openssl/doc/man7/provider-kem.pod

234 lines
9.8 KiB
Plaintext
Raw Normal View History

=pod
=head1 NAME
provider-kem - The kem library E<lt>-E<gt> provider functions
=head1 SYNOPSIS
=for openssl multiple includes
#include <openssl/core_dispatch.h>
#include <openssl/core_names.h>
/*
* None of these are actual functions, but are displayed like this for
* the function signatures for functions that are offered as function
* pointers in OSSL_DISPATCH arrays.
*/
/* Context management */
void *OSSL_FUNC_kem_newctx(void *provctx);
void OSSL_FUNC_kem_freectx(void *ctx);
void *OSSL_FUNC_kem_dupctx(void *ctx);
/* Encapsulation */
Add HPKE DHKEM provider support for EC, X25519 and X448. The code is derived from @sftcd's work in PR #17172. This PR puts the DHKEM algorithms into the provider layer as KEM algorithms for EC and ECX. This PR only implements the DHKEM component of HPKE as specified in RFC 9180. crypto/hpke/hpke_util.c has been added for fuctions that will be shared between DHKEM and HPKE. API's for EVP_PKEY_auth_encapsulate_init() and EVP_PKEY_auth_decapsulate_init() have been added to support authenticated encapsulation. auth_init() functions were chosen rather that a EVP_PKEY_KEM_set_auth() interface to support future algorithms that could possibly need different init functions. Internal code has been refactored, so that it can be shared between the DHKEM and other systems. Since DHKEM operates on low level keys it needs to be able to do low level ECDH and ECXDH calls without converting the keys back into EVP_PKEY/EVP_PKEY_CTX form. See ossl_ecx_compute_key(), ossl_ec_public_from_private() DHKEM requires API's to derive a key using a seed (IKM). This did not sit well inside the DHKEM itself as dispatch functions. This functionality fits better inside the EC and ECX keymanagers keygen, since they are just variations of keygen where the private key is generated in a different manner. This should mainly be used for testing purposes. See ossl_ec_generate_key_dhkem(). It supports this by allowing a settable param to be passed to keygen (See OSSL_PKEY_PARAM_DHKEM_IKM). The keygen calls code within ec and ecx dhkem implementation to handle this. See ossl_ecx_dhkem_derive_private() and ossl_ec_dhkem_derive_private(). These 2 functions are also used by the EC/ECX DHKEM implementations to generate the sender ephemeral keys. Reviewed-by: Hugo Landau <hlandau@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/19068)
2022-08-26 09:54:35 +08:00
int OSSL_FUNC_kem_encapsulate_init(void *ctx, void *provkey,
const OSSL_PARAM params[]);
Add HPKE DHKEM provider support for EC, X25519 and X448. The code is derived from @sftcd's work in PR #17172. This PR puts the DHKEM algorithms into the provider layer as KEM algorithms for EC and ECX. This PR only implements the DHKEM component of HPKE as specified in RFC 9180. crypto/hpke/hpke_util.c has been added for fuctions that will be shared between DHKEM and HPKE. API's for EVP_PKEY_auth_encapsulate_init() and EVP_PKEY_auth_decapsulate_init() have been added to support authenticated encapsulation. auth_init() functions were chosen rather that a EVP_PKEY_KEM_set_auth() interface to support future algorithms that could possibly need different init functions. Internal code has been refactored, so that it can be shared between the DHKEM and other systems. Since DHKEM operates on low level keys it needs to be able to do low level ECDH and ECXDH calls without converting the keys back into EVP_PKEY/EVP_PKEY_CTX form. See ossl_ecx_compute_key(), ossl_ec_public_from_private() DHKEM requires API's to derive a key using a seed (IKM). This did not sit well inside the DHKEM itself as dispatch functions. This functionality fits better inside the EC and ECX keymanagers keygen, since they are just variations of keygen where the private key is generated in a different manner. This should mainly be used for testing purposes. See ossl_ec_generate_key_dhkem(). It supports this by allowing a settable param to be passed to keygen (See OSSL_PKEY_PARAM_DHKEM_IKM). The keygen calls code within ec and ecx dhkem implementation to handle this. See ossl_ecx_dhkem_derive_private() and ossl_ec_dhkem_derive_private(). These 2 functions are also used by the EC/ECX DHKEM implementations to generate the sender ephemeral keys. Reviewed-by: Hugo Landau <hlandau@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/19068)
2022-08-26 09:54:35 +08:00
int OSSL_FUNC_kem_auth_encapsulate_init(void *ctx, void *provkey,
void *provauthkey,
const OSSL_PARAM params[]);
int OSSL_FUNC_kem_encapsulate(void *ctx, unsigned char *out, size_t *outlen,
unsigned char *secret, size_t *secretlen);
/* Decapsulation */
Add HPKE DHKEM provider support for EC, X25519 and X448. The code is derived from @sftcd's work in PR #17172. This PR puts the DHKEM algorithms into the provider layer as KEM algorithms for EC and ECX. This PR only implements the DHKEM component of HPKE as specified in RFC 9180. crypto/hpke/hpke_util.c has been added for fuctions that will be shared between DHKEM and HPKE. API's for EVP_PKEY_auth_encapsulate_init() and EVP_PKEY_auth_decapsulate_init() have been added to support authenticated encapsulation. auth_init() functions were chosen rather that a EVP_PKEY_KEM_set_auth() interface to support future algorithms that could possibly need different init functions. Internal code has been refactored, so that it can be shared between the DHKEM and other systems. Since DHKEM operates on low level keys it needs to be able to do low level ECDH and ECXDH calls without converting the keys back into EVP_PKEY/EVP_PKEY_CTX form. See ossl_ecx_compute_key(), ossl_ec_public_from_private() DHKEM requires API's to derive a key using a seed (IKM). This did not sit well inside the DHKEM itself as dispatch functions. This functionality fits better inside the EC and ECX keymanagers keygen, since they are just variations of keygen where the private key is generated in a different manner. This should mainly be used for testing purposes. See ossl_ec_generate_key_dhkem(). It supports this by allowing a settable param to be passed to keygen (See OSSL_PKEY_PARAM_DHKEM_IKM). The keygen calls code within ec and ecx dhkem implementation to handle this. See ossl_ecx_dhkem_derive_private() and ossl_ec_dhkem_derive_private(). These 2 functions are also used by the EC/ECX DHKEM implementations to generate the sender ephemeral keys. Reviewed-by: Hugo Landau <hlandau@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/19068)
2022-08-26 09:54:35 +08:00
int OSSL_FUNC_kem_decapsulate_init(void *ctx, void *provkey);
int OSSL_FUNC_kem_auth_decapsulate_init(void *ctx, void *provkey,
void *provauthkey,
const OSSL_PARAM params[]);
int OSSL_FUNC_kem_decapsulate(void *ctx, unsigned char *out, size_t *outlen,
const unsigned char *in, size_t inlen);
/* KEM parameters */
int OSSL_FUNC_kem_get_ctx_params(void *ctx, OSSL_PARAM params[]);
const OSSL_PARAM *OSSL_FUNC_kem_gettable_ctx_params(void *ctx, void *provctx);
int OSSL_FUNC_kem_set_ctx_params(void *ctx, const OSSL_PARAM params[]);
const OSSL_PARAM *OSSL_FUNC_kem_settable_ctx_params(void *ctx, void *provctx);
=head1 DESCRIPTION
This documentation is primarily aimed at provider authors. See L<provider(7)>
for further information.
The asymmetric kem (OSSL_OP_KEM) operation enables providers to
implement asymmetric kem algorithms and make them available to applications
via the API functions L<EVP_PKEY_encapsulate(3)>,
L<EVP_PKEY_decapsulate(3)> and other related functions.
All "functions" mentioned here are passed as function pointers between
F<libcrypto> and the provider in L<OSSL_DISPATCH(3)> arrays via
L<OSSL_ALGORITHM(3)> arrays that are returned by the provider's
provider_query_operation() function
(see L<provider-base(7)/Provider Functions>).
All these "functions" have a corresponding function type definition
named B<OSSL_FUNC_{name}_fn>, and a helper function to retrieve the
function pointer from an L<OSSL_DISPATCH(3)> element named
B<OSSL_FUNC_{name}>.
For example, the "function" OSSL_FUNC_kem_newctx() has these:
typedef void *(OSSL_FUNC_kem_newctx_fn)(void *provctx);
static ossl_inline OSSL_FUNC_kem_newctx_fn
OSSL_FUNC_kem_newctx(const OSSL_DISPATCH *opf);
L<OSSL_DISPATCH(3)> arrays are indexed by numbers that are provided as
macros in L<openssl-core_dispatch.h(7)>, as follows:
Add HPKE DHKEM provider support for EC, X25519 and X448. The code is derived from @sftcd's work in PR #17172. This PR puts the DHKEM algorithms into the provider layer as KEM algorithms for EC and ECX. This PR only implements the DHKEM component of HPKE as specified in RFC 9180. crypto/hpke/hpke_util.c has been added for fuctions that will be shared between DHKEM and HPKE. API's for EVP_PKEY_auth_encapsulate_init() and EVP_PKEY_auth_decapsulate_init() have been added to support authenticated encapsulation. auth_init() functions were chosen rather that a EVP_PKEY_KEM_set_auth() interface to support future algorithms that could possibly need different init functions. Internal code has been refactored, so that it can be shared between the DHKEM and other systems. Since DHKEM operates on low level keys it needs to be able to do low level ECDH and ECXDH calls without converting the keys back into EVP_PKEY/EVP_PKEY_CTX form. See ossl_ecx_compute_key(), ossl_ec_public_from_private() DHKEM requires API's to derive a key using a seed (IKM). This did not sit well inside the DHKEM itself as dispatch functions. This functionality fits better inside the EC and ECX keymanagers keygen, since they are just variations of keygen where the private key is generated in a different manner. This should mainly be used for testing purposes. See ossl_ec_generate_key_dhkem(). It supports this by allowing a settable param to be passed to keygen (See OSSL_PKEY_PARAM_DHKEM_IKM). The keygen calls code within ec and ecx dhkem implementation to handle this. See ossl_ecx_dhkem_derive_private() and ossl_ec_dhkem_derive_private(). These 2 functions are also used by the EC/ECX DHKEM implementations to generate the sender ephemeral keys. Reviewed-by: Hugo Landau <hlandau@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/19068)
2022-08-26 09:54:35 +08:00
OSSL_FUNC_kem_newctx OSSL_FUNC_KEM_NEWCTX
OSSL_FUNC_kem_freectx OSSL_FUNC_KEM_FREECTX
OSSL_FUNC_kem_dupctx OSSL_FUNC_KEM_DUPCTX
Add HPKE DHKEM provider support for EC, X25519 and X448. The code is derived from @sftcd's work in PR #17172. This PR puts the DHKEM algorithms into the provider layer as KEM algorithms for EC and ECX. This PR only implements the DHKEM component of HPKE as specified in RFC 9180. crypto/hpke/hpke_util.c has been added for fuctions that will be shared between DHKEM and HPKE. API's for EVP_PKEY_auth_encapsulate_init() and EVP_PKEY_auth_decapsulate_init() have been added to support authenticated encapsulation. auth_init() functions were chosen rather that a EVP_PKEY_KEM_set_auth() interface to support future algorithms that could possibly need different init functions. Internal code has been refactored, so that it can be shared between the DHKEM and other systems. Since DHKEM operates on low level keys it needs to be able to do low level ECDH and ECXDH calls without converting the keys back into EVP_PKEY/EVP_PKEY_CTX form. See ossl_ecx_compute_key(), ossl_ec_public_from_private() DHKEM requires API's to derive a key using a seed (IKM). This did not sit well inside the DHKEM itself as dispatch functions. This functionality fits better inside the EC and ECX keymanagers keygen, since they are just variations of keygen where the private key is generated in a different manner. This should mainly be used for testing purposes. See ossl_ec_generate_key_dhkem(). It supports this by allowing a settable param to be passed to keygen (See OSSL_PKEY_PARAM_DHKEM_IKM). The keygen calls code within ec and ecx dhkem implementation to handle this. See ossl_ecx_dhkem_derive_private() and ossl_ec_dhkem_derive_private(). These 2 functions are also used by the EC/ECX DHKEM implementations to generate the sender ephemeral keys. Reviewed-by: Hugo Landau <hlandau@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/19068)
2022-08-26 09:54:35 +08:00
OSSL_FUNC_kem_encapsulate_init OSSL_FUNC_KEM_ENCAPSULATE_INIT
OSSL_FUNC_kem_auth_encapsulate_init OSSL_FUNC_KEM_AUTH_ENCAPSULATE_INIT
OSSL_FUNC_kem_encapsulate OSSL_FUNC_KEM_ENCAPSULATE
Add HPKE DHKEM provider support for EC, X25519 and X448. The code is derived from @sftcd's work in PR #17172. This PR puts the DHKEM algorithms into the provider layer as KEM algorithms for EC and ECX. This PR only implements the DHKEM component of HPKE as specified in RFC 9180. crypto/hpke/hpke_util.c has been added for fuctions that will be shared between DHKEM and HPKE. API's for EVP_PKEY_auth_encapsulate_init() and EVP_PKEY_auth_decapsulate_init() have been added to support authenticated encapsulation. auth_init() functions were chosen rather that a EVP_PKEY_KEM_set_auth() interface to support future algorithms that could possibly need different init functions. Internal code has been refactored, so that it can be shared between the DHKEM and other systems. Since DHKEM operates on low level keys it needs to be able to do low level ECDH and ECXDH calls without converting the keys back into EVP_PKEY/EVP_PKEY_CTX form. See ossl_ecx_compute_key(), ossl_ec_public_from_private() DHKEM requires API's to derive a key using a seed (IKM). This did not sit well inside the DHKEM itself as dispatch functions. This functionality fits better inside the EC and ECX keymanagers keygen, since they are just variations of keygen where the private key is generated in a different manner. This should mainly be used for testing purposes. See ossl_ec_generate_key_dhkem(). It supports this by allowing a settable param to be passed to keygen (See OSSL_PKEY_PARAM_DHKEM_IKM). The keygen calls code within ec and ecx dhkem implementation to handle this. See ossl_ecx_dhkem_derive_private() and ossl_ec_dhkem_derive_private(). These 2 functions are also used by the EC/ECX DHKEM implementations to generate the sender ephemeral keys. Reviewed-by: Hugo Landau <hlandau@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/19068)
2022-08-26 09:54:35 +08:00
OSSL_FUNC_kem_decapsulate_init OSSL_FUNC_KEM_DECAPSULATE_INIT
OSSL_FUNC_kem_auth_decapsulate_init OSSL_FUNC_KEM_AUTH_DECAPSULATE_INIT
OSSL_FUNC_kem_decapsulate OSSL_FUNC_KEM_DECAPSULATE
Add HPKE DHKEM provider support for EC, X25519 and X448. The code is derived from @sftcd's work in PR #17172. This PR puts the DHKEM algorithms into the provider layer as KEM algorithms for EC and ECX. This PR only implements the DHKEM component of HPKE as specified in RFC 9180. crypto/hpke/hpke_util.c has been added for fuctions that will be shared between DHKEM and HPKE. API's for EVP_PKEY_auth_encapsulate_init() and EVP_PKEY_auth_decapsulate_init() have been added to support authenticated encapsulation. auth_init() functions were chosen rather that a EVP_PKEY_KEM_set_auth() interface to support future algorithms that could possibly need different init functions. Internal code has been refactored, so that it can be shared between the DHKEM and other systems. Since DHKEM operates on low level keys it needs to be able to do low level ECDH and ECXDH calls without converting the keys back into EVP_PKEY/EVP_PKEY_CTX form. See ossl_ecx_compute_key(), ossl_ec_public_from_private() DHKEM requires API's to derive a key using a seed (IKM). This did not sit well inside the DHKEM itself as dispatch functions. This functionality fits better inside the EC and ECX keymanagers keygen, since they are just variations of keygen where the private key is generated in a different manner. This should mainly be used for testing purposes. See ossl_ec_generate_key_dhkem(). It supports this by allowing a settable param to be passed to keygen (See OSSL_PKEY_PARAM_DHKEM_IKM). The keygen calls code within ec and ecx dhkem implementation to handle this. See ossl_ecx_dhkem_derive_private() and ossl_ec_dhkem_derive_private(). These 2 functions are also used by the EC/ECX DHKEM implementations to generate the sender ephemeral keys. Reviewed-by: Hugo Landau <hlandau@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/19068)
2022-08-26 09:54:35 +08:00
OSSL_FUNC_kem_get_ctx_params OSSL_FUNC_KEM_GET_CTX_PARAMS
OSSL_FUNC_kem_gettable_ctx_params OSSL_FUNC_KEM_GETTABLE_CTX_PARAMS
OSSL_FUNC_kem_set_ctx_params OSSL_FUNC_KEM_SET_CTX_PARAMS
OSSL_FUNC_kem_settable_ctx_params OSSL_FUNC_KEM_SETTABLE_CTX_PARAMS
An asymmetric kem algorithm implementation may not implement all of these
functions.
In order to be a consistent set of functions a provider must implement
OSSL_FUNC_kem_newctx and OSSL_FUNC_kem_freectx.
It must also implement both of OSSL_FUNC_kem_encapsulate_init and
OSSL_FUNC_kem_encapsulate, or both of OSSL_FUNC_kem_decapsulate_init and
OSSL_FUNC_kem_decapsulate.
Add HPKE DHKEM provider support for EC, X25519 and X448. The code is derived from @sftcd's work in PR #17172. This PR puts the DHKEM algorithms into the provider layer as KEM algorithms for EC and ECX. This PR only implements the DHKEM component of HPKE as specified in RFC 9180. crypto/hpke/hpke_util.c has been added for fuctions that will be shared between DHKEM and HPKE. API's for EVP_PKEY_auth_encapsulate_init() and EVP_PKEY_auth_decapsulate_init() have been added to support authenticated encapsulation. auth_init() functions were chosen rather that a EVP_PKEY_KEM_set_auth() interface to support future algorithms that could possibly need different init functions. Internal code has been refactored, so that it can be shared between the DHKEM and other systems. Since DHKEM operates on low level keys it needs to be able to do low level ECDH and ECXDH calls without converting the keys back into EVP_PKEY/EVP_PKEY_CTX form. See ossl_ecx_compute_key(), ossl_ec_public_from_private() DHKEM requires API's to derive a key using a seed (IKM). This did not sit well inside the DHKEM itself as dispatch functions. This functionality fits better inside the EC and ECX keymanagers keygen, since they are just variations of keygen where the private key is generated in a different manner. This should mainly be used for testing purposes. See ossl_ec_generate_key_dhkem(). It supports this by allowing a settable param to be passed to keygen (See OSSL_PKEY_PARAM_DHKEM_IKM). The keygen calls code within ec and ecx dhkem implementation to handle this. See ossl_ecx_dhkem_derive_private() and ossl_ec_dhkem_derive_private(). These 2 functions are also used by the EC/ECX DHKEM implementations to generate the sender ephemeral keys. Reviewed-by: Hugo Landau <hlandau@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/19068)
2022-08-26 09:54:35 +08:00
OSSL_FUNC_kem_auth_encapsulate_init is optional but if it is present then so
must OSSL_FUNC_kem_auth_decapsulate_init.
OSSL_FUNC_kem_get_ctx_params is optional but if it is present then so must
OSSL_FUNC_kem_gettable_ctx_params.
Similarly, OSSL_FUNC_kem_set_ctx_params is optional but if it is present then
Add HPKE DHKEM provider support for EC, X25519 and X448. The code is derived from @sftcd's work in PR #17172. This PR puts the DHKEM algorithms into the provider layer as KEM algorithms for EC and ECX. This PR only implements the DHKEM component of HPKE as specified in RFC 9180. crypto/hpke/hpke_util.c has been added for fuctions that will be shared between DHKEM and HPKE. API's for EVP_PKEY_auth_encapsulate_init() and EVP_PKEY_auth_decapsulate_init() have been added to support authenticated encapsulation. auth_init() functions were chosen rather that a EVP_PKEY_KEM_set_auth() interface to support future algorithms that could possibly need different init functions. Internal code has been refactored, so that it can be shared between the DHKEM and other systems. Since DHKEM operates on low level keys it needs to be able to do low level ECDH and ECXDH calls without converting the keys back into EVP_PKEY/EVP_PKEY_CTX form. See ossl_ecx_compute_key(), ossl_ec_public_from_private() DHKEM requires API's to derive a key using a seed (IKM). This did not sit well inside the DHKEM itself as dispatch functions. This functionality fits better inside the EC and ECX keymanagers keygen, since they are just variations of keygen where the private key is generated in a different manner. This should mainly be used for testing purposes. See ossl_ec_generate_key_dhkem(). It supports this by allowing a settable param to be passed to keygen (See OSSL_PKEY_PARAM_DHKEM_IKM). The keygen calls code within ec and ecx dhkem implementation to handle this. See ossl_ecx_dhkem_derive_private() and ossl_ec_dhkem_derive_private(). These 2 functions are also used by the EC/ECX DHKEM implementations to generate the sender ephemeral keys. Reviewed-by: Hugo Landau <hlandau@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/19068)
2022-08-26 09:54:35 +08:00
OSSL_FUNC_kem_settable_ctx_params must also be present.
An asymmetric kem algorithm must also implement some mechanism for generating,
loading or importing keys via the key management (OSSL_OP_KEYMGMT) operation.
See L<provider-keymgmt(7)> for further details.
=head2 Context Management Functions
OSSL_FUNC_kem_newctx() should create and return a pointer to a provider side
structure for holding context information during an asymmetric kem operation.
A pointer to this context will be passed back in a number of the other
asymmetric kem operation function calls.
The parameter I<provctx> is the provider context generated during provider
initialisation (see L<provider(7)>).
OSSL_FUNC_kem_freectx() is passed a pointer to the provider side asymmetric
kem context in the I<ctx> parameter.
This function should free any resources associated with that context.
OSSL_FUNC_kem_dupctx() should duplicate the provider side asymmetric kem
context in the I<ctx> parameter and return the duplicate copy.
=head2 Asymmetric Key Encapsulation Functions
OSSL_FUNC_kem_encapsulate_init() initialises a context for an asymmetric
encapsulation given a provider side asymmetric kem context in the I<ctx>
parameter, a pointer to a provider key object in the I<provkey> parameter and
the I<name> of the algorithm.
The I<params>, if not NULL, should be set on the context in a manner similar to
using OSSL_FUNC_kem_set_ctx_params().
The key object should have been previously generated, loaded or imported into
the provider using the key management (OSSL_OP_KEYMGMT) operation (see
provider-keymgmt(7)>.
OSSL_FUNC_kem_auth_encapsulate_init() is similar to
Add HPKE DHKEM provider support for EC, X25519 and X448. The code is derived from @sftcd's work in PR #17172. This PR puts the DHKEM algorithms into the provider layer as KEM algorithms for EC and ECX. This PR only implements the DHKEM component of HPKE as specified in RFC 9180. crypto/hpke/hpke_util.c has been added for fuctions that will be shared between DHKEM and HPKE. API's for EVP_PKEY_auth_encapsulate_init() and EVP_PKEY_auth_decapsulate_init() have been added to support authenticated encapsulation. auth_init() functions were chosen rather that a EVP_PKEY_KEM_set_auth() interface to support future algorithms that could possibly need different init functions. Internal code has been refactored, so that it can be shared between the DHKEM and other systems. Since DHKEM operates on low level keys it needs to be able to do low level ECDH and ECXDH calls without converting the keys back into EVP_PKEY/EVP_PKEY_CTX form. See ossl_ecx_compute_key(), ossl_ec_public_from_private() DHKEM requires API's to derive a key using a seed (IKM). This did not sit well inside the DHKEM itself as dispatch functions. This functionality fits better inside the EC and ECX keymanagers keygen, since they are just variations of keygen where the private key is generated in a different manner. This should mainly be used for testing purposes. See ossl_ec_generate_key_dhkem(). It supports this by allowing a settable param to be passed to keygen (See OSSL_PKEY_PARAM_DHKEM_IKM). The keygen calls code within ec and ecx dhkem implementation to handle this. See ossl_ecx_dhkem_derive_private() and ossl_ec_dhkem_derive_private(). These 2 functions are also used by the EC/ECX DHKEM implementations to generate the sender ephemeral keys. Reviewed-by: Hugo Landau <hlandau@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/19068)
2022-08-26 09:54:35 +08:00
OSSL_FUNC_kem_encapsulate_init(), but also passes an additional authentication
key I<provauthkey> which cannot be NULL.
OSSL_FUNC_kem_encapsulate() performs the actual encapsulation itself.
A previously initialised asymmetric kem context is passed in the I<ctx>
parameter.
Unless I<out> is NULL, the data to be encapsulated is internally generated,
and returned into the buffer pointed to by the I<secret> parameter and the
encapsulated data should also be written to the location pointed to by the
I<out> parameter. The length of the encapsulated data should be written to
I<*outlen> and the length of the generated secret should be written to
I<*secretlen>.
If I<out> is NULL then the maximum length of the encapsulated data should be
written to I<*outlen>, and the maximum length of the generated secret should be
written to I<*secretlen>.
=head2 Decapsulation Functions
OSSL_FUNC_kem_decapsulate_init() initialises a context for an asymmetric
decapsulation given a provider side asymmetric kem context in the I<ctx>
parameter, a pointer to a provider key object in the I<provkey> parameter, and
a I<name> of the algorithm.
The key object should have been previously generated, loaded or imported into
the provider using the key management (OSSL_OP_KEYMGMT) operation (see
provider-keymgmt(7)>.
OSSL_FUNC_kem_auth_decapsulate_init() is similar to
Add HPKE DHKEM provider support for EC, X25519 and X448. The code is derived from @sftcd's work in PR #17172. This PR puts the DHKEM algorithms into the provider layer as KEM algorithms for EC and ECX. This PR only implements the DHKEM component of HPKE as specified in RFC 9180. crypto/hpke/hpke_util.c has been added for fuctions that will be shared between DHKEM and HPKE. API's for EVP_PKEY_auth_encapsulate_init() and EVP_PKEY_auth_decapsulate_init() have been added to support authenticated encapsulation. auth_init() functions were chosen rather that a EVP_PKEY_KEM_set_auth() interface to support future algorithms that could possibly need different init functions. Internal code has been refactored, so that it can be shared between the DHKEM and other systems. Since DHKEM operates on low level keys it needs to be able to do low level ECDH and ECXDH calls without converting the keys back into EVP_PKEY/EVP_PKEY_CTX form. See ossl_ecx_compute_key(), ossl_ec_public_from_private() DHKEM requires API's to derive a key using a seed (IKM). This did not sit well inside the DHKEM itself as dispatch functions. This functionality fits better inside the EC and ECX keymanagers keygen, since they are just variations of keygen where the private key is generated in a different manner. This should mainly be used for testing purposes. See ossl_ec_generate_key_dhkem(). It supports this by allowing a settable param to be passed to keygen (See OSSL_PKEY_PARAM_DHKEM_IKM). The keygen calls code within ec and ecx dhkem implementation to handle this. See ossl_ecx_dhkem_derive_private() and ossl_ec_dhkem_derive_private(). These 2 functions are also used by the EC/ECX DHKEM implementations to generate the sender ephemeral keys. Reviewed-by: Hugo Landau <hlandau@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/19068)
2022-08-26 09:54:35 +08:00
OSSL_FUNC_kem_decapsulate_init(), but also passes an additional authentication
key I<provauthkey> which cannot be NULL.
OSSL_FUNC_kem_decapsulate() performs the actual decapsulation itself.
A previously initialised asymmetric kem context is passed in the I<ctx>
parameter.
The data to be decapsulated is pointed to by the I<in> parameter which is I<inlen>
bytes long.
Unless I<out> is NULL, the decapsulated data should be written to the location
pointed to by the I<out> parameter.
The length of the decapsulated data should be written to I<*outlen>.
If I<out> is NULL then the maximum length of the decapsulated data should be
written to I<*outlen>.
=head2 Asymmetric Key Encapsulation Parameters
See L<OSSL_PARAM(3)> for further details on the parameters structure used by
the OSSL_FUNC_kem_get_ctx_params() and OSSL_FUNC_kem_set_ctx_params()
functions.
OSSL_FUNC_kem_get_ctx_params() gets asymmetric kem parameters associated
with the given provider side asymmetric kem context I<ctx> and stores them in
I<params>.
Passing NULL for I<params> should return true.
OSSL_FUNC_kem_set_ctx_params() sets the asymmetric kem parameters associated
with the given provider side asymmetric kem context I<ctx> to I<params>.
Any parameter settings are additional to any that were previously set.
Passing NULL for I<params> should return true.
No parameters are currently recognised by built-in asymmetric kem algorithms.
OSSL_FUNC_kem_gettable_ctx_params() and OSSL_FUNC_kem_settable_ctx_params()
get a constant L<OSSL_PARAM(3)> array that describes the gettable and settable
parameters, i.e. parameters that can be used with OSSL_FUNC_kem_get_ctx_params()
and OSSL_FUNC_kem_set_ctx_params() respectively.
=head1 RETURN VALUES
OSSL_FUNC_kem_newctx() and OSSL_FUNC_kem_dupctx() should return the newly
created provider side asymmetric kem context, or NULL on failure.
All other functions should return 1 for success or 0 on error.
=head1 SEE ALSO
L<provider(7)>
=head1 HISTORY
The provider KEM interface was introduced in OpenSSL 3.0.
Add HPKE DHKEM provider support for EC, X25519 and X448. The code is derived from @sftcd's work in PR #17172. This PR puts the DHKEM algorithms into the provider layer as KEM algorithms for EC and ECX. This PR only implements the DHKEM component of HPKE as specified in RFC 9180. crypto/hpke/hpke_util.c has been added for fuctions that will be shared between DHKEM and HPKE. API's for EVP_PKEY_auth_encapsulate_init() and EVP_PKEY_auth_decapsulate_init() have been added to support authenticated encapsulation. auth_init() functions were chosen rather that a EVP_PKEY_KEM_set_auth() interface to support future algorithms that could possibly need different init functions. Internal code has been refactored, so that it can be shared between the DHKEM and other systems. Since DHKEM operates on low level keys it needs to be able to do low level ECDH and ECXDH calls without converting the keys back into EVP_PKEY/EVP_PKEY_CTX form. See ossl_ecx_compute_key(), ossl_ec_public_from_private() DHKEM requires API's to derive a key using a seed (IKM). This did not sit well inside the DHKEM itself as dispatch functions. This functionality fits better inside the EC and ECX keymanagers keygen, since they are just variations of keygen where the private key is generated in a different manner. This should mainly be used for testing purposes. See ossl_ec_generate_key_dhkem(). It supports this by allowing a settable param to be passed to keygen (See OSSL_PKEY_PARAM_DHKEM_IKM). The keygen calls code within ec and ecx dhkem implementation to handle this. See ossl_ecx_dhkem_derive_private() and ossl_ec_dhkem_derive_private(). These 2 functions are also used by the EC/ECX DHKEM implementations to generate the sender ephemeral keys. Reviewed-by: Hugo Landau <hlandau@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/19068)
2022-08-26 09:54:35 +08:00
OSSL_FUNC_kem_auth_encapsulate_init() and OSSL_FUNC_kem_auth_decapsulate_init()
were added in OpenSSL 3.2.
Add HPKE DHKEM provider support for EC, X25519 and X448. The code is derived from @sftcd's work in PR #17172. This PR puts the DHKEM algorithms into the provider layer as KEM algorithms for EC and ECX. This PR only implements the DHKEM component of HPKE as specified in RFC 9180. crypto/hpke/hpke_util.c has been added for fuctions that will be shared between DHKEM and HPKE. API's for EVP_PKEY_auth_encapsulate_init() and EVP_PKEY_auth_decapsulate_init() have been added to support authenticated encapsulation. auth_init() functions were chosen rather that a EVP_PKEY_KEM_set_auth() interface to support future algorithms that could possibly need different init functions. Internal code has been refactored, so that it can be shared between the DHKEM and other systems. Since DHKEM operates on low level keys it needs to be able to do low level ECDH and ECXDH calls without converting the keys back into EVP_PKEY/EVP_PKEY_CTX form. See ossl_ecx_compute_key(), ossl_ec_public_from_private() DHKEM requires API's to derive a key using a seed (IKM). This did not sit well inside the DHKEM itself as dispatch functions. This functionality fits better inside the EC and ECX keymanagers keygen, since they are just variations of keygen where the private key is generated in a different manner. This should mainly be used for testing purposes. See ossl_ec_generate_key_dhkem(). It supports this by allowing a settable param to be passed to keygen (See OSSL_PKEY_PARAM_DHKEM_IKM). The keygen calls code within ec and ecx dhkem implementation to handle this. See ossl_ecx_dhkem_derive_private() and ossl_ec_dhkem_derive_private(). These 2 functions are also used by the EC/ECX DHKEM implementations to generate the sender ephemeral keys. Reviewed-by: Hugo Landau <hlandau@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/19068)
2022-08-26 09:54:35 +08:00
=head1 COPYRIGHT
Add HPKE DHKEM provider support for EC, X25519 and X448. The code is derived from @sftcd's work in PR #17172. This PR puts the DHKEM algorithms into the provider layer as KEM algorithms for EC and ECX. This PR only implements the DHKEM component of HPKE as specified in RFC 9180. crypto/hpke/hpke_util.c has been added for fuctions that will be shared between DHKEM and HPKE. API's for EVP_PKEY_auth_encapsulate_init() and EVP_PKEY_auth_decapsulate_init() have been added to support authenticated encapsulation. auth_init() functions were chosen rather that a EVP_PKEY_KEM_set_auth() interface to support future algorithms that could possibly need different init functions. Internal code has been refactored, so that it can be shared between the DHKEM and other systems. Since DHKEM operates on low level keys it needs to be able to do low level ECDH and ECXDH calls without converting the keys back into EVP_PKEY/EVP_PKEY_CTX form. See ossl_ecx_compute_key(), ossl_ec_public_from_private() DHKEM requires API's to derive a key using a seed (IKM). This did not sit well inside the DHKEM itself as dispatch functions. This functionality fits better inside the EC and ECX keymanagers keygen, since they are just variations of keygen where the private key is generated in a different manner. This should mainly be used for testing purposes. See ossl_ec_generate_key_dhkem(). It supports this by allowing a settable param to be passed to keygen (See OSSL_PKEY_PARAM_DHKEM_IKM). The keygen calls code within ec and ecx dhkem implementation to handle this. See ossl_ecx_dhkem_derive_private() and ossl_ec_dhkem_derive_private(). These 2 functions are also used by the EC/ECX DHKEM implementations to generate the sender ephemeral keys. Reviewed-by: Hugo Landau <hlandau@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/19068)
2022-08-26 09:54:35 +08:00
Copyright 2020-2022 The OpenSSL Project Authors. All Rights Reserved.
Licensed under the Apache License 2.0 (the "License"). You may not use
this file except in compliance with the License. You can obtain a copy
in the file LICENSE in the source distribution or at
L<https://www.openssl.org/source/license.html>.
=cut