openssl/crypto/ec/ec_key.c

1003 lines
27 KiB
C
Raw Normal View History

/*
* Copyright 2002-2020 The OpenSSL Project Authors. All Rights Reserved.
* Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* ECDSA low level APIs are deprecated for public use, but still ok for
* internal use.
*/
#include "internal/deprecated.h"
#include "internal/cryptlib.h"
#include <string.h>
#include "ec_local.h"
#include "internal/refcount.h"
#include <openssl/err.h>
#include <openssl/engine.h>
#include <openssl/self_test.h>
#include "prov/providercommon.h"
[EC] harden EC_KEY against leaks from memory accesses We should never leak the bit length of the secret scalar in the key, so we always set the `BN_FLG_CONSTTIME` flag on the internal `BIGNUM` holding the secret scalar. This is important also because `BN_dup()` (and `BN_copy()`) do not propagate the `BN_FLG_CONSTTIME` flag from the source `BIGNUM`, and this brings an extra risk of inadvertently losing the flag, even when the called specifically set it. The propagation has been turned on and off a few times in the past years because in some conditions has shown unintended consequences in some code paths, so at the moment we can't fix this in the BN layer. In `EC_KEY_set_private_key()` we can work around the propagation by manually setting the flag after `BN_dup()` as we know for sure that inside the EC module the `BN_FLG_CONSTTIME` is always treated correctly and should not generate unintended consequences. Setting the `BN_FLG_CONSTTIME` flag alone is never enough, we also have to preallocate the `BIGNUM` internal buffer to a fixed public size big enough that operations performed during the processing never trigger a realloc which would leak the size of the scalar through memory accesses. Fixed Length ------------ The order of the large prime subgroup of the curve is our choice for a fixed public size, as that is generally the upper bound for generating a private key in EC cryptosystems and should fit all valid secret scalars. For preallocating the `BIGNUM` storage we look at the number of "words" required for the internal representation of the order, and we preallocate 2 extra "words" in case any of the subsequent processing might temporarily overflow the order length. Future work ----------- A separate commit addresses further hardening of `BN_copy()` (and indirectly `BN_dup()`). Reviewed-by: Matt Caswell <matt@openssl.org> Reviewed-by: Richard Levitte <levitte@openssl.org> Reviewed-by: Shane Lontis <shane.lontis@oracle.com> (Merged from https://github.com/openssl/openssl/pull/10631)
2020-01-21 23:00:41 +08:00
#include "crypto/bn.h"
static int ecdsa_keygen_pairwise_test(EC_KEY *eckey, OSSL_CALLBACK *cb,
void *cbarg);
#ifndef FIPS_MODULE
EC_KEY *EC_KEY_new(void)
{
return ec_key_new_method_int(NULL, NULL, NULL);
}
#endif
EC_KEY *EC_KEY_new_with_libctx(OPENSSL_CTX *ctx, const char *propq)
{
return ec_key_new_method_int(ctx, propq, NULL);
}
EC_KEY *EC_KEY_new_by_curve_name_with_libctx(OPENSSL_CTX *ctx,
const char *propq, int nid)
{
EC_KEY *ret = EC_KEY_new_with_libctx(ctx, propq);
if (ret == NULL)
return NULL;
ret->group = EC_GROUP_new_by_curve_name_with_libctx(ctx, propq, nid);
if (ret->group == NULL) {
EC_KEY_free(ret);
return NULL;
}
if (ret->meth->set_group != NULL
&& ret->meth->set_group(ret, ret->group) == 0) {
EC_KEY_free(ret);
return NULL;
}
return ret;
}
#ifndef FIPS_MODULE
EC_KEY *EC_KEY_new_by_curve_name(int nid)
{
return EC_KEY_new_by_curve_name_with_libctx(NULL, NULL, nid);
}
#endif
void EC_KEY_free(EC_KEY *r)
{
int i;
if (r == NULL)
return;
CRYPTO_DOWN_REF(&r->references, &i, r->lock);
REF_PRINT_COUNT("EC_KEY", r);
if (i > 0)
return;
REF_ASSERT_ISNT(i < 0);
if (r->meth != NULL && r->meth->finish != NULL)
r->meth->finish(r);
#if !defined(OPENSSL_NO_ENGINE) && !defined(FIPS_MODULE)
ENGINE_finish(r->engine);
#endif
if (r->group && r->group->meth->keyfinish)
r->group->meth->keyfinish(r);
#ifndef FIPS_MODULE
CRYPTO_free_ex_data(CRYPTO_EX_INDEX_EC_KEY, r, &r->ex_data);
#endif
CRYPTO_THREAD_lock_free(r->lock);
EC_GROUP_free(r->group);
EC_POINT_free(r->pub_key);
BN_clear_free(r->priv_key);
OPENSSL_free(r->propq);
OPENSSL_clear_free((void *)r, sizeof(EC_KEY));
}
EC_KEY *EC_KEY_copy(EC_KEY *dest, const EC_KEY *src)
{
if (dest == NULL || src == NULL) {
ECerr(EC_F_EC_KEY_COPY, ERR_R_PASSED_NULL_PARAMETER);
return NULL;
}
if (src->meth != dest->meth) {
if (dest->meth->finish != NULL)
dest->meth->finish(dest);
if (dest->group && dest->group->meth->keyfinish)
dest->group->meth->keyfinish(dest);
#if !defined(OPENSSL_NO_ENGINE) && !defined(FIPS_MODULE)
if (ENGINE_finish(dest->engine) == 0)
return 0;
dest->engine = NULL;
#endif
}
dest->libctx = src->libctx;
/* copy the parameters */
if (src->group != NULL) {
/* clear the old group */
EC_GROUP_free(dest->group);
dest->group = ec_group_new_with_libctx(src->libctx, src->propq,
src->group->meth);
if (dest->group == NULL)
return NULL;
if (!EC_GROUP_copy(dest->group, src->group))
return NULL;
/* copy the public key */
if (src->pub_key != NULL) {
EC_POINT_free(dest->pub_key);
dest->pub_key = EC_POINT_new(src->group);
if (dest->pub_key == NULL)
return NULL;
if (!EC_POINT_copy(dest->pub_key, src->pub_key))
return NULL;
}
/* copy the private key */
if (src->priv_key != NULL) {
if (dest->priv_key == NULL) {
dest->priv_key = BN_new();
if (dest->priv_key == NULL)
return NULL;
}
if (!BN_copy(dest->priv_key, src->priv_key))
return NULL;
if (src->group->meth->keycopy
&& src->group->meth->keycopy(dest, src) == 0)
return NULL;
}
}
/* copy the rest */
dest->enc_flag = src->enc_flag;
dest->conv_form = src->conv_form;
dest->version = src->version;
dest->flags = src->flags;
#ifndef FIPS_MODULE
if (!CRYPTO_dup_ex_data(CRYPTO_EX_INDEX_EC_KEY,
&dest->ex_data, &src->ex_data))
return NULL;
#endif
if (src->meth != dest->meth) {
#if !defined(OPENSSL_NO_ENGINE) && !defined(FIPS_MODULE)
if (src->engine != NULL && ENGINE_init(src->engine) == 0)
return NULL;
dest->engine = src->engine;
#endif
dest->meth = src->meth;
}
if (src->meth->copy != NULL && src->meth->copy(dest, src) == 0)
return NULL;
dest->dirty_cnt++;
return dest;
}
EC_KEY *EC_KEY_dup(const EC_KEY *ec_key)
{
EC_KEY *ret = ec_key_new_method_int(ec_key->libctx, ec_key->propq,
ec_key->engine);
if (ret == NULL)
return NULL;
if (EC_KEY_copy(ret, ec_key) == NULL) {
EC_KEY_free(ret);
return NULL;
}
return ret;
}
int EC_KEY_up_ref(EC_KEY *r)
{
int i;
if (CRYPTO_UP_REF(&r->references, &i, r->lock) <= 0)
return 0;
REF_PRINT_COUNT("EC_KEY", r);
REF_ASSERT_ISNT(i < 2);
return ((i > 1) ? 1 : 0);
}
ENGINE *EC_KEY_get0_engine(const EC_KEY *eckey)
{
return eckey->engine;
}
int EC_KEY_generate_key(EC_KEY *eckey)
{
if (eckey == NULL || eckey->group == NULL) {
ECerr(EC_F_EC_KEY_GENERATE_KEY, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
if (eckey->meth->keygen != NULL) {
int ret;
ret = eckey->meth->keygen(eckey);
if (ret == 1)
eckey->dirty_cnt++;
return ret;
}
ECerr(EC_F_EC_KEY_GENERATE_KEY, EC_R_OPERATION_NOT_SUPPORTED);
return 0;
}
int ossl_ec_key_gen(EC_KEY *eckey)
{
int ret;
ret = eckey->group->meth->keygen(eckey);
if (ret == 1)
eckey->dirty_cnt++;
return ret;
}
/*
* ECC Key generation.
* See SP800-56AR3 5.6.1.2.2 "Key Pair Generation by Testing Candidates"
*
* Params:
* libctx A context containing an optional self test callback.
* eckey An EC key object that contains domain params. The generated keypair
* is stored in this object.
* pairwise_test Set to non zero to perform a pairwise test. If the test
* fails then the keypair is not generated,
* Returns 1 if the keypair was generated or 0 otherwise.
*/
static int ec_generate_key(EC_KEY *eckey, int pairwise_test)
{
int ok = 0;
BIGNUM *priv_key = NULL;
const BIGNUM *order = NULL;
EC_POINT *pub_key = NULL;
const EC_GROUP *group = eckey->group;
BN_CTX *ctx = BN_CTX_secure_new_ex(eckey->libctx);
if (ctx == NULL)
goto err;
if (eckey->priv_key == NULL) {
priv_key = BN_secure_new();
if (priv_key == NULL)
goto err;
} else
priv_key = eckey->priv_key;
/*
* Steps (1-2): Check domain parameters and security strength.
* These steps must be done by the user. This would need to be
* stated in the security policy.
*/
order = EC_GROUP_get0_order(group);
if (order == NULL)
goto err;
/*
* Steps (3-7): priv_key = DRBG_RAND(order_n_bits) (range [1, n-1]).
* Although this is slightly different from the standard, it is effectively
* equivalent as it gives an unbiased result ranging from 1..n-1. It is also
* faster as the standard needs to retry more often. Also doing
* 1 + rand[0..n-2] would effect the way that tests feed dummy entropy into
* rand so the simpler backward compatible method has been used here.
*/
do
if (!BN_priv_rand_range_ex(priv_key, order, ctx))
goto err;
while (BN_is_zero(priv_key)) ;
if (eckey->pub_key == NULL) {
pub_key = EC_POINT_new(group);
if (pub_key == NULL)
goto err;
} else
pub_key = eckey->pub_key;
/* Step (8) : pub_key = priv_key * G (where G is a point on the curve) */
if (!EC_POINT_mul(group, pub_key, priv_key, NULL, NULL, ctx))
goto err;
eckey->priv_key = priv_key;
eckey->pub_key = pub_key;
priv_key = NULL;
pub_key = NULL;
eckey->dirty_cnt++;
#ifdef FIPS_MODULE
pairwise_test = 1;
#endif /* FIPS_MODULE */
ok = 1;
if (pairwise_test) {
OSSL_CALLBACK *cb = NULL;
void *cbarg = NULL;
OSSL_SELF_TEST_get_callback(eckey->libctx, &cb, &cbarg);
ok = ecdsa_keygen_pairwise_test(eckey, cb, cbarg);
}
err:
/* Step (9): If there is an error return an invalid keypair. */
if (!ok) {
ossl_set_error_state(OSSL_SELF_TEST_TYPE_PCT);
BN_clear(eckey->priv_key);
if (eckey->pub_key != NULL)
EC_POINT_set_to_infinity(group, eckey->pub_key);
}
EC_POINT_free(pub_key);
BN_clear_free(priv_key);
BN_CTX_free(ctx);
return ok;
}
int ec_key_simple_generate_key(EC_KEY *eckey)
{
return ec_generate_key(eckey, 0);
}
int ec_key_simple_generate_public_key(EC_KEY *eckey)
{
int ret;
BN_CTX *ctx = BN_CTX_new_ex(eckey->libctx);
if (ctx == NULL)
return 0;
/*
* See SP800-56AR3 5.6.1.2.2: Step (8)
* pub_key = priv_key * G (where G is a point on the curve)
*/
ret = EC_POINT_mul(eckey->group, eckey->pub_key, eckey->priv_key, NULL,
NULL, ctx);
BN_CTX_free(ctx);
if (ret == 1)
eckey->dirty_cnt++;
return ret;
}
int EC_KEY_check_key(const EC_KEY *eckey)
{
if (eckey == NULL || eckey->group == NULL || eckey->pub_key == NULL) {
ECerr(EC_F_EC_KEY_CHECK_KEY, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
if (eckey->group->meth->keycheck == NULL) {
ECerr(EC_F_EC_KEY_CHECK_KEY, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
}
return eckey->group->meth->keycheck(eckey);
}
/*
* Check the range of the EC public key.
* See SP800-56A R3 Section 5.6.2.3.3 (Part 2)
* i.e.
* - If q = odd prime p: Verify that xQ and yQ are integers in the
* interval[0, p - 1], OR
* - If q = 2m: Verify that xQ and yQ are bit strings of length m bits.
* Returns 1 if the public key has a valid range, otherwise it returns 0.
*/
static int ec_key_public_range_check(BN_CTX *ctx, const EC_KEY *key)
{
int ret = 0;
BIGNUM *x, *y;
BN_CTX_start(ctx);
x = BN_CTX_get(ctx);
y = BN_CTX_get(ctx);
if (y == NULL)
goto err;
if (!EC_POINT_get_affine_coordinates(key->group, key->pub_key, x, y, ctx))
goto err;
if (EC_GROUP_get_field_type(key->group) == NID_X9_62_prime_field) {
if (BN_is_negative(x)
|| BN_cmp(x, key->group->field) >= 0
|| BN_is_negative(y)
|| BN_cmp(y, key->group->field) >= 0) {
goto err;
}
} else {
int m = EC_GROUP_get_degree(key->group);
if (BN_num_bits(x) > m || BN_num_bits(y) > m) {
goto err;
}
}
ret = 1;
err:
BN_CTX_end(ctx);
return ret;
}
/*
* ECC Key validation as specified in SP800-56A R3.
* Section 5.6.2.3.3 ECC Full Public-Key Validation.
*/
int ec_key_public_check(const EC_KEY *eckey, BN_CTX *ctx)
{
int ret = 0;
EC_POINT *point = NULL;
const BIGNUM *order = NULL;
if (eckey == NULL || eckey->group == NULL || eckey->pub_key == NULL) {
ECerr(0, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
/* 5.6.2.3.3 (Step 1): Q != infinity */
if (EC_POINT_is_at_infinity(eckey->group, eckey->pub_key)) {
ECerr(0, EC_R_POINT_AT_INFINITY);
return 0;
}
point = EC_POINT_new(eckey->group);
if (point == NULL)
return 0;
/* 5.6.2.3.3 (Step 2) Test if the public key is in range */
if (!ec_key_public_range_check(ctx, eckey)) {
ECerr(0, EC_R_COORDINATES_OUT_OF_RANGE);
goto err;
}
/* 5.6.2.3.3 (Step 3) is the pub_key on the elliptic curve */
if (EC_POINT_is_on_curve(eckey->group, eckey->pub_key, ctx) <= 0) {
ECerr(0, EC_R_POINT_IS_NOT_ON_CURVE);
goto err;
}
order = eckey->group->order;
if (BN_is_zero(order)) {
ECerr(0, EC_R_INVALID_GROUP_ORDER);
goto err;
}
/* 5.6.2.3.3 (Step 4) : pub_key * order is the point at infinity. */
if (!EC_POINT_mul(eckey->group, point, NULL, eckey->pub_key, order, ctx)) {
ECerr(0, ERR_R_EC_LIB);
goto err;
}
if (!EC_POINT_is_at_infinity(eckey->group, point)) {
ECerr(0, EC_R_WRONG_ORDER);
goto err;
}
ret = 1;
err:
EC_POINT_free(point);
return ret;
}
/*
* ECC Key validation as specified in SP800-56A R3.
* Section 5.6.2.1.2 Owner Assurance of Private-Key Validity
* The private key is in the range [1, order-1]
*/
int ec_key_private_check(const EC_KEY *eckey)
{
if (eckey == NULL || eckey->group == NULL || eckey->priv_key == NULL) {
ECerr(0, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
if (BN_cmp(eckey->priv_key, BN_value_one()) < 0
|| BN_cmp(eckey->priv_key, eckey->group->order) >= 0) {
ECerr(0, EC_R_INVALID_PRIVATE_KEY);
return 0;
}
return 1;
}
/*
* ECC Key validation as specified in SP800-56A R3.
* Section 5.6.2.1.4 Owner Assurance of Pair-wise Consistency (b)
* Check if generator * priv_key = pub_key
*/
int ec_key_pairwise_check(const EC_KEY *eckey, BN_CTX *ctx)
{
int ret = 0;
EC_POINT *point = NULL;
if (eckey == NULL
|| eckey->group == NULL
|| eckey->pub_key == NULL
|| eckey->priv_key == NULL) {
ECerr(0, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
point = EC_POINT_new(eckey->group);
if (point == NULL)
goto err;
if (!EC_POINT_mul(eckey->group, point, eckey->priv_key, NULL, NULL, ctx)) {
ECerr(0, ERR_R_EC_LIB);
goto err;
}
if (EC_POINT_cmp(eckey->group, point, eckey->pub_key, ctx) != 0) {
ECerr(0, EC_R_INVALID_PRIVATE_KEY);
goto err;
}
ret = 1;
err:
EC_POINT_free(point);
return ret;
}
/*
* ECC Key validation as specified in SP800-56A R3.
* Section 5.6.2.3.3 ECC Full Public-Key Validation
* Section 5.6.2.1.2 Owner Assurance of Private-Key Validity
* Section 5.6.2.1.4 Owner Assurance of Pair-wise Consistency
* NOTES:
* Before calling this method in fips mode, there should be an assurance that
* an approved elliptic-curve group is used.
* Returns 1 if the key is valid, otherwise it returns 0.
*/
int ec_key_simple_check_key(const EC_KEY *eckey)
{
int ok = 0;
BN_CTX *ctx = NULL;
if (eckey == NULL) {
ECerr(0, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
if ((ctx = BN_CTX_new_ex(eckey->libctx)) == NULL)
return 0;
if (!ec_key_public_check(eckey, ctx))
goto err;
if (eckey->priv_key != NULL) {
if (!ec_key_private_check(eckey)
|| !ec_key_pairwise_check(eckey, ctx))
goto err;
}
ok = 1;
err:
BN_CTX_free(ctx);
return ok;
}
int EC_KEY_set_public_key_affine_coordinates(EC_KEY *key, BIGNUM *x,
BIGNUM *y)
{
BN_CTX *ctx = NULL;
BIGNUM *tx, *ty;
EC_POINT *point = NULL;
int ok = 0;
if (key == NULL || key->group == NULL || x == NULL || y == NULL) {
ECerr(EC_F_EC_KEY_SET_PUBLIC_KEY_AFFINE_COORDINATES,
ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
ctx = BN_CTX_new_ex(key->libctx);
if (ctx == NULL)
return 0;
BN_CTX_start(ctx);
point = EC_POINT_new(key->group);
if (point == NULL)
goto err;
tx = BN_CTX_get(ctx);
ty = BN_CTX_get(ctx);
if (ty == NULL)
goto err;
if (!EC_POINT_set_affine_coordinates(key->group, point, x, y, ctx))
goto err;
if (!EC_POINT_get_affine_coordinates(key->group, point, tx, ty, ctx))
goto err;
/*
* Check if retrieved coordinates match originals. The range check is done
* inside EC_KEY_check_key().
*/
if (BN_cmp(x, tx) || BN_cmp(y, ty)) {
ECerr(EC_F_EC_KEY_SET_PUBLIC_KEY_AFFINE_COORDINATES,
EC_R_COORDINATES_OUT_OF_RANGE);
goto err;
}
/* EC_KEY_set_public_key updates dirty_cnt */
if (!EC_KEY_set_public_key(key, point))
goto err;
if (EC_KEY_check_key(key) == 0)
goto err;
ok = 1;
err:
BN_CTX_end(ctx);
BN_CTX_free(ctx);
EC_POINT_free(point);
return ok;
}
OPENSSL_CTX *ec_key_get_libctx(const EC_KEY *key)
{
return key->libctx;
}
const char *ec_key_get0_propq(const EC_KEY *key)
{
return key->propq;
}
const EC_GROUP *EC_KEY_get0_group(const EC_KEY *key)
{
return key->group;
}
int EC_KEY_set_group(EC_KEY *key, const EC_GROUP *group)
{
if (key->meth->set_group != NULL && key->meth->set_group(key, group) == 0)
return 0;
EC_GROUP_free(key->group);
key->group = EC_GROUP_dup(group);
key->dirty_cnt++;
return (key->group == NULL) ? 0 : 1;
}
const BIGNUM *EC_KEY_get0_private_key(const EC_KEY *key)
{
return key->priv_key;
}
int EC_KEY_set_private_key(EC_KEY *key, const BIGNUM *priv_key)
{
[EC] harden EC_KEY against leaks from memory accesses We should never leak the bit length of the secret scalar in the key, so we always set the `BN_FLG_CONSTTIME` flag on the internal `BIGNUM` holding the secret scalar. This is important also because `BN_dup()` (and `BN_copy()`) do not propagate the `BN_FLG_CONSTTIME` flag from the source `BIGNUM`, and this brings an extra risk of inadvertently losing the flag, even when the called specifically set it. The propagation has been turned on and off a few times in the past years because in some conditions has shown unintended consequences in some code paths, so at the moment we can't fix this in the BN layer. In `EC_KEY_set_private_key()` we can work around the propagation by manually setting the flag after `BN_dup()` as we know for sure that inside the EC module the `BN_FLG_CONSTTIME` is always treated correctly and should not generate unintended consequences. Setting the `BN_FLG_CONSTTIME` flag alone is never enough, we also have to preallocate the `BIGNUM` internal buffer to a fixed public size big enough that operations performed during the processing never trigger a realloc which would leak the size of the scalar through memory accesses. Fixed Length ------------ The order of the large prime subgroup of the curve is our choice for a fixed public size, as that is generally the upper bound for generating a private key in EC cryptosystems and should fit all valid secret scalars. For preallocating the `BIGNUM` storage we look at the number of "words" required for the internal representation of the order, and we preallocate 2 extra "words" in case any of the subsequent processing might temporarily overflow the order length. Future work ----------- A separate commit addresses further hardening of `BN_copy()` (and indirectly `BN_dup()`). Reviewed-by: Matt Caswell <matt@openssl.org> Reviewed-by: Richard Levitte <levitte@openssl.org> Reviewed-by: Shane Lontis <shane.lontis@oracle.com> (Merged from https://github.com/openssl/openssl/pull/10631)
2020-01-21 23:00:41 +08:00
int fixed_top;
const BIGNUM *order = NULL;
BIGNUM *tmp_key = NULL;
if (key->group == NULL || key->group->meth == NULL)
return 0;
[EC] harden EC_KEY against leaks from memory accesses We should never leak the bit length of the secret scalar in the key, so we always set the `BN_FLG_CONSTTIME` flag on the internal `BIGNUM` holding the secret scalar. This is important also because `BN_dup()` (and `BN_copy()`) do not propagate the `BN_FLG_CONSTTIME` flag from the source `BIGNUM`, and this brings an extra risk of inadvertently losing the flag, even when the called specifically set it. The propagation has been turned on and off a few times in the past years because in some conditions has shown unintended consequences in some code paths, so at the moment we can't fix this in the BN layer. In `EC_KEY_set_private_key()` we can work around the propagation by manually setting the flag after `BN_dup()` as we know for sure that inside the EC module the `BN_FLG_CONSTTIME` is always treated correctly and should not generate unintended consequences. Setting the `BN_FLG_CONSTTIME` flag alone is never enough, we also have to preallocate the `BIGNUM` internal buffer to a fixed public size big enough that operations performed during the processing never trigger a realloc which would leak the size of the scalar through memory accesses. Fixed Length ------------ The order of the large prime subgroup of the curve is our choice for a fixed public size, as that is generally the upper bound for generating a private key in EC cryptosystems and should fit all valid secret scalars. For preallocating the `BIGNUM` storage we look at the number of "words" required for the internal representation of the order, and we preallocate 2 extra "words" in case any of the subsequent processing might temporarily overflow the order length. Future work ----------- A separate commit addresses further hardening of `BN_copy()` (and indirectly `BN_dup()`). Reviewed-by: Matt Caswell <matt@openssl.org> Reviewed-by: Richard Levitte <levitte@openssl.org> Reviewed-by: Shane Lontis <shane.lontis@oracle.com> (Merged from https://github.com/openssl/openssl/pull/10631)
2020-01-21 23:00:41 +08:00
/*
* Not only should key->group be set, but it should also be in a valid
* fully initialized state.
*
* Specifically, to operate in constant time, we need that the group order
* is set, as we use its length as the fixed public size of any scalar used
* as an EC private key.
*/
order = EC_GROUP_get0_order(key->group);
if (order == NULL || BN_is_zero(order))
return 0; /* This should never happen */
if (key->group->meth->set_private != NULL
&& key->group->meth->set_private(key, priv_key) == 0)
return 0;
if (key->meth->set_private != NULL
&& key->meth->set_private(key, priv_key) == 0)
return 0;
[EC] harden EC_KEY against leaks from memory accesses We should never leak the bit length of the secret scalar in the key, so we always set the `BN_FLG_CONSTTIME` flag on the internal `BIGNUM` holding the secret scalar. This is important also because `BN_dup()` (and `BN_copy()`) do not propagate the `BN_FLG_CONSTTIME` flag from the source `BIGNUM`, and this brings an extra risk of inadvertently losing the flag, even when the called specifically set it. The propagation has been turned on and off a few times in the past years because in some conditions has shown unintended consequences in some code paths, so at the moment we can't fix this in the BN layer. In `EC_KEY_set_private_key()` we can work around the propagation by manually setting the flag after `BN_dup()` as we know for sure that inside the EC module the `BN_FLG_CONSTTIME` is always treated correctly and should not generate unintended consequences. Setting the `BN_FLG_CONSTTIME` flag alone is never enough, we also have to preallocate the `BIGNUM` internal buffer to a fixed public size big enough that operations performed during the processing never trigger a realloc which would leak the size of the scalar through memory accesses. Fixed Length ------------ The order of the large prime subgroup of the curve is our choice for a fixed public size, as that is generally the upper bound for generating a private key in EC cryptosystems and should fit all valid secret scalars. For preallocating the `BIGNUM` storage we look at the number of "words" required for the internal representation of the order, and we preallocate 2 extra "words" in case any of the subsequent processing might temporarily overflow the order length. Future work ----------- A separate commit addresses further hardening of `BN_copy()` (and indirectly `BN_dup()`). Reviewed-by: Matt Caswell <matt@openssl.org> Reviewed-by: Richard Levitte <levitte@openssl.org> Reviewed-by: Shane Lontis <shane.lontis@oracle.com> (Merged from https://github.com/openssl/openssl/pull/10631)
2020-01-21 23:00:41 +08:00
/*
* We should never leak the bit length of the secret scalar in the key,
* so we always set the `BN_FLG_CONSTTIME` flag on the internal `BIGNUM`
* holding the secret scalar.
*
* This is important also because `BN_dup()` (and `BN_copy()`) do not
* propagate the `BN_FLG_CONSTTIME` flag from the source `BIGNUM`, and
* this brings an extra risk of inadvertently losing the flag, even when
* the caller specifically set it.
[EC] harden EC_KEY against leaks from memory accesses We should never leak the bit length of the secret scalar in the key, so we always set the `BN_FLG_CONSTTIME` flag on the internal `BIGNUM` holding the secret scalar. This is important also because `BN_dup()` (and `BN_copy()`) do not propagate the `BN_FLG_CONSTTIME` flag from the source `BIGNUM`, and this brings an extra risk of inadvertently losing the flag, even when the called specifically set it. The propagation has been turned on and off a few times in the past years because in some conditions has shown unintended consequences in some code paths, so at the moment we can't fix this in the BN layer. In `EC_KEY_set_private_key()` we can work around the propagation by manually setting the flag after `BN_dup()` as we know for sure that inside the EC module the `BN_FLG_CONSTTIME` is always treated correctly and should not generate unintended consequences. Setting the `BN_FLG_CONSTTIME` flag alone is never enough, we also have to preallocate the `BIGNUM` internal buffer to a fixed public size big enough that operations performed during the processing never trigger a realloc which would leak the size of the scalar through memory accesses. Fixed Length ------------ The order of the large prime subgroup of the curve is our choice for a fixed public size, as that is generally the upper bound for generating a private key in EC cryptosystems and should fit all valid secret scalars. For preallocating the `BIGNUM` storage we look at the number of "words" required for the internal representation of the order, and we preallocate 2 extra "words" in case any of the subsequent processing might temporarily overflow the order length. Future work ----------- A separate commit addresses further hardening of `BN_copy()` (and indirectly `BN_dup()`). Reviewed-by: Matt Caswell <matt@openssl.org> Reviewed-by: Richard Levitte <levitte@openssl.org> Reviewed-by: Shane Lontis <shane.lontis@oracle.com> (Merged from https://github.com/openssl/openssl/pull/10631)
2020-01-21 23:00:41 +08:00
*
* The propagation has been turned on and off a few times in the past
* years because in some conditions has shown unintended consequences in
* some code paths, so at the moment we can't fix this in the BN layer.
*
* In `EC_KEY_set_private_key()` we can work around the propagation by
* manually setting the flag after `BN_dup()` as we know for sure that
* inside the EC module the `BN_FLG_CONSTTIME` is always treated
* correctly and should not generate unintended consequences.
*
* Setting the BN_FLG_CONSTTIME flag alone is never enough, we also have
* to preallocate the BIGNUM internal buffer to a fixed public size big
* enough that operations performed during the processing never trigger
* a realloc which would leak the size of the scalar through memory
* accesses.
*
* Fixed Length
* ------------
*
* The order of the large prime subgroup of the curve is our choice for
* a fixed public size, as that is generally the upper bound for
* generating a private key in EC cryptosystems and should fit all valid
* secret scalars.
*
* For preallocating the BIGNUM storage we look at the number of "words"
* required for the internal representation of the order, and we
* preallocate 2 extra "words" in case any of the subsequent processing
* might temporarily overflow the order length.
*/
tmp_key = BN_dup(priv_key);
if (tmp_key == NULL)
return 0;
BN_set_flags(tmp_key, BN_FLG_CONSTTIME);
fixed_top = bn_get_top(order) + 2;
if (bn_wexpand(tmp_key, fixed_top) == NULL) {
BN_clear_free(tmp_key);
return 0;
}
BN_clear_free(key->priv_key);
[EC] harden EC_KEY against leaks from memory accesses We should never leak the bit length of the secret scalar in the key, so we always set the `BN_FLG_CONSTTIME` flag on the internal `BIGNUM` holding the secret scalar. This is important also because `BN_dup()` (and `BN_copy()`) do not propagate the `BN_FLG_CONSTTIME` flag from the source `BIGNUM`, and this brings an extra risk of inadvertently losing the flag, even when the called specifically set it. The propagation has been turned on and off a few times in the past years because in some conditions has shown unintended consequences in some code paths, so at the moment we can't fix this in the BN layer. In `EC_KEY_set_private_key()` we can work around the propagation by manually setting the flag after `BN_dup()` as we know for sure that inside the EC module the `BN_FLG_CONSTTIME` is always treated correctly and should not generate unintended consequences. Setting the `BN_FLG_CONSTTIME` flag alone is never enough, we also have to preallocate the `BIGNUM` internal buffer to a fixed public size big enough that operations performed during the processing never trigger a realloc which would leak the size of the scalar through memory accesses. Fixed Length ------------ The order of the large prime subgroup of the curve is our choice for a fixed public size, as that is generally the upper bound for generating a private key in EC cryptosystems and should fit all valid secret scalars. For preallocating the `BIGNUM` storage we look at the number of "words" required for the internal representation of the order, and we preallocate 2 extra "words" in case any of the subsequent processing might temporarily overflow the order length. Future work ----------- A separate commit addresses further hardening of `BN_copy()` (and indirectly `BN_dup()`). Reviewed-by: Matt Caswell <matt@openssl.org> Reviewed-by: Richard Levitte <levitte@openssl.org> Reviewed-by: Shane Lontis <shane.lontis@oracle.com> (Merged from https://github.com/openssl/openssl/pull/10631)
2020-01-21 23:00:41 +08:00
key->priv_key = tmp_key;
key->dirty_cnt++;
[EC] harden EC_KEY against leaks from memory accesses We should never leak the bit length of the secret scalar in the key, so we always set the `BN_FLG_CONSTTIME` flag on the internal `BIGNUM` holding the secret scalar. This is important also because `BN_dup()` (and `BN_copy()`) do not propagate the `BN_FLG_CONSTTIME` flag from the source `BIGNUM`, and this brings an extra risk of inadvertently losing the flag, even when the called specifically set it. The propagation has been turned on and off a few times in the past years because in some conditions has shown unintended consequences in some code paths, so at the moment we can't fix this in the BN layer. In `EC_KEY_set_private_key()` we can work around the propagation by manually setting the flag after `BN_dup()` as we know for sure that inside the EC module the `BN_FLG_CONSTTIME` is always treated correctly and should not generate unintended consequences. Setting the `BN_FLG_CONSTTIME` flag alone is never enough, we also have to preallocate the `BIGNUM` internal buffer to a fixed public size big enough that operations performed during the processing never trigger a realloc which would leak the size of the scalar through memory accesses. Fixed Length ------------ The order of the large prime subgroup of the curve is our choice for a fixed public size, as that is generally the upper bound for generating a private key in EC cryptosystems and should fit all valid secret scalars. For preallocating the `BIGNUM` storage we look at the number of "words" required for the internal representation of the order, and we preallocate 2 extra "words" in case any of the subsequent processing might temporarily overflow the order length. Future work ----------- A separate commit addresses further hardening of `BN_copy()` (and indirectly `BN_dup()`). Reviewed-by: Matt Caswell <matt@openssl.org> Reviewed-by: Richard Levitte <levitte@openssl.org> Reviewed-by: Shane Lontis <shane.lontis@oracle.com> (Merged from https://github.com/openssl/openssl/pull/10631)
2020-01-21 23:00:41 +08:00
return 1;
}
const EC_POINT *EC_KEY_get0_public_key(const EC_KEY *key)
{
return key->pub_key;
}
int EC_KEY_set_public_key(EC_KEY *key, const EC_POINT *pub_key)
{
if (key->meth->set_public != NULL
&& key->meth->set_public(key, pub_key) == 0)
return 0;
EC_POINT_free(key->pub_key);
key->pub_key = EC_POINT_dup(pub_key, key->group);
key->dirty_cnt++;
return (key->pub_key == NULL) ? 0 : 1;
}
unsigned int EC_KEY_get_enc_flags(const EC_KEY *key)
{
return key->enc_flag;
}
void EC_KEY_set_enc_flags(EC_KEY *key, unsigned int flags)
{
key->enc_flag = flags;
}
point_conversion_form_t EC_KEY_get_conv_form(const EC_KEY *key)
{
return key->conv_form;
}
void EC_KEY_set_conv_form(EC_KEY *key, point_conversion_form_t cform)
{
key->conv_form = cform;
if (key->group != NULL)
EC_GROUP_set_point_conversion_form(key->group, cform);
}
void EC_KEY_set_asn1_flag(EC_KEY *key, int flag)
{
if (key->group != NULL)
EC_GROUP_set_asn1_flag(key->group, flag);
}
#ifndef OPENSSL_NO_DEPRECATED_3_0
int EC_KEY_precompute_mult(EC_KEY *key, BN_CTX *ctx)
{
if (key->group == NULL)
return 0;
return EC_GROUP_precompute_mult(key->group, ctx);
}
#endif
2011-04-24 03:55:55 +08:00
int EC_KEY_get_flags(const EC_KEY *key)
{
return key->flags;
}
2011-04-24 03:55:55 +08:00
void EC_KEY_set_flags(EC_KEY *key, int flags)
{
key->flags |= flags;
key->dirty_cnt++;
}
2011-04-24 03:55:55 +08:00
void EC_KEY_clear_flags(EC_KEY *key, int flags)
{
key->flags &= ~flags;
key->dirty_cnt++;
}
int EC_KEY_decoded_from_explicit_params(const EC_KEY *key)
{
if (key == NULL || key->group == NULL)
return -1;
return key->group->decoded_from_explicit_params;
}
size_t EC_KEY_key2buf(const EC_KEY *key, point_conversion_form_t form,
unsigned char **pbuf, BN_CTX *ctx)
{
if (key == NULL || key->pub_key == NULL || key->group == NULL)
return 0;
return EC_POINT_point2buf(key->group, key->pub_key, form, pbuf, ctx);
}
int EC_KEY_oct2key(EC_KEY *key, const unsigned char *buf, size_t len,
BN_CTX *ctx)
{
if (key == NULL || key->group == NULL)
return 0;
if (key->pub_key == NULL)
key->pub_key = EC_POINT_new(key->group);
if (key->pub_key == NULL)
return 0;
if (EC_POINT_oct2point(key->group, key->pub_key, buf, len, ctx) == 0)
return 0;
key->dirty_cnt++;
/*
* Save the point conversion form.
* For non-custom curves the first octet of the buffer (excluding
* the last significant bit) contains the point conversion form.
* EC_POINT_oct2point() has already performed sanity checking of
* the buffer so we know it is valid.
*/
if ((key->group->meth->flags & EC_FLAGS_CUSTOM_CURVE) == 0)
key->conv_form = (point_conversion_form_t)(buf[0] & ~0x01);
return 1;
}
size_t EC_KEY_priv2oct(const EC_KEY *eckey,
unsigned char *buf, size_t len)
{
if (eckey->group == NULL || eckey->group->meth == NULL)
return 0;
if (eckey->group->meth->priv2oct == NULL) {
ECerr(EC_F_EC_KEY_PRIV2OCT, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
}
return eckey->group->meth->priv2oct(eckey, buf, len);
}
size_t ec_key_simple_priv2oct(const EC_KEY *eckey,
unsigned char *buf, size_t len)
{
size_t buf_len;
buf_len = (EC_GROUP_order_bits(eckey->group) + 7) / 8;
if (eckey->priv_key == NULL)
return 0;
if (buf == NULL)
return buf_len;
else if (len < buf_len)
return 0;
/* Octetstring may need leading zeros if BN is to short */
if (BN_bn2binpad(eckey->priv_key, buf, buf_len) == -1) {
ECerr(EC_F_EC_KEY_SIMPLE_PRIV2OCT, EC_R_BUFFER_TOO_SMALL);
return 0;
}
return buf_len;
}
int EC_KEY_oct2priv(EC_KEY *eckey, const unsigned char *buf, size_t len)
{
int ret;
if (eckey->group == NULL || eckey->group->meth == NULL)
return 0;
if (eckey->group->meth->oct2priv == NULL) {
ECerr(EC_F_EC_KEY_OCT2PRIV, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
}
ret = eckey->group->meth->oct2priv(eckey, buf, len);
if (ret == 1)
eckey->dirty_cnt++;
return ret;
}
int ec_key_simple_oct2priv(EC_KEY *eckey, const unsigned char *buf, size_t len)
{
if (eckey->priv_key == NULL)
eckey->priv_key = BN_secure_new();
if (eckey->priv_key == NULL) {
ECerr(EC_F_EC_KEY_SIMPLE_OCT2PRIV, ERR_R_MALLOC_FAILURE);
return 0;
}
eckey->priv_key = BN_bin2bn(buf, len, eckey->priv_key);
if (eckey->priv_key == NULL) {
ECerr(EC_F_EC_KEY_SIMPLE_OCT2PRIV, ERR_R_BN_LIB);
return 0;
}
eckey->dirty_cnt++;
return 1;
}
size_t EC_KEY_priv2buf(const EC_KEY *eckey, unsigned char **pbuf)
{
size_t len;
unsigned char *buf;
len = EC_KEY_priv2oct(eckey, NULL, 0);
if (len == 0)
return 0;
if ((buf = OPENSSL_malloc(len)) == NULL) {
ECerr(EC_F_EC_KEY_PRIV2BUF, ERR_R_MALLOC_FAILURE);
return 0;
}
len = EC_KEY_priv2oct(eckey, buf, len);
if (len == 0) {
OPENSSL_free(buf);
return 0;
}
*pbuf = buf;
return len;
}
int EC_KEY_can_sign(const EC_KEY *eckey)
{
if (eckey->group == NULL || eckey->group->meth == NULL
|| (eckey->group->meth->flags & EC_FLAGS_NO_SIGN))
return 0;
return 1;
}
/*
* FIPS 140-2 IG 9.9 AS09.33
* Perform a sign/verify operation.
*
* NOTE: When generating keys for key-agreement schemes - FIPS 140-2 IG 9.9
* states that no additional pairwise tests are required (apart from the tests
* specified in SP800-56A) when generating keys. Hence pairwise ECDH tests are
* omitted here.
*/
static int ecdsa_keygen_pairwise_test(EC_KEY *eckey, OSSL_CALLBACK *cb,
void *cbarg)
{
int ret = 0;
unsigned char dgst[16] = {0};
int dgst_len = (int)sizeof(dgst);
ECDSA_SIG *sig = NULL;
OSSL_SELF_TEST *st = NULL;
st = OSSL_SELF_TEST_new(cb, cbarg);
if (st == NULL)
return 0;
OSSL_SELF_TEST_onbegin(st, OSSL_SELF_TEST_TYPE_PCT,
OSSL_SELF_TEST_DESC_PCT_ECDSA);
sig = ECDSA_do_sign(dgst, dgst_len, eckey);
if (sig == NULL)
goto err;
OSSL_SELF_TEST_oncorrupt_byte(st, dgst);
if (ECDSA_do_verify(dgst, dgst_len, sig, eckey) != 1)
goto err;
ret = 1;
err:
OSSL_SELF_TEST_onend(st, ret);
OSSL_SELF_TEST_free(st);
ECDSA_SIG_free(sig);
return ret;
}