openssl/crypto/evp/asymcipher.c

553 lines
18 KiB
C
Raw Normal View History

/*
* Copyright 2006-2021 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdio.h>
#include <stdlib.h>
2006-04-17 20:08:22 +08:00
#include <openssl/objects.h>
#include <openssl/evp.h>
#include "internal/cryptlib.h"
#include "internal/provider.h"
#include "internal/core.h"
#include "crypto/evp.h"
#include "evp_local.h"
static int evp_pkey_asym_cipher_init(EVP_PKEY_CTX *ctx, int operation,
const OSSL_PARAM params[])
{
int ret = 0;
void *provkey = NULL;
EVP_ASYM_CIPHER *cipher = NULL;
EVP_KEYMGMT *tmp_keymgmt = NULL;
const OSSL_PROVIDER *tmp_prov = NULL;
const char *supported_ciph = NULL;
int iter;
if (ctx == NULL) {
ERR_raise(ERR_LIB_EVP, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE);
return -2;
}
evp_pkey_ctx_free_old_ops(ctx);
ctx->operation = operation;
ERR_set_mark();
if (evp_pkey_ctx_is_legacy(ctx))
goto legacy;
if (ctx->pkey == NULL) {
ERR_clear_last_mark();
ERR_raise(ERR_LIB_EVP, EVP_R_NO_KEY_SET);
goto err;
}
/*
* Try to derive the supported asym cipher from |ctx->keymgmt|.
*/
if (!ossl_assert(ctx->pkey->keymgmt == NULL
|| ctx->pkey->keymgmt == ctx->keymgmt)) {
ERR_clear_last_mark();
ERR_raise(ERR_LIB_EVP, ERR_R_INTERNAL_ERROR);
goto err;
}
supported_ciph
= evp_keymgmt_util_query_operation_name(ctx->keymgmt,
OSSL_OP_ASYM_CIPHER);
if (supported_ciph == NULL) {
ERR_clear_last_mark();
ERR_raise(ERR_LIB_EVP, EVP_R_INITIALIZATION_ERROR);
goto err;
}
/*
* We perform two iterations:
*
* 1. Do the normal asym cipher fetch, using the fetching data given by
* the EVP_PKEY_CTX.
* 2. Do the provider specific asym cipher fetch, from the same provider
* as |ctx->keymgmt|
*
* We then try to fetch the keymgmt from the same provider as the
* asym cipher, and try to export |ctx->pkey| to that keymgmt (when
* this keymgmt happens to be the same as |ctx->keymgmt|, the export
* is a no-op, but we call it anyway to not complicate the code even
* more).
* If the export call succeeds (returns a non-NULL provider key pointer),
* we're done and can perform the operation itself. If not, we perform
* the second iteration, or jump to legacy.
*/
for (iter = 1, provkey = NULL; iter < 3 && provkey == NULL; iter++) {
EVP_KEYMGMT *tmp_keymgmt_tofree;
/*
* If we're on the second iteration, free the results from the first.
* They are NULL on the first iteration, so no need to check what
* iteration we're on.
*/
EVP_ASYM_CIPHER_free(cipher);
EVP_KEYMGMT_free(tmp_keymgmt);
switch (iter) {
case 1:
cipher = EVP_ASYM_CIPHER_fetch(ctx->libctx, supported_ciph,
ctx->propquery);
if (cipher != NULL)
tmp_prov = EVP_ASYM_CIPHER_get0_provider(cipher);
break;
case 2:
tmp_prov = EVP_KEYMGMT_get0_provider(ctx->keymgmt);
cipher =
evp_asym_cipher_fetch_from_prov((OSSL_PROVIDER *)tmp_prov,
supported_ciph, ctx->propquery);
if (cipher == NULL)
goto legacy;
break;
}
if (cipher == NULL)
continue;
/*
* Ensure that the key is provided, either natively, or as a cached
* export. We start by fetching the keymgmt with the same name as
* |ctx->pkey|, but from the provider of the asym cipher method, using
* the same property query as when fetching the asym cipher method.
* With the keymgmt we found (if we did), we try to export |ctx->pkey|
* to it (evp_pkey_export_to_provider() is smart enough to only actually
* export it if |tmp_keymgmt| is different from |ctx->pkey|'s keymgmt)
*/
tmp_keymgmt_tofree = tmp_keymgmt
= evp_keymgmt_fetch_from_prov((OSSL_PROVIDER *)tmp_prov,
EVP_KEYMGMT_get0_name(ctx->keymgmt),
ctx->propquery);
if (tmp_keymgmt != NULL)
provkey = evp_pkey_export_to_provider(ctx->pkey, ctx->libctx,
&tmp_keymgmt, ctx->propquery);
if (tmp_keymgmt == NULL)
EVP_KEYMGMT_free(tmp_keymgmt_tofree);
}
if (provkey == NULL) {
EVP_ASYM_CIPHER_free(cipher);
goto legacy;
}
ERR_pop_to_mark();
/* No more legacy from here down to legacy: */
ctx->op.ciph.cipher = cipher;
ctx->op.ciph.algctx = cipher->newctx(ossl_provider_ctx(cipher->prov));
if (ctx->op.ciph.algctx == NULL) {
/* The provider key can stay in the cache */
ERR_raise(ERR_LIB_EVP, EVP_R_INITIALIZATION_ERROR);
goto err;
}
switch (operation) {
case EVP_PKEY_OP_ENCRYPT:
if (cipher->encrypt_init == NULL) {
ERR_raise(ERR_LIB_EVP, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE);
ret = -2;
goto err;
}
ret = cipher->encrypt_init(ctx->op.ciph.algctx, provkey, params);
break;
case EVP_PKEY_OP_DECRYPT:
if (cipher->decrypt_init == NULL) {
ERR_raise(ERR_LIB_EVP, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE);
ret = -2;
goto err;
}
ret = cipher->decrypt_init(ctx->op.ciph.algctx, provkey, params);
break;
default:
ERR_raise(ERR_LIB_EVP, EVP_R_INITIALIZATION_ERROR);
goto err;
}
if (ret <= 0)
goto err;
EVP_KEYMGMT_free(tmp_keymgmt);
return 1;
legacy:
/*
* If we don't have the full support we need with provided methods,
* let's go see if legacy does.
*/
ERR_pop_to_mark();
EVP_KEYMGMT_free(tmp_keymgmt);
tmp_keymgmt = NULL;
if (ctx->pmeth == NULL || ctx->pmeth->encrypt == NULL) {
ERR_raise(ERR_LIB_EVP, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE);
return -2;
}
switch (ctx->operation) {
case EVP_PKEY_OP_ENCRYPT:
if (ctx->pmeth->encrypt_init == NULL)
return 1;
ret = ctx->pmeth->encrypt_init(ctx);
break;
case EVP_PKEY_OP_DECRYPT:
if (ctx->pmeth->decrypt_init == NULL)
return 1;
ret = ctx->pmeth->decrypt_init(ctx);
break;
default:
ERR_raise(ERR_LIB_EVP, EVP_R_INITIALIZATION_ERROR);
ret = -1;
}
err:
if (ret <= 0) {
evp_pkey_ctx_free_old_ops(ctx);
ctx->operation = EVP_PKEY_OP_UNDEFINED;
}
EVP_KEYMGMT_free(tmp_keymgmt);
return ret;
}
int EVP_PKEY_encrypt_init(EVP_PKEY_CTX *ctx)
{
return evp_pkey_asym_cipher_init(ctx, EVP_PKEY_OP_ENCRYPT, NULL);
}
int EVP_PKEY_encrypt_init_ex(EVP_PKEY_CTX *ctx, const OSSL_PARAM params[])
{
return evp_pkey_asym_cipher_init(ctx, EVP_PKEY_OP_ENCRYPT, params);
}
int EVP_PKEY_encrypt(EVP_PKEY_CTX *ctx,
unsigned char *out, size_t *outlen,
const unsigned char *in, size_t inlen)
{
int ret;
if (ctx == NULL) {
ERR_raise(ERR_LIB_EVP, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE);
return -2;
}
if (ctx->operation != EVP_PKEY_OP_ENCRYPT) {
ERR_raise(ERR_LIB_EVP, EVP_R_OPERATION_NOT_INITIALIZED);
return -1;
}
if (ctx->op.ciph.algctx == NULL)
goto legacy;
ret = ctx->op.ciph.cipher->encrypt(ctx->op.ciph.algctx, out, outlen,
(out == NULL ? 0 : *outlen), in, inlen);
return ret;
legacy:
if (ctx->pmeth == NULL || ctx->pmeth->encrypt == NULL) {
ERR_raise(ERR_LIB_EVP, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE);
return -2;
}
M_check_autoarg(ctx, out, outlen, EVP_F_EVP_PKEY_ENCRYPT)
return ctx->pmeth->encrypt(ctx, out, outlen, in, inlen);
}
int EVP_PKEY_decrypt_init(EVP_PKEY_CTX *ctx)
{
return evp_pkey_asym_cipher_init(ctx, EVP_PKEY_OP_DECRYPT, NULL);
}
int EVP_PKEY_decrypt_init_ex(EVP_PKEY_CTX *ctx, const OSSL_PARAM params[])
{
return evp_pkey_asym_cipher_init(ctx, EVP_PKEY_OP_DECRYPT, params);
}
int EVP_PKEY_decrypt(EVP_PKEY_CTX *ctx,
unsigned char *out, size_t *outlen,
const unsigned char *in, size_t inlen)
{
int ret;
if (ctx == NULL) {
ERR_raise(ERR_LIB_EVP, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE);
return -2;
}
if (ctx->operation != EVP_PKEY_OP_DECRYPT) {
ERR_raise(ERR_LIB_EVP, EVP_R_OPERATION_NOT_INITIALIZED);
return -1;
}
if (ctx->op.ciph.algctx == NULL)
goto legacy;
ret = ctx->op.ciph.cipher->decrypt(ctx->op.ciph.algctx, out, outlen,
(out == NULL ? 0 : *outlen), in, inlen);
return ret;
legacy:
if (ctx->pmeth == NULL || ctx->pmeth->decrypt == NULL) {
ERR_raise(ERR_LIB_EVP, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE);
return -2;
}
M_check_autoarg(ctx, out, outlen, EVP_F_EVP_PKEY_DECRYPT)
return ctx->pmeth->decrypt(ctx, out, outlen, in, inlen);
}
static EVP_ASYM_CIPHER *evp_asym_cipher_new(OSSL_PROVIDER *prov)
{
EVP_ASYM_CIPHER *cipher = OPENSSL_zalloc(sizeof(EVP_ASYM_CIPHER));
if (cipher == NULL) {
ERR_raise(ERR_LIB_EVP, ERR_R_MALLOC_FAILURE);
return NULL;
}
cipher->lock = CRYPTO_THREAD_lock_new();
if (cipher->lock == NULL) {
ERR_raise(ERR_LIB_EVP, ERR_R_MALLOC_FAILURE);
OPENSSL_free(cipher);
return NULL;
}
cipher->prov = prov;
ossl_provider_up_ref(prov);
cipher->refcnt = 1;
return cipher;
}
static void *evp_asym_cipher_from_algorithm(int name_id,
const OSSL_ALGORITHM *algodef,
OSSL_PROVIDER *prov)
{
const OSSL_DISPATCH *fns = algodef->implementation;
EVP_ASYM_CIPHER *cipher = NULL;
int ctxfncnt = 0, encfncnt = 0, decfncnt = 0;
int gparamfncnt = 0, sparamfncnt = 0;
if ((cipher = evp_asym_cipher_new(prov)) == NULL) {
ERR_raise(ERR_LIB_EVP, ERR_R_MALLOC_FAILURE);
goto err;
}
cipher->name_id = name_id;
if ((cipher->type_name = ossl_algorithm_get1_first_name(algodef)) == NULL)
goto err;
cipher->description = algodef->algorithm_description;
for (; fns->function_id != 0; fns++) {
switch (fns->function_id) {
case OSSL_FUNC_ASYM_CIPHER_NEWCTX:
if (cipher->newctx != NULL)
break;
cipher->newctx = OSSL_FUNC_asym_cipher_newctx(fns);
ctxfncnt++;
break;
case OSSL_FUNC_ASYM_CIPHER_ENCRYPT_INIT:
if (cipher->encrypt_init != NULL)
break;
cipher->encrypt_init = OSSL_FUNC_asym_cipher_encrypt_init(fns);
encfncnt++;
break;
case OSSL_FUNC_ASYM_CIPHER_ENCRYPT:
if (cipher->encrypt != NULL)
break;
cipher->encrypt = OSSL_FUNC_asym_cipher_encrypt(fns);
encfncnt++;
break;
case OSSL_FUNC_ASYM_CIPHER_DECRYPT_INIT:
if (cipher->decrypt_init != NULL)
break;
cipher->decrypt_init = OSSL_FUNC_asym_cipher_decrypt_init(fns);
decfncnt++;
break;
case OSSL_FUNC_ASYM_CIPHER_DECRYPT:
if (cipher->decrypt != NULL)
break;
cipher->decrypt = OSSL_FUNC_asym_cipher_decrypt(fns);
decfncnt++;
break;
case OSSL_FUNC_ASYM_CIPHER_FREECTX:
if (cipher->freectx != NULL)
break;
cipher->freectx = OSSL_FUNC_asym_cipher_freectx(fns);
ctxfncnt++;
break;
case OSSL_FUNC_ASYM_CIPHER_DUPCTX:
if (cipher->dupctx != NULL)
break;
cipher->dupctx = OSSL_FUNC_asym_cipher_dupctx(fns);
break;
case OSSL_FUNC_ASYM_CIPHER_GET_CTX_PARAMS:
if (cipher->get_ctx_params != NULL)
break;
cipher->get_ctx_params
= OSSL_FUNC_asym_cipher_get_ctx_params(fns);
gparamfncnt++;
break;
case OSSL_FUNC_ASYM_CIPHER_GETTABLE_CTX_PARAMS:
if (cipher->gettable_ctx_params != NULL)
break;
cipher->gettable_ctx_params
= OSSL_FUNC_asym_cipher_gettable_ctx_params(fns);
gparamfncnt++;
break;
case OSSL_FUNC_ASYM_CIPHER_SET_CTX_PARAMS:
if (cipher->set_ctx_params != NULL)
break;
cipher->set_ctx_params
= OSSL_FUNC_asym_cipher_set_ctx_params(fns);
sparamfncnt++;
break;
case OSSL_FUNC_ASYM_CIPHER_SETTABLE_CTX_PARAMS:
if (cipher->settable_ctx_params != NULL)
break;
cipher->settable_ctx_params
= OSSL_FUNC_asym_cipher_settable_ctx_params(fns);
sparamfncnt++;
break;
}
}
if (ctxfncnt != 2
|| (encfncnt != 0 && encfncnt != 2)
|| (decfncnt != 0 && decfncnt != 2)
|| (encfncnt != 2 && decfncnt != 2)
|| (gparamfncnt != 0 && gparamfncnt != 2)
|| (sparamfncnt != 0 && sparamfncnt != 2)) {
/*
* In order to be a consistent set of functions we must have at least
* a set of context functions (newctx and freectx) as well as a pair of
* "cipher" functions: (encrypt_init, encrypt) or
* (decrypt_init decrypt). set_ctx_params and settable_ctx_params are
* optional, but if one of them is present then the other one must also
* be present. The same applies to get_ctx_params and
* gettable_ctx_params. The dupctx function is optional.
*/
ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_PROVIDER_FUNCTIONS);
goto err;
}
return cipher;
err:
EVP_ASYM_CIPHER_free(cipher);
return NULL;
}
void EVP_ASYM_CIPHER_free(EVP_ASYM_CIPHER *cipher)
{
int i;
if (cipher == NULL)
return;
CRYPTO_DOWN_REF(&cipher->refcnt, &i, cipher->lock);
if (i > 0)
return;
OPENSSL_free(cipher->type_name);
ossl_provider_free(cipher->prov);
CRYPTO_THREAD_lock_free(cipher->lock);
OPENSSL_free(cipher);
}
int EVP_ASYM_CIPHER_up_ref(EVP_ASYM_CIPHER *cipher)
{
int ref = 0;
CRYPTO_UP_REF(&cipher->refcnt, &ref, cipher->lock);
return 1;
}
OSSL_PROVIDER *EVP_ASYM_CIPHER_get0_provider(const EVP_ASYM_CIPHER *cipher)
{
return cipher->prov;
}
EVP_ASYM_CIPHER *EVP_ASYM_CIPHER_fetch(OSSL_LIB_CTX *ctx, const char *algorithm,
const char *properties)
{
return evp_generic_fetch(ctx, OSSL_OP_ASYM_CIPHER, algorithm, properties,
evp_asym_cipher_from_algorithm,
(int (*)(void *))EVP_ASYM_CIPHER_up_ref,
(void (*)(void *))EVP_ASYM_CIPHER_free);
}
EVP_ASYM_CIPHER *evp_asym_cipher_fetch_from_prov(OSSL_PROVIDER *prov,
const char *algorithm,
const char *properties)
{
return evp_generic_fetch_from_prov(prov, OSSL_OP_ASYM_CIPHER,
algorithm, properties,
evp_asym_cipher_from_algorithm,
(int (*)(void *))EVP_ASYM_CIPHER_up_ref,
(void (*)(void *))EVP_ASYM_CIPHER_free);
}
int EVP_ASYM_CIPHER_is_a(const EVP_ASYM_CIPHER *cipher, const char *name)
{
return evp_is_a(cipher->prov, cipher->name_id, NULL, name);
}
int evp_asym_cipher_get_number(const EVP_ASYM_CIPHER *cipher)
{
return cipher->name_id;
}
const char *EVP_ASYM_CIPHER_get0_name(const EVP_ASYM_CIPHER *cipher)
{
return cipher->type_name;
}
const char *EVP_ASYM_CIPHER_get0_description(const EVP_ASYM_CIPHER *cipher)
{
return cipher->description;
}
void EVP_ASYM_CIPHER_do_all_provided(OSSL_LIB_CTX *libctx,
void (*fn)(EVP_ASYM_CIPHER *cipher,
void *arg),
void *arg)
{
evp_generic_do_all(libctx, OSSL_OP_ASYM_CIPHER,
(void (*)(void *, void *))fn, arg,
evp_asym_cipher_from_algorithm,
(int (*)(void *))EVP_ASYM_CIPHER_up_ref,
(void (*)(void *))EVP_ASYM_CIPHER_free);
}
int EVP_ASYM_CIPHER_names_do_all(const EVP_ASYM_CIPHER *cipher,
void (*fn)(const char *name, void *data),
void *data)
{
if (cipher->prov != NULL)
return evp_names_do_all(cipher->prov, cipher->name_id, fn, data);
return 1;
}
const OSSL_PARAM *EVP_ASYM_CIPHER_gettable_ctx_params(const EVP_ASYM_CIPHER *cip)
{
void *provctx;
if (cip == NULL || cip->gettable_ctx_params == NULL)
return NULL;
provctx = ossl_provider_ctx(EVP_ASYM_CIPHER_get0_provider(cip));
return cip->gettable_ctx_params(NULL, provctx);
}
const OSSL_PARAM *EVP_ASYM_CIPHER_settable_ctx_params(const EVP_ASYM_CIPHER *cip)
{
void *provctx;
if (cip == NULL || cip->settable_ctx_params == NULL)
return NULL;
provctx = ossl_provider_ctx(EVP_ASYM_CIPHER_get0_provider(cip));
return cip->settable_ctx_params(NULL, provctx);
}