(7)>
|
2017-09-02 21:35:50 +08:00
|
|
|
|
|
|
|
=head1 HISTORY
|
|
|
|
|
2020-02-12 13:23:01 +08:00
|
|
|
All of these functions were deprecated in OpenSSL 3.0.
|
|
|
|
|
2017-09-02 21:35:50 +08:00
|
|
|
RSA_generate_key() was deprecated in OpenSSL 0.9.8; use
|
2018-08-22 00:30:34 +08:00
|
|
|
RSA_generate_key_ex() instead.
|
2000-01-12 06:35:21 +08:00
|
|
|
|
2016-05-18 23:44:05 +08:00
|
|
|
=head1 COPYRIGHT
|
|
|
|
|
2020-04-23 20:55:52 +08:00
|
|
|
Copyright 2000-2020 The OpenSSL Project Authors. All Rights Reserved.
|
2016-05-18 23:44:05 +08:00
|
|
|
|
2018-12-06 21:04:44 +08:00
|
|
|
Licensed under the Apache License 2.0 (the "License"). You may not use
|
2016-05-18 23:44:05 +08:00
|
|
|
this file except in compliance with the License. You can obtain a copy
|
|
|
|
in the file LICENSE in the source distribution or at
|
|
|
|
L<https://www.openssl.org/source/license.html>.
|
|
|
|
|
|
|
|
=cut
|