openssl/test/evp_pkey_dhkem_test.c

884 lines
32 KiB
C
Raw Normal View History

Add HPKE DHKEM provider support for EC, X25519 and X448. The code is derived from @sftcd's work in PR #17172. This PR puts the DHKEM algorithms into the provider layer as KEM algorithms for EC and ECX. This PR only implements the DHKEM component of HPKE as specified in RFC 9180. crypto/hpke/hpke_util.c has been added for fuctions that will be shared between DHKEM and HPKE. API's for EVP_PKEY_auth_encapsulate_init() and EVP_PKEY_auth_decapsulate_init() have been added to support authenticated encapsulation. auth_init() functions were chosen rather that a EVP_PKEY_KEM_set_auth() interface to support future algorithms that could possibly need different init functions. Internal code has been refactored, so that it can be shared between the DHKEM and other systems. Since DHKEM operates on low level keys it needs to be able to do low level ECDH and ECXDH calls without converting the keys back into EVP_PKEY/EVP_PKEY_CTX form. See ossl_ecx_compute_key(), ossl_ec_public_from_private() DHKEM requires API's to derive a key using a seed (IKM). This did not sit well inside the DHKEM itself as dispatch functions. This functionality fits better inside the EC and ECX keymanagers keygen, since they are just variations of keygen where the private key is generated in a different manner. This should mainly be used for testing purposes. See ossl_ec_generate_key_dhkem(). It supports this by allowing a settable param to be passed to keygen (See OSSL_PKEY_PARAM_DHKEM_IKM). The keygen calls code within ec and ecx dhkem implementation to handle this. See ossl_ecx_dhkem_derive_private() and ossl_ec_dhkem_derive_private(). These 2 functions are also used by the EC/ECX DHKEM implementations to generate the sender ephemeral keys. Reviewed-by: Hugo Landau <hlandau@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/19068)
2022-08-26 09:54:35 +08:00
/*
* Copyright 2022-2023 The OpenSSL Project Authors. All Rights Reserved.
Add HPKE DHKEM provider support for EC, X25519 and X448. The code is derived from @sftcd's work in PR #17172. This PR puts the DHKEM algorithms into the provider layer as KEM algorithms for EC and ECX. This PR only implements the DHKEM component of HPKE as specified in RFC 9180. crypto/hpke/hpke_util.c has been added for fuctions that will be shared between DHKEM and HPKE. API's for EVP_PKEY_auth_encapsulate_init() and EVP_PKEY_auth_decapsulate_init() have been added to support authenticated encapsulation. auth_init() functions were chosen rather that a EVP_PKEY_KEM_set_auth() interface to support future algorithms that could possibly need different init functions. Internal code has been refactored, so that it can be shared between the DHKEM and other systems. Since DHKEM operates on low level keys it needs to be able to do low level ECDH and ECXDH calls without converting the keys back into EVP_PKEY/EVP_PKEY_CTX form. See ossl_ecx_compute_key(), ossl_ec_public_from_private() DHKEM requires API's to derive a key using a seed (IKM). This did not sit well inside the DHKEM itself as dispatch functions. This functionality fits better inside the EC and ECX keymanagers keygen, since they are just variations of keygen where the private key is generated in a different manner. This should mainly be used for testing purposes. See ossl_ec_generate_key_dhkem(). It supports this by allowing a settable param to be passed to keygen (See OSSL_PKEY_PARAM_DHKEM_IKM). The keygen calls code within ec and ecx dhkem implementation to handle this. See ossl_ecx_dhkem_derive_private() and ossl_ec_dhkem_derive_private(). These 2 functions are also used by the EC/ECX DHKEM implementations to generate the sender ephemeral keys. Reviewed-by: Hugo Landau <hlandau@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/19068)
2022-08-26 09:54:35 +08:00
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <openssl/evp.h>
#include <openssl/core_names.h>
#include <openssl/param_build.h>
#include <openssl/proverr.h>
#include "internal/nelem.h"
#include "testutil.h"
#define TEST_KEM_ENCAP 0
#define TEST_KEM_DECAP 1
#define TEST_KEM_ENCAP_DECAP 2
#define TEST_TYPE_AUTH 0
#define TEST_TYPE_NOAUTH 1
#define TEST_TYPE_AUTH_NOAUTH 2
#define TEST_KEYTYPE_P256 0
#define TEST_KEYTYPE_X25519 1
#define TEST_KEYTYPES_P256_X25519 2
static OSSL_LIB_CTX *libctx = NULL;
static OSSL_PROVIDER *nullprov = NULL;
static OSSL_PROVIDER *libprov = NULL;
static OSSL_PARAM opparam[2];
static EVP_PKEY *rkey[TEST_KEYTYPES_P256_X25519] = { NULL, NULL };
static EVP_PKEY_CTX *rctx[TEST_KEYTYPES_P256_X25519] = { NULL, NULL };
#include "dhkem_test.inc"
/* Perform encapsulate KAT's */
static int test_dhkem_encapsulate(int tstid)
{
int ret = 0;
EVP_PKEY *rpub = NULL, *spriv = NULL;
const TEST_ENCAPDATA *t = &ec_encapdata[tstid];
TEST_note("Test %s %s Decapsulate", t->curve,
t->spriv != NULL ? "Auth" : "");
if (!TEST_ptr(rpub = new_raw_public_key(t->curve, t->rpub, t->rpublen)))
goto err;
if (t->spriv != NULL) {
if (!TEST_ptr(spriv = new_raw_private_key(t->curve,
t->spriv, t->sprivlen,
t->spub, t->spublen)))
goto err;
}
ret = do_encap(t, rpub, spriv);
err:
EVP_PKEY_free(spriv);
EVP_PKEY_free(rpub);
return ret;
}
/* Perform decapsulate KAT's */
static int test_dhkem_decapsulate(int tstid)
{
int ret = 0;
EVP_PKEY *rpriv = NULL, *spub = NULL;
const TEST_ENCAPDATA *t = &ec_encapdata[tstid];
TEST_note("Test %s %s Decapsulate", t->curve, t->spub != NULL ? "Auth" : "");
if (!TEST_ptr(rpriv = new_raw_private_key(t->curve, t->rpriv, t->rprivlen,
t->rpub, t->rpublen)))
goto err;
if (t->spub != NULL) {
if (!TEST_ptr(spub = new_raw_public_key(t->curve, t->spub, t->spublen)))
goto err;
}
ret = do_decap(t, rpriv, spub);
err:
EVP_PKEY_free(spub);
EVP_PKEY_free(rpriv);
return ret;
}
/* Test that there are settables and they have correct data types */
static int test_settables(int tstid)
{
EVP_PKEY_CTX *ctx = rctx[tstid];
const OSSL_PARAM *settableparams;
const OSSL_PARAM *p;
return TEST_int_eq(EVP_PKEY_encapsulate_init(ctx, NULL), 1)
&& TEST_ptr(settableparams = EVP_PKEY_CTX_settable_params(ctx))
&& TEST_ptr(p = OSSL_PARAM_locate_const(settableparams,
OSSL_KEM_PARAM_OPERATION))
&& TEST_uint_eq(p->data_type, OSSL_PARAM_UTF8_STRING)
&& TEST_ptr(p = OSSL_PARAM_locate_const(settableparams,
OSSL_KEM_PARAM_IKME))
&& TEST_uint_eq(p->data_type, OSSL_PARAM_OCTET_STRING);
}
/* Test initing multiple times passes */
static int test_init_multiple(int tstid)
{
EVP_PKEY_CTX *ctx = rctx[tstid];
return TEST_int_eq(EVP_PKEY_encapsulate_init(ctx, NULL), 1)
&& TEST_int_eq(EVP_PKEY_encapsulate_init(ctx, NULL), 1)
&& TEST_int_eq(EVP_PKEY_decapsulate_init(ctx, NULL), 1)
&& TEST_int_eq(EVP_PKEY_decapsulate_init(ctx, NULL), 1);
}
/* Fail is various bad inputs are passed to the derivekey (keygen) operation */
static int test_ec_dhkem_derivekey_fail(void)
{
int ret = 0;
EVP_PKEY *pkey = NULL;
OSSL_PARAM params[3];
EVP_PKEY_CTX *genctx = NULL;
const TEST_DERIVEKEY_DATA *t = &ec_derivekey_data[0];
BIGNUM *priv = NULL;
/* Check non nist curve fails */
params[0] = OSSL_PARAM_construct_utf8_string(OSSL_PKEY_PARAM_GROUP_NAME,
"secp256k1", 0);
params[1] = OSSL_PARAM_construct_octet_string(OSSL_PKEY_PARAM_DHKEM_IKM,
(char *)t->ikm, t->ikmlen);
params[2] = OSSL_PARAM_construct_end();
if (!TEST_ptr(genctx = EVP_PKEY_CTX_new_from_name(libctx, "EC", NULL))
|| !TEST_int_eq(EVP_PKEY_keygen_init(genctx), 1)
|| !TEST_int_eq(EVP_PKEY_CTX_set_params(genctx, params), 1)
|| !TEST_int_eq(EVP_PKEY_generate(genctx, &pkey),0))
goto err;
/* Fail if curve is not one of P-256, P-384 or P-521 */
params[0] = OSSL_PARAM_construct_utf8_string(OSSL_PKEY_PARAM_GROUP_NAME,
"P-224", 0);
params[1] = OSSL_PARAM_construct_octet_string(OSSL_PKEY_PARAM_DHKEM_IKM,
(char *)t->ikm, t->ikmlen);
params[2] = OSSL_PARAM_construct_end();
if (!TEST_int_eq(EVP_PKEY_keygen_init(genctx), 1)
|| !TEST_int_eq(EVP_PKEY_CTX_set_params(genctx, params), 1)
|| !TEST_int_eq(EVP_PKEY_generate(genctx, &pkey), 0))
goto err;
/* Fail if ikm len is too small*/
params[0] = OSSL_PARAM_construct_utf8_string(OSSL_PKEY_PARAM_GROUP_NAME,
"P-256", 0);
params[1] = OSSL_PARAM_construct_octet_string(OSSL_PKEY_PARAM_DHKEM_IKM,
(char *)t->ikm, t->ikmlen - 1);
params[2] = OSSL_PARAM_construct_end();
if (!TEST_int_eq(EVP_PKEY_CTX_set_params(genctx, params), 1)
|| !TEST_int_eq(EVP_PKEY_generate(genctx, &pkey), 0))
goto err;
ret = 1;
err:
BN_free(priv);
EVP_PKEY_free(pkey);
EVP_PKEY_CTX_free(genctx);
return ret;
}
/* Fail if the operation parameter is not set */
static int test_no_operation_set(int tstid)
{
EVP_PKEY_CTX *ctx = rctx[tstid];
const TEST_ENCAPDATA *t = &ec_encapdata[tstid];
size_t len = 0;
return TEST_int_eq(EVP_PKEY_encapsulate_init(ctx, NULL), 1)
&& TEST_int_eq(EVP_PKEY_encapsulate(ctx, NULL, &len, NULL, NULL), -2)
&& TEST_int_eq(EVP_PKEY_decapsulate_init(ctx, NULL), 1)
&& TEST_int_eq(EVP_PKEY_decapsulate(ctx, NULL, &len,
t->expected_enc,
t->expected_enclen), -2);
}
/* Fail if the ikm is too small */
static int test_ikm_small(int tstid)
{
unsigned char tmp[16] = { 0 };
unsigned char secret[256];
unsigned char enc[256];
size_t secretlen = sizeof(secret);
size_t enclen = sizeof(enc);
OSSL_PARAM params[3];
EVP_PKEY_CTX *ctx = rctx[tstid];
params[0] = OSSL_PARAM_construct_utf8_string(OSSL_KEM_PARAM_OPERATION,
OSSL_KEM_PARAM_OPERATION_DHKEM,
0);
params[1] = OSSL_PARAM_construct_octet_string(OSSL_KEM_PARAM_IKME,
tmp, sizeof(tmp));
params[2] = OSSL_PARAM_construct_end();
return TEST_int_eq(EVP_PKEY_encapsulate_init(ctx, params), 1)
&& TEST_int_eq(EVP_PKEY_encapsulate(ctx, enc, &enclen,
secret, &secretlen), 0);
}
/* Fail if buffers lengths are too small to hold returned data */
static int test_input_size_small(int tstid)
{
int ret = 0;
unsigned char sec[256];
unsigned char enc[256];
size_t seclen = sizeof(sec);
size_t enclen = sizeof(enc);
EVP_PKEY_CTX *ctx = rctx[tstid];
if (!TEST_int_eq(EVP_PKEY_encapsulate_init(ctx, opparam), 1)
|| !TEST_int_eq(EVP_PKEY_encapsulate(ctx, NULL, &enclen,
NULL, &seclen), 1))
goto err;
/* buffer too small for enc */
enclen--;
if (!TEST_int_eq(EVP_PKEY_encapsulate(ctx, enc, &enclen, sec, &seclen),
0))
goto err;
enclen++;
/* buffer too small for secret */
seclen--;
if (!TEST_int_eq(EVP_PKEY_encapsulate(ctx, enc, &enclen, sec, &seclen), 0))
goto err;
seclen++;
if (!TEST_int_eq(EVP_PKEY_decapsulate_init(ctx, opparam), 1))
goto err;
/* buffer too small for decapsulate secret */
seclen--;
if (!TEST_int_eq(EVP_PKEY_decapsulate(ctx, sec, &seclen, enc, enclen), 0))
goto err;
seclen++;
/* incorrect enclen passed to decap */
enclen--;
ret = TEST_int_eq(EVP_PKEY_decapsulate(ctx, sec, &seclen, enc, enclen), 0);
err:
return ret;
}
/* Fail if the auth key has a different curve */
static int test_ec_auth_key_curve_mismatch(void)
{
int ret = 0;
EVP_PKEY *auth = NULL;
if (!TEST_ptr(auth = EVP_PKEY_Q_keygen(libctx, NULL, "EC", "P-521")))
return 0;
ret = TEST_int_eq(EVP_PKEY_auth_encapsulate_init(rctx[0], auth, opparam), 0);
EVP_PKEY_free(auth);
return ret;
}
/* Fail if the auth key has a different key type to the recipient */
static int test_auth_key_type_mismatch(int tstid)
{
int id1 = tstid;
int id2 = !tstid;
return TEST_int_eq(EVP_PKEY_auth_encapsulate_init(rctx[id1],
rkey[id2], opparam), 0);
}
static int test_ec_invalid_private_key(void)
{
int ret = 0;
EVP_PKEY *priv = NULL;
EVP_PKEY_CTX *ctx = NULL;
const TEST_ENCAPDATA *t = &ec_encapdata[0];
static const unsigned char order[] = {
0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xBC, 0xE6, 0xFA, 0xAD, 0xA7, 0x17, 0x9E, 0x84,
0xF3, 0xB9, 0xCA, 0xC2, 0xFC, 0x63, 0x25, 0x51
};
ret = TEST_ptr(priv = new_raw_private_key("P-256", order, sizeof(order),
t->rpub, t->rpublen))
&& TEST_ptr(ctx = EVP_PKEY_CTX_new_from_pkey(libctx, priv, NULL))
&& TEST_int_eq(EVP_PKEY_encapsulate_init(ctx, NULL), 0);
EVP_PKEY_free(priv);
EVP_PKEY_CTX_free(ctx);
return ret;
}
static int test_ec_public_key_infinity(void)
{
int ret = 0;
EVP_PKEY *key = NULL;
EVP_PKEY_CTX *keyctx = NULL;
unsigned char s[256];
unsigned char e[256];
size_t slen = sizeof(s);
size_t elen = sizeof(e);
unsigned char tmp[1] = { 0 }; /* The encoding for an EC point at infinity */
EVP_PKEY_CTX *ctx = rctx[0];
const TEST_ENCAPDATA *t = &ec_encapdata[0];
ret = TEST_ptr(key = new_raw_private_key(t->curve, t->rpriv, t->rprivlen,
tmp, sizeof(tmp)))
&& TEST_ptr(keyctx = EVP_PKEY_CTX_new_from_pkey(libctx, key, NULL))
/* Fail if the recipient public key is invalid */
&& TEST_int_eq(EVP_PKEY_encapsulate_init(keyctx, opparam), 1)
&& TEST_int_eq(EVP_PKEY_encapsulate(keyctx, e, &elen, s, &slen), 0)
/* Fail the decap if the recipient public key is invalid */
&& TEST_int_eq(EVP_PKEY_decapsulate_init(keyctx, opparam), 1)
&& TEST_int_eq(EVP_PKEY_decapsulate(keyctx, s, &slen,
t->expected_enc,
t->expected_enclen), 0)
/* Fail if the auth key has a bad public key */
&& TEST_int_eq(EVP_PKEY_auth_encapsulate_init(ctx, key, opparam), 1)
&& TEST_int_eq(EVP_PKEY_encapsulate(ctx, e, &elen, s, &slen), 0);
EVP_PKEY_free(key);
EVP_PKEY_CTX_free(keyctx);
return ret;
}
/* Test incorrectly passing NULL values fail */
static int test_null_params(int tstid)
{
EVP_PKEY_CTX *ctx = rctx[tstid];
const TEST_ENCAPDATA *t = &ec_encapdata[tstid];
/* auth_encap/decap init must be passed a non NULL value */
return TEST_int_eq(EVP_PKEY_auth_encapsulate_init(ctx, NULL, opparam), 0)
&& TEST_int_eq(EVP_PKEY_auth_decapsulate_init(ctx, NULL, opparam), 0)
/* Check decap fails if NULL params are passed */
&& TEST_int_eq(EVP_PKEY_decapsulate_init(ctx, opparam), 1)
&& TEST_int_eq(EVP_PKEY_decapsulate(ctx, NULL, NULL,
t->expected_enc,
t->expected_enclen), 0)
/* Check encap fails if NULL params are passed */
&& TEST_int_eq(EVP_PKEY_encapsulate_init(ctx, opparam), 1)
&& TEST_int_eq(EVP_PKEY_encapsulate(ctx, NULL, NULL,
NULL, NULL), 0);
}
static int test_set_params(int tstid)
{
int ret = 0;
EVP_PKEY_CTX *ctx = rctx[tstid];
OSSL_PARAM badparams[4];
int val = 1;
/* wrong data type for operation param */
badparams[0] = OSSL_PARAM_construct_int(OSSL_KEM_PARAM_OPERATION, &val);
badparams[1] = OSSL_PARAM_construct_end();
if (!TEST_int_eq(EVP_PKEY_encapsulate_init(ctx, badparams), 0))
goto err;
/* unknown string used for the operation param */
badparams[0] = OSSL_PARAM_construct_utf8_string(OSSL_KEM_PARAM_OPERATION,
"unknown_op", 0);
badparams[1] = OSSL_PARAM_construct_end();
if (!TEST_int_eq(EVP_PKEY_encapsulate_init(ctx, badparams), 0))
goto err;
/* NULL string set for the operation param */
badparams[0] = OSSL_PARAM_construct_utf8_string(OSSL_KEM_PARAM_OPERATION,
NULL, 0);
badparams[1] = OSSL_PARAM_construct_end();
if (!TEST_int_eq(EVP_PKEY_encapsulate_init(ctx, badparams), 0))
goto err;
/* wrong data type for ikme param */
badparams[0] = OSSL_PARAM_construct_int(OSSL_KEM_PARAM_IKME, &val);
badparams[1] = OSSL_PARAM_construct_end();
if (!TEST_int_eq(EVP_PKEY_encapsulate_init(ctx, badparams), 0))
goto err;
/* Setting the ikme to NULL is allowed */
badparams[0] = OSSL_PARAM_construct_octet_string(OSSL_KEM_PARAM_IKME, NULL, 0);
badparams[1] = OSSL_PARAM_construct_end();
if (!TEST_int_eq(EVP_PKEY_encapsulate_init(ctx, badparams), 1))
goto err;
/* Test that unknown params are ignored */
badparams[0] = OSSL_PARAM_construct_int("unknownparam", &val);
badparams[1] = OSSL_PARAM_construct_end();
ret = TEST_int_eq(EVP_PKEY_encapsulate_init(ctx, badparams), 1);
err:
return ret;
}
/*
* ECX keys autogen the public key if a private key is loaded,
* So this test passes for ECX, but fails for EC
*/
static int test_nopublic(int tstid)
{
int ret = 0;
EVP_PKEY_CTX *ctx = NULL;
EVP_PKEY *priv = NULL;
int encap = ((tstid & 1) == 0);
int keytype = tstid >= TEST_KEM_ENCAP_DECAP;
const TEST_ENCAPDATA *t = &ec_encapdata[keytype];
int expected = (keytype == TEST_KEYTYPE_X25519);
TEST_note("%s %s", t->curve, encap ? "Encap" : "Decap");
if (!TEST_ptr(priv = new_raw_private_key(t->curve, t->rpriv, t->rprivlen,
NULL, 0)))
goto err;
if (!TEST_ptr(ctx = EVP_PKEY_CTX_new_from_pkey(libctx, priv, NULL)))
goto err;
if (encap) {
if (!TEST_int_eq(EVP_PKEY_encapsulate_init(ctx, opparam), expected))
goto err;
} else {
if (!TEST_int_eq(EVP_PKEY_decapsulate_init(ctx, opparam), expected))
goto err;
}
if (expected == 0
&& !TEST_int_eq(ERR_GET_REASON(ERR_get_error()), PROV_R_NOT_A_PUBLIC_KEY))
goto err;
ret = 1;
err:
EVP_PKEY_free(priv);
EVP_PKEY_CTX_free(ctx);
return ret;
}
/* Test that not setting the auth public key fails the auth encap/decap init */
static int test_noauthpublic(int tstid)
{
int ret = 0;
EVP_PKEY *auth = NULL;
int encap = ((tstid & 1) == 0);
int keytype = tstid >= TEST_KEM_ENCAP_DECAP;
const TEST_ENCAPDATA *t = &ec_encapdata[keytype];
EVP_PKEY_CTX *ctx = rctx[keytype];
int expected = (keytype == TEST_KEYTYPE_X25519);
TEST_note("%s %s", t->curve, encap ? "Encap" : "Decap");
if (!TEST_ptr(auth = new_raw_private_key(t->curve, t->rpriv,
t->rprivlen, NULL, expected)))
goto err;
if (encap) {
if (!TEST_int_eq(EVP_PKEY_auth_encapsulate_init(ctx, auth,
opparam), expected))
goto err;
} else {
if (!TEST_int_eq(EVP_PKEY_auth_decapsulate_init(ctx, auth,
opparam), expected))
goto err;
}
if (expected == 0
&& !TEST_int_eq(ERR_GET_REASON(ERR_get_error()),
PROV_R_NOT_A_PUBLIC_KEY))
goto err;
ret = 1;
err:
EVP_PKEY_free(auth);
return ret;
}
/* EC specific tests */
/* Perform EC DHKEM KATs */
static int test_ec_dhkem_derivekey(int tstid)
{
int ret = 0;
EVP_PKEY *pkey = NULL;
OSSL_PARAM params[3];
EVP_PKEY_CTX *genctx = NULL;
const TEST_DERIVEKEY_DATA *t = &ec_derivekey_data[tstid];
unsigned char pubkey[133];
unsigned char privkey[66];
size_t pubkeylen = 0, privkeylen = 0;
BIGNUM *priv = NULL;
params[0] = OSSL_PARAM_construct_utf8_string(OSSL_PKEY_PARAM_GROUP_NAME,
(char *)t->curvename, 0);
params[1] = OSSL_PARAM_construct_octet_string(OSSL_PKEY_PARAM_DHKEM_IKM,
(char *)t->ikm, t->ikmlen);
params[2] = OSSL_PARAM_construct_end();
ret = TEST_ptr(genctx = EVP_PKEY_CTX_new_from_name(libctx, "EC", NULL))
&& TEST_int_eq(EVP_PKEY_keygen_init(genctx), 1)
&& TEST_int_eq(EVP_PKEY_CTX_set_params(genctx, params), 1)
&& TEST_int_eq(EVP_PKEY_generate(genctx, &pkey), 1)
&& TEST_true(EVP_PKEY_get_octet_string_param(pkey,
OSSL_PKEY_PARAM_ENCODED_PUBLIC_KEY,
pubkey, sizeof(pubkey), &pubkeylen))
&& TEST_true(EVP_PKEY_get_bn_param(pkey, OSSL_PKEY_PARAM_PRIV_KEY,
&priv))
&& TEST_int_gt(privkeylen = BN_bn2bin(priv, privkey), 0)
&& TEST_int_le(privkeylen, sizeof(privkey))
&& TEST_mem_eq(privkey, privkeylen, t->priv, t->privlen)
&& TEST_mem_eq(pubkey, pubkeylen, t->pub, t->publen);
BN_free(priv);
EVP_PKEY_free(pkey);
EVP_PKEY_CTX_free(genctx);
return ret;
}
/*
* Test that encapsulation uses a random seed if the ikm is not specified,
* and verify that the shared secret matches the decapsulate result.
*/
static int test_ec_noikme(int tstid)
{
int ret = 0, auth = 0;
EVP_PKEY_CTX *ctx = NULL;
EVP_PKEY *recip = NULL;
EVP_PKEY *sender_auth = NULL;
unsigned char sender_secret[256];
unsigned char recip_secret[256];
unsigned char sender_pub[256];
size_t sender_secretlen = sizeof(sender_secret);
size_t recip_secretlen = sizeof(recip_secret);
size_t sender_publen = sizeof(sender_pub);
const char *curve;
int sz = OSSL_NELEM(dhkem_supported_curves);
const char *op = OSSL_KEM_PARAM_OPERATION_DHKEM;
if (tstid >= sz) {
auth = 1;
tstid -= sz;
}
curve = dhkem_supported_curves[tstid];
TEST_note("testing encap/decap of curve %s%s\n", curve,
auth ? " with auth" : "");
if (curve[0] == 'X') {
if (!TEST_ptr(recip = EVP_PKEY_Q_keygen(libctx, NULL, curve))
|| (auth
&& !TEST_ptr(sender_auth = EVP_PKEY_Q_keygen(libctx, NULL,
curve))))
goto err;
} else {
if (!TEST_ptr(recip = EVP_PKEY_Q_keygen(libctx, NULL, "EC", curve))
|| (auth
&& !TEST_ptr(sender_auth = EVP_PKEY_Q_keygen(libctx, NULL,
"EC", curve))))
goto err;
}
ret = TEST_ptr(ctx = EVP_PKEY_CTX_new_from_pkey(libctx, recip, NULL))
&& (sender_auth == NULL
|| TEST_int_eq(EVP_PKEY_auth_encapsulate_init(ctx, sender_auth,
NULL), 1))
&& (sender_auth != NULL
|| TEST_int_eq(EVP_PKEY_encapsulate_init(ctx, NULL), 1))
&& TEST_int_eq(EVP_PKEY_CTX_set_kem_op(ctx, op), 1)
&& TEST_int_eq(EVP_PKEY_encapsulate(ctx, sender_pub, &sender_publen,
sender_secret, &sender_secretlen), 1)
&& (sender_auth == NULL
|| TEST_int_eq(EVP_PKEY_auth_decapsulate_init(ctx, sender_auth,
NULL), 1))
&& (sender_auth != NULL
|| TEST_int_eq(EVP_PKEY_decapsulate_init(ctx, NULL), 1))
&& TEST_int_eq(EVP_PKEY_CTX_set_kem_op(ctx, op), 1)
&& TEST_int_eq(EVP_PKEY_decapsulate(ctx, recip_secret, &recip_secretlen,
sender_pub, sender_publen), 1)
&& TEST_mem_eq(recip_secret, recip_secretlen,
sender_secret, sender_secretlen);
err:
EVP_PKEY_CTX_free(ctx);
EVP_PKEY_free(sender_auth);
EVP_PKEY_free(recip);
return ret;
}
/* Test encap/decap init fail if the curve is invalid */
static int do_ec_curve_failtest(const char *curve)
{
int ret;
EVP_PKEY *key = NULL;
EVP_PKEY_CTX *ctx = NULL;
ret = TEST_ptr(key = EVP_PKEY_Q_keygen(libctx, NULL, "EC", curve))
&& TEST_ptr(ctx = EVP_PKEY_CTX_new_from_pkey(libctx, key, NULL))
&& TEST_int_eq(EVP_PKEY_encapsulate_init(ctx, NULL), -2)
&& TEST_int_eq(EVP_PKEY_decapsulate_init(ctx, NULL), -2);
EVP_PKEY_free(key);
EVP_PKEY_CTX_free(ctx);
return ret;
}
static int test_ec_curve_nonnist(void)
{
return do_ec_curve_failtest("secp256k1");
}
static int test_ec_curve_unsupported(void)
{
return do_ec_curve_failtest("P-224");
}
/* Test that passing a bad recipient public EC key fails during encap/decap */
static int test_ec_badpublic(int tstid)
{
int ret = 0;
EVP_PKEY *recippriv = NULL;
EVP_PKEY_CTX *ctx = NULL;
unsigned char secret[256];
unsigned char pub[256];
size_t secretlen = sizeof(secret);
int encap = ((tstid & 1) == 0);
const TEST_ENCAPDATA *t = &ec_encapdata[0];
TEST_note("%s %s", t->curve, encap ? "Encap" : "Decap");
/* Set the recipient public key to the point at infinity */
pub[0] = 0;
if (!TEST_ptr(recippriv = new_raw_private_key(t->curve, t->rpriv, t->rprivlen,
pub, 1)))
goto err;
if (!TEST_ptr(ctx = EVP_PKEY_CTX_new_from_pkey(libctx, recippriv, NULL)))
goto err;
if (encap) {
unsigned char enc[256];
size_t enclen = sizeof(enc);
if (!TEST_int_eq(EVP_PKEY_encapsulate_init(ctx, opparam), 1))
goto err;
if (!TEST_int_eq(EVP_PKEY_encapsulate(ctx, enc , &enclen,
secret, &secretlen), 0 ))
goto err;
} else {
if (!TEST_int_eq(EVP_PKEY_decapsulate_init(ctx, opparam), 1))
goto err;
if (!TEST_int_eq(EVP_PKEY_decapsulate(ctx, secret, &secretlen,
t->expected_enc,
t->expected_enclen),
0))
goto err;
}
if (!TEST_int_eq(ERR_GET_REASON(ERR_get_error()), PROV_R_INVALID_KEY))
goto err;
ret = 1;
err:
EVP_PKEY_free(recippriv);
EVP_PKEY_CTX_free(ctx);
return ret;
}
static int test_ec_badauth(int tstid)
{
int ret = 0;
EVP_PKEY *auth = NULL;
unsigned char enc[256];
unsigned char secret[256];
unsigned char pub[256];
size_t enclen = sizeof(enc);
size_t secretlen = sizeof(secret);
int encap = ((tstid & 1) == 0);
const TEST_ENCAPDATA *t = &ec_encapdata[TEST_KEYTYPE_P256];
EVP_PKEY_CTX *ctx = rctx[TEST_KEYTYPE_P256];
TEST_note("%s %s", t->curve, encap ? "Encap" : "Decap");
/* Set the auth public key to the point at infinity */
pub[0] = 0;
if (!TEST_ptr(auth = new_raw_private_key(t->curve, t->rpriv, t->rprivlen,
pub, 1)))
goto err;
if (encap) {
if (!TEST_int_eq(EVP_PKEY_auth_encapsulate_init(ctx, auth,
opparam), 1)
|| !TEST_int_eq(EVP_PKEY_encapsulate(ctx, enc, &enclen,
secret, &secretlen), 0))
goto err;
} else {
if (!TEST_int_eq(EVP_PKEY_auth_decapsulate_init(ctx, auth, opparam), 1)
|| !TEST_int_eq(EVP_PKEY_decapsulate(ctx, secret, &secretlen,
t->expected_enc,
t->expected_enclen), 0))
goto err;
}
if (!TEST_int_eq(ERR_GET_REASON(ERR_get_error()), PROV_R_INVALID_KEY))
goto err;
ret = 1;
err:
EVP_PKEY_free(auth);
return ret;
}
static int test_ec_invalid_decap_enc_buffer(void)
{
const TEST_ENCAPDATA *t = &ec_encapdata[TEST_KEYTYPE_P256];
unsigned char enc[256];
unsigned char secret[256];
size_t secretlen = sizeof(secret);
EVP_PKEY_CTX *ctx = rctx[0];
memcpy(enc, t->expected_enc, t->expected_enclen);
enc[0] = 0xFF;
return TEST_int_eq(EVP_PKEY_decapsulate_init(ctx, opparam), 1)
&& TEST_int_eq(EVP_PKEY_decapsulate(ctx, secret, &secretlen,
enc, t->expected_enclen), 0);
}
#ifndef OPENSSL_NO_ECX
Add HPKE DHKEM provider support for EC, X25519 and X448. The code is derived from @sftcd's work in PR #17172. This PR puts the DHKEM algorithms into the provider layer as KEM algorithms for EC and ECX. This PR only implements the DHKEM component of HPKE as specified in RFC 9180. crypto/hpke/hpke_util.c has been added for fuctions that will be shared between DHKEM and HPKE. API's for EVP_PKEY_auth_encapsulate_init() and EVP_PKEY_auth_decapsulate_init() have been added to support authenticated encapsulation. auth_init() functions were chosen rather that a EVP_PKEY_KEM_set_auth() interface to support future algorithms that could possibly need different init functions. Internal code has been refactored, so that it can be shared between the DHKEM and other systems. Since DHKEM operates on low level keys it needs to be able to do low level ECDH and ECXDH calls without converting the keys back into EVP_PKEY/EVP_PKEY_CTX form. See ossl_ecx_compute_key(), ossl_ec_public_from_private() DHKEM requires API's to derive a key using a seed (IKM). This did not sit well inside the DHKEM itself as dispatch functions. This functionality fits better inside the EC and ECX keymanagers keygen, since they are just variations of keygen where the private key is generated in a different manner. This should mainly be used for testing purposes. See ossl_ec_generate_key_dhkem(). It supports this by allowing a settable param to be passed to keygen (See OSSL_PKEY_PARAM_DHKEM_IKM). The keygen calls code within ec and ecx dhkem implementation to handle this. See ossl_ecx_dhkem_derive_private() and ossl_ec_dhkem_derive_private(). These 2 functions are also used by the EC/ECX DHKEM implementations to generate the sender ephemeral keys. Reviewed-by: Hugo Landau <hlandau@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/19068)
2022-08-26 09:54:35 +08:00
/* ECX specific tests */
/* Perform ECX DHKEM KATs */
static int test_ecx_dhkem_derivekey(int tstid)
{
int ret;
OSSL_PARAM params[2];
EVP_PKEY_CTX *genctx;
EVP_PKEY *pkey = NULL;
unsigned char pubkey[64];
unsigned char privkey[64];
unsigned char masked_priv[64];
size_t pubkeylen = 0, privkeylen = 0;
const TEST_DERIVEKEY_DATA *t = &ecx_derivekey_data[tstid];
memcpy(masked_priv, t->priv, t->privlen);
if (OPENSSL_strcasecmp(t->curvename, "X25519") == 0) {
/*
* The RFC test vector seems incorrect since it is not in serialized form,
* So manually do the conversion here for now.
*/
masked_priv[0] &= 248;
masked_priv[t->privlen - 1] &= 127;
masked_priv[t->privlen - 1] |= 64;
} else {
masked_priv[0] &= 252;
masked_priv[t->privlen - 1] |= 128;
}
params[0] = OSSL_PARAM_construct_octet_string(OSSL_PKEY_PARAM_DHKEM_IKM,
(char *)t->ikm, t->ikmlen);
params[1] = OSSL_PARAM_construct_end();
ret = TEST_ptr(genctx = EVP_PKEY_CTX_new_from_name(libctx, t->curvename, NULL))
&& TEST_int_eq(EVP_PKEY_keygen_init(genctx), 1)
&& TEST_int_eq(EVP_PKEY_CTX_set_params(genctx, params), 1)
&& TEST_int_eq(EVP_PKEY_keygen(genctx, &pkey), 1)
&& TEST_int_eq(EVP_PKEY_get_octet_string_param(pkey,
OSSL_PKEY_PARAM_ENCODED_PUBLIC_KEY,
pubkey, sizeof(pubkey), &pubkeylen), 1)
&& TEST_int_eq(EVP_PKEY_get_octet_string_param(pkey,
OSSL_PKEY_PARAM_PRIV_KEY,
privkey, sizeof(privkey), &privkeylen), 1)
&& TEST_mem_eq(t->pub, t->publen, pubkey, pubkeylen)
&& TEST_mem_eq(masked_priv, t->privlen, privkey, privkeylen);
EVP_PKEY_free(pkey);
EVP_PKEY_CTX_free(genctx);
return ret;
}
/* Fail if the auth key has a different curve */
static int test_ecx_auth_key_curve_mismatch(void)
{
int ret = 0;
EVP_PKEY *auth = NULL;
if (!TEST_ptr(auth = EVP_PKEY_Q_keygen(libctx, NULL, "X448")))
return 0;
ret = TEST_int_eq(EVP_PKEY_auth_encapsulate_init(rctx[TEST_KEYTYPE_X25519],
auth, opparam), 0);
EVP_PKEY_free(auth);
return ret;
}
/* Fail if ED448 is used for DHKEM */
static int test_ed_curve_unsupported(void)
{
int ret;
EVP_PKEY *key = NULL;
EVP_PKEY_CTX *ctx = NULL;
ret = TEST_ptr(key = EVP_PKEY_Q_keygen(libctx, NULL, "ED448"))
&& TEST_ptr(ctx = EVP_PKEY_CTX_new_from_pkey(libctx, key, NULL))
&& TEST_int_eq(EVP_PKEY_encapsulate_init(ctx, NULL), -2)
&& TEST_int_eq(EVP_PKEY_decapsulate_init(ctx, NULL), -2);
EVP_PKEY_free(key);
EVP_PKEY_CTX_free(ctx);
return ret;
}
#endif
Add HPKE DHKEM provider support for EC, X25519 and X448. The code is derived from @sftcd's work in PR #17172. This PR puts the DHKEM algorithms into the provider layer as KEM algorithms for EC and ECX. This PR only implements the DHKEM component of HPKE as specified in RFC 9180. crypto/hpke/hpke_util.c has been added for fuctions that will be shared between DHKEM and HPKE. API's for EVP_PKEY_auth_encapsulate_init() and EVP_PKEY_auth_decapsulate_init() have been added to support authenticated encapsulation. auth_init() functions were chosen rather that a EVP_PKEY_KEM_set_auth() interface to support future algorithms that could possibly need different init functions. Internal code has been refactored, so that it can be shared between the DHKEM and other systems. Since DHKEM operates on low level keys it needs to be able to do low level ECDH and ECXDH calls without converting the keys back into EVP_PKEY/EVP_PKEY_CTX form. See ossl_ecx_compute_key(), ossl_ec_public_from_private() DHKEM requires API's to derive a key using a seed (IKM). This did not sit well inside the DHKEM itself as dispatch functions. This functionality fits better inside the EC and ECX keymanagers keygen, since they are just variations of keygen where the private key is generated in a different manner. This should mainly be used for testing purposes. See ossl_ec_generate_key_dhkem(). It supports this by allowing a settable param to be passed to keygen (See OSSL_PKEY_PARAM_DHKEM_IKM). The keygen calls code within ec and ecx dhkem implementation to handle this. See ossl_ecx_dhkem_derive_private() and ossl_ec_dhkem_derive_private(). These 2 functions are also used by the EC/ECX DHKEM implementations to generate the sender ephemeral keys. Reviewed-by: Hugo Landau <hlandau@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/19068)
2022-08-26 09:54:35 +08:00
int setup_tests(void)
{
const char *prov_name = "default";
char *config_file = NULL;
char *op = OSSL_KEM_PARAM_OPERATION_DHKEM;
if (!test_get_libctx(&libctx, &nullprov, config_file, &libprov, prov_name))
return 0;
opparam[0] = OSSL_PARAM_construct_utf8_string(OSSL_KEM_PARAM_OPERATION,
op, 0);
opparam[1] = OSSL_PARAM_construct_end();
/* Create P256 and X25519 keys and ctxs */
if (!TEST_ptr(rkey[TEST_KEYTYPE_P256] = EVP_PKEY_Q_keygen(libctx, NULL,
"EC", "P-256")))
goto err;
#ifndef OPENSSL_NO_ECX
Add HPKE DHKEM provider support for EC, X25519 and X448. The code is derived from @sftcd's work in PR #17172. This PR puts the DHKEM algorithms into the provider layer as KEM algorithms for EC and ECX. This PR only implements the DHKEM component of HPKE as specified in RFC 9180. crypto/hpke/hpke_util.c has been added for fuctions that will be shared between DHKEM and HPKE. API's for EVP_PKEY_auth_encapsulate_init() and EVP_PKEY_auth_decapsulate_init() have been added to support authenticated encapsulation. auth_init() functions were chosen rather that a EVP_PKEY_KEM_set_auth() interface to support future algorithms that could possibly need different init functions. Internal code has been refactored, so that it can be shared between the DHKEM and other systems. Since DHKEM operates on low level keys it needs to be able to do low level ECDH and ECXDH calls without converting the keys back into EVP_PKEY/EVP_PKEY_CTX form. See ossl_ecx_compute_key(), ossl_ec_public_from_private() DHKEM requires API's to derive a key using a seed (IKM). This did not sit well inside the DHKEM itself as dispatch functions. This functionality fits better inside the EC and ECX keymanagers keygen, since they are just variations of keygen where the private key is generated in a different manner. This should mainly be used for testing purposes. See ossl_ec_generate_key_dhkem(). It supports this by allowing a settable param to be passed to keygen (See OSSL_PKEY_PARAM_DHKEM_IKM). The keygen calls code within ec and ecx dhkem implementation to handle this. See ossl_ecx_dhkem_derive_private() and ossl_ec_dhkem_derive_private(). These 2 functions are also used by the EC/ECX DHKEM implementations to generate the sender ephemeral keys. Reviewed-by: Hugo Landau <hlandau@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/19068)
2022-08-26 09:54:35 +08:00
if (!TEST_ptr(rkey[TEST_KEYTYPE_X25519] = EVP_PKEY_Q_keygen(libctx, NULL,
"X25519")))
goto err;
#endif
Add HPKE DHKEM provider support for EC, X25519 and X448. The code is derived from @sftcd's work in PR #17172. This PR puts the DHKEM algorithms into the provider layer as KEM algorithms for EC and ECX. This PR only implements the DHKEM component of HPKE as specified in RFC 9180. crypto/hpke/hpke_util.c has been added for fuctions that will be shared between DHKEM and HPKE. API's for EVP_PKEY_auth_encapsulate_init() and EVP_PKEY_auth_decapsulate_init() have been added to support authenticated encapsulation. auth_init() functions were chosen rather that a EVP_PKEY_KEM_set_auth() interface to support future algorithms that could possibly need different init functions. Internal code has been refactored, so that it can be shared between the DHKEM and other systems. Since DHKEM operates on low level keys it needs to be able to do low level ECDH and ECXDH calls without converting the keys back into EVP_PKEY/EVP_PKEY_CTX form. See ossl_ecx_compute_key(), ossl_ec_public_from_private() DHKEM requires API's to derive a key using a seed (IKM). This did not sit well inside the DHKEM itself as dispatch functions. This functionality fits better inside the EC and ECX keymanagers keygen, since they are just variations of keygen where the private key is generated in a different manner. This should mainly be used for testing purposes. See ossl_ec_generate_key_dhkem(). It supports this by allowing a settable param to be passed to keygen (See OSSL_PKEY_PARAM_DHKEM_IKM). The keygen calls code within ec and ecx dhkem implementation to handle this. See ossl_ecx_dhkem_derive_private() and ossl_ec_dhkem_derive_private(). These 2 functions are also used by the EC/ECX DHKEM implementations to generate the sender ephemeral keys. Reviewed-by: Hugo Landau <hlandau@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/19068)
2022-08-26 09:54:35 +08:00
if (!TEST_ptr(rctx[TEST_KEYTYPE_P256] =
EVP_PKEY_CTX_new_from_pkey(libctx,
rkey[TEST_KEYTYPE_P256], NULL)))
goto err;
#ifndef OPENSSL_NO_ECX
Add HPKE DHKEM provider support for EC, X25519 and X448. The code is derived from @sftcd's work in PR #17172. This PR puts the DHKEM algorithms into the provider layer as KEM algorithms for EC and ECX. This PR only implements the DHKEM component of HPKE as specified in RFC 9180. crypto/hpke/hpke_util.c has been added for fuctions that will be shared between DHKEM and HPKE. API's for EVP_PKEY_auth_encapsulate_init() and EVP_PKEY_auth_decapsulate_init() have been added to support authenticated encapsulation. auth_init() functions were chosen rather that a EVP_PKEY_KEM_set_auth() interface to support future algorithms that could possibly need different init functions. Internal code has been refactored, so that it can be shared between the DHKEM and other systems. Since DHKEM operates on low level keys it needs to be able to do low level ECDH and ECXDH calls without converting the keys back into EVP_PKEY/EVP_PKEY_CTX form. See ossl_ecx_compute_key(), ossl_ec_public_from_private() DHKEM requires API's to derive a key using a seed (IKM). This did not sit well inside the DHKEM itself as dispatch functions. This functionality fits better inside the EC and ECX keymanagers keygen, since they are just variations of keygen where the private key is generated in a different manner. This should mainly be used for testing purposes. See ossl_ec_generate_key_dhkem(). It supports this by allowing a settable param to be passed to keygen (See OSSL_PKEY_PARAM_DHKEM_IKM). The keygen calls code within ec and ecx dhkem implementation to handle this. See ossl_ecx_dhkem_derive_private() and ossl_ec_dhkem_derive_private(). These 2 functions are also used by the EC/ECX DHKEM implementations to generate the sender ephemeral keys. Reviewed-by: Hugo Landau <hlandau@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/19068)
2022-08-26 09:54:35 +08:00
if (!TEST_ptr(rctx[TEST_KEYTYPE_X25519] =
EVP_PKEY_CTX_new_from_pkey(libctx,
rkey[TEST_KEYTYPE_X25519], NULL)))
goto err;
#endif
Add HPKE DHKEM provider support for EC, X25519 and X448. The code is derived from @sftcd's work in PR #17172. This PR puts the DHKEM algorithms into the provider layer as KEM algorithms for EC and ECX. This PR only implements the DHKEM component of HPKE as specified in RFC 9180. crypto/hpke/hpke_util.c has been added for fuctions that will be shared between DHKEM and HPKE. API's for EVP_PKEY_auth_encapsulate_init() and EVP_PKEY_auth_decapsulate_init() have been added to support authenticated encapsulation. auth_init() functions were chosen rather that a EVP_PKEY_KEM_set_auth() interface to support future algorithms that could possibly need different init functions. Internal code has been refactored, so that it can be shared between the DHKEM and other systems. Since DHKEM operates on low level keys it needs to be able to do low level ECDH and ECXDH calls without converting the keys back into EVP_PKEY/EVP_PKEY_CTX form. See ossl_ecx_compute_key(), ossl_ec_public_from_private() DHKEM requires API's to derive a key using a seed (IKM). This did not sit well inside the DHKEM itself as dispatch functions. This functionality fits better inside the EC and ECX keymanagers keygen, since they are just variations of keygen where the private key is generated in a different manner. This should mainly be used for testing purposes. See ossl_ec_generate_key_dhkem(). It supports this by allowing a settable param to be passed to keygen (See OSSL_PKEY_PARAM_DHKEM_IKM). The keygen calls code within ec and ecx dhkem implementation to handle this. See ossl_ecx_dhkem_derive_private() and ossl_ec_dhkem_derive_private(). These 2 functions are also used by the EC/ECX DHKEM implementations to generate the sender ephemeral keys. Reviewed-by: Hugo Landau <hlandau@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/19068)
2022-08-26 09:54:35 +08:00
ADD_ALL_TESTS(test_dhkem_encapsulate, OSSL_NELEM(ec_encapdata));
ADD_ALL_TESTS(test_dhkem_decapsulate, OSSL_NELEM(ec_encapdata));
#ifndef OPENSSL_NO_ECX
Add HPKE DHKEM provider support for EC, X25519 and X448. The code is derived from @sftcd's work in PR #17172. This PR puts the DHKEM algorithms into the provider layer as KEM algorithms for EC and ECX. This PR only implements the DHKEM component of HPKE as specified in RFC 9180. crypto/hpke/hpke_util.c has been added for fuctions that will be shared between DHKEM and HPKE. API's for EVP_PKEY_auth_encapsulate_init() and EVP_PKEY_auth_decapsulate_init() have been added to support authenticated encapsulation. auth_init() functions were chosen rather that a EVP_PKEY_KEM_set_auth() interface to support future algorithms that could possibly need different init functions. Internal code has been refactored, so that it can be shared between the DHKEM and other systems. Since DHKEM operates on low level keys it needs to be able to do low level ECDH and ECXDH calls without converting the keys back into EVP_PKEY/EVP_PKEY_CTX form. See ossl_ecx_compute_key(), ossl_ec_public_from_private() DHKEM requires API's to derive a key using a seed (IKM). This did not sit well inside the DHKEM itself as dispatch functions. This functionality fits better inside the EC and ECX keymanagers keygen, since they are just variations of keygen where the private key is generated in a different manner. This should mainly be used for testing purposes. See ossl_ec_generate_key_dhkem(). It supports this by allowing a settable param to be passed to keygen (See OSSL_PKEY_PARAM_DHKEM_IKM). The keygen calls code within ec and ecx dhkem implementation to handle this. See ossl_ecx_dhkem_derive_private() and ossl_ec_dhkem_derive_private(). These 2 functions are also used by the EC/ECX DHKEM implementations to generate the sender ephemeral keys. Reviewed-by: Hugo Landau <hlandau@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/19068)
2022-08-26 09:54:35 +08:00
ADD_ALL_TESTS(test_settables, TEST_KEYTYPES_P256_X25519);
ADD_ALL_TESTS(test_init_multiple, TEST_KEYTYPES_P256_X25519);
ADD_ALL_TESTS(test_auth_key_type_mismatch, TEST_KEYTYPES_P256_X25519);
ADD_ALL_TESTS(test_no_operation_set, TEST_KEYTYPES_P256_X25519);
ADD_ALL_TESTS(test_ikm_small, TEST_KEYTYPES_P256_X25519);
ADD_ALL_TESTS(test_input_size_small, TEST_KEYTYPES_P256_X25519);
ADD_ALL_TESTS(test_null_params, TEST_KEYTYPES_P256_X25519);
ADD_ALL_TESTS(test_set_params, TEST_KEYTYPES_P256_X25519);
ADD_ALL_TESTS(test_nopublic,
TEST_KEM_ENCAP_DECAP * TEST_KEYTYPES_P256_X25519);
ADD_ALL_TESTS(test_noauthpublic,
TEST_KEM_ENCAP_DECAP * TEST_KEYTYPES_P256_X25519);
#else
ADD_ALL_TESTS(test_settables, TEST_KEYTYPE_P256);
ADD_ALL_TESTS(test_init_multiple, TEST_KEYTYPE_P256);
ADD_ALL_TESTS(test_auth_key_type_mismatch, TEST_KEYTYPE_P256);
ADD_ALL_TESTS(test_no_operation_set, TEST_KEYTYPE_P256);
ADD_ALL_TESTS(test_ikm_small, TEST_KEYTYPE_P256);
ADD_ALL_TESTS(test_input_size_small, TEST_KEYTYPE_P256);
ADD_ALL_TESTS(test_null_params, TEST_KEYTYPE_P256);
ADD_ALL_TESTS(test_set_params, TEST_KEYTYPE_P256);
ADD_ALL_TESTS(test_nopublic,
TEST_KEM_ENCAP_DECAP * TEST_KEYTYPE_P256);
ADD_ALL_TESTS(test_noauthpublic,
TEST_KEM_ENCAP_DECAP * TEST_KEYTYPE_P256);
#endif
Add HPKE DHKEM provider support for EC, X25519 and X448. The code is derived from @sftcd's work in PR #17172. This PR puts the DHKEM algorithms into the provider layer as KEM algorithms for EC and ECX. This PR only implements the DHKEM component of HPKE as specified in RFC 9180. crypto/hpke/hpke_util.c has been added for fuctions that will be shared between DHKEM and HPKE. API's for EVP_PKEY_auth_encapsulate_init() and EVP_PKEY_auth_decapsulate_init() have been added to support authenticated encapsulation. auth_init() functions were chosen rather that a EVP_PKEY_KEM_set_auth() interface to support future algorithms that could possibly need different init functions. Internal code has been refactored, so that it can be shared between the DHKEM and other systems. Since DHKEM operates on low level keys it needs to be able to do low level ECDH and ECXDH calls without converting the keys back into EVP_PKEY/EVP_PKEY_CTX form. See ossl_ecx_compute_key(), ossl_ec_public_from_private() DHKEM requires API's to derive a key using a seed (IKM). This did not sit well inside the DHKEM itself as dispatch functions. This functionality fits better inside the EC and ECX keymanagers keygen, since they are just variations of keygen where the private key is generated in a different manner. This should mainly be used for testing purposes. See ossl_ec_generate_key_dhkem(). It supports this by allowing a settable param to be passed to keygen (See OSSL_PKEY_PARAM_DHKEM_IKM). The keygen calls code within ec and ecx dhkem implementation to handle this. See ossl_ecx_dhkem_derive_private() and ossl_ec_dhkem_derive_private(). These 2 functions are also used by the EC/ECX DHKEM implementations to generate the sender ephemeral keys. Reviewed-by: Hugo Landau <hlandau@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/19068)
2022-08-26 09:54:35 +08:00
/* EC Specific tests */
ADD_ALL_TESTS(test_ec_dhkem_derivekey, OSSL_NELEM(ec_derivekey_data));
ADD_ALL_TESTS(test_ec_noikme,
TEST_TYPE_AUTH_NOAUTH * OSSL_NELEM(dhkem_supported_curves));
ADD_TEST(test_ec_auth_key_curve_mismatch);
ADD_TEST(test_ec_invalid_private_key);
ADD_TEST(test_ec_dhkem_derivekey_fail);
ADD_TEST(test_ec_curve_nonnist);
ADD_TEST(test_ec_curve_unsupported);
ADD_TEST(test_ec_invalid_decap_enc_buffer);
ADD_TEST(test_ec_public_key_infinity);
ADD_ALL_TESTS(test_ec_badpublic, TEST_KEM_ENCAP_DECAP);
ADD_ALL_TESTS(test_ec_badauth, TEST_KEM_ENCAP_DECAP);
/* ECX specific tests */
#ifndef OPENSSL_NO_ECX
Add HPKE DHKEM provider support for EC, X25519 and X448. The code is derived from @sftcd's work in PR #17172. This PR puts the DHKEM algorithms into the provider layer as KEM algorithms for EC and ECX. This PR only implements the DHKEM component of HPKE as specified in RFC 9180. crypto/hpke/hpke_util.c has been added for fuctions that will be shared between DHKEM and HPKE. API's for EVP_PKEY_auth_encapsulate_init() and EVP_PKEY_auth_decapsulate_init() have been added to support authenticated encapsulation. auth_init() functions were chosen rather that a EVP_PKEY_KEM_set_auth() interface to support future algorithms that could possibly need different init functions. Internal code has been refactored, so that it can be shared between the DHKEM and other systems. Since DHKEM operates on low level keys it needs to be able to do low level ECDH and ECXDH calls without converting the keys back into EVP_PKEY/EVP_PKEY_CTX form. See ossl_ecx_compute_key(), ossl_ec_public_from_private() DHKEM requires API's to derive a key using a seed (IKM). This did not sit well inside the DHKEM itself as dispatch functions. This functionality fits better inside the EC and ECX keymanagers keygen, since they are just variations of keygen where the private key is generated in a different manner. This should mainly be used for testing purposes. See ossl_ec_generate_key_dhkem(). It supports this by allowing a settable param to be passed to keygen (See OSSL_PKEY_PARAM_DHKEM_IKM). The keygen calls code within ec and ecx dhkem implementation to handle this. See ossl_ecx_dhkem_derive_private() and ossl_ec_dhkem_derive_private(). These 2 functions are also used by the EC/ECX DHKEM implementations to generate the sender ephemeral keys. Reviewed-by: Hugo Landau <hlandau@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/19068)
2022-08-26 09:54:35 +08:00
ADD_ALL_TESTS(test_ecx_dhkem_derivekey, OSSL_NELEM(ecx_derivekey_data));
ADD_TEST(test_ecx_auth_key_curve_mismatch);
ADD_TEST(test_ed_curve_unsupported);
#endif
Add HPKE DHKEM provider support for EC, X25519 and X448. The code is derived from @sftcd's work in PR #17172. This PR puts the DHKEM algorithms into the provider layer as KEM algorithms for EC and ECX. This PR only implements the DHKEM component of HPKE as specified in RFC 9180. crypto/hpke/hpke_util.c has been added for fuctions that will be shared between DHKEM and HPKE. API's for EVP_PKEY_auth_encapsulate_init() and EVP_PKEY_auth_decapsulate_init() have been added to support authenticated encapsulation. auth_init() functions were chosen rather that a EVP_PKEY_KEM_set_auth() interface to support future algorithms that could possibly need different init functions. Internal code has been refactored, so that it can be shared between the DHKEM and other systems. Since DHKEM operates on low level keys it needs to be able to do low level ECDH and ECXDH calls without converting the keys back into EVP_PKEY/EVP_PKEY_CTX form. See ossl_ecx_compute_key(), ossl_ec_public_from_private() DHKEM requires API's to derive a key using a seed (IKM). This did not sit well inside the DHKEM itself as dispatch functions. This functionality fits better inside the EC and ECX keymanagers keygen, since they are just variations of keygen where the private key is generated in a different manner. This should mainly be used for testing purposes. See ossl_ec_generate_key_dhkem(). It supports this by allowing a settable param to be passed to keygen (See OSSL_PKEY_PARAM_DHKEM_IKM). The keygen calls code within ec and ecx dhkem implementation to handle this. See ossl_ecx_dhkem_derive_private() and ossl_ec_dhkem_derive_private(). These 2 functions are also used by the EC/ECX DHKEM implementations to generate the sender ephemeral keys. Reviewed-by: Hugo Landau <hlandau@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/19068)
2022-08-26 09:54:35 +08:00
return 1;
err:
return 0;
}
void cleanup_tests(void)
{
EVP_PKEY_free(rkey[1]);
EVP_PKEY_free(rkey[0]);
EVP_PKEY_CTX_free(rctx[1]);
EVP_PKEY_CTX_free(rctx[0]);
OSSL_PROVIDER_unload(libprov);
OSSL_LIB_CTX_free(libctx);
OSSL_PROVIDER_unload(nullprov);
}