openssl/crypto/modes/asm/ghash-riscv64.pl

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

429 lines
13 KiB
Perl
Raw Normal View History

#! /usr/bin/env perl
# This file is dual-licensed, meaning that you can use it under your
# choice of either of the following two licenses:
#
# Copyright 2022-2023 The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the Apache License 2.0 (the "License"). You can obtain
# a copy in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html
#
# or
#
# Copyright (c) 2023, Christoph Müllner <christoph.muellner@vrull.eu>
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
use strict;
use warnings;
use FindBin qw($Bin);
use lib "$Bin";
use lib "$Bin/../../perlasm";
use riscv;
# $output is the last argument if it looks like a file (it has an extension)
# $flavour is the first argument if it doesn't look like a file
my $output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef;
my $flavour = $#ARGV >= 0 && $ARGV[0] !~ m|\.| ? shift : undef;
$output and open STDOUT,">$output";
my $code=<<___;
.text
___
################################################################################
# void gcm_init_rv64i_zbc(u128 Htable[16], const u64 H[2]);
# void gcm_init_rv64i_zbc__zbb(u128 Htable[16], const u64 H[2]);
# void gcm_init_rv64i_zbc__zbkb(u128 Htable[16], const u64 H[2]);
#
# input: H: 128-bit H - secret parameter E(K, 0^128)
# output: Htable: Preprocessed key data for gcm_gmult_rv64i_zbc* and
# gcm_ghash_rv64i_zbc*
#
# All callers of this function revert the byte-order unconditionally
# on little-endian machines. So we need to revert the byte-order back.
# Additionally we reverse the bits of each byte.
{
my ($Htable,$H,$VAL0,$VAL1,$TMP0,$TMP1,$TMP2) = ("a0","a1","a2","a3","t0","t1","t2");
$code .= <<___;
.p2align 3
.globl gcm_init_rv64i_zbc
.type gcm_init_rv64i_zbc,\@function
gcm_init_rv64i_zbc:
ld $VAL0,0($H)
ld $VAL1,8($H)
@{[brev8_rv64i $VAL0, $TMP0, $TMP1, $TMP2]}
@{[brev8_rv64i $VAL1, $TMP0, $TMP1, $TMP2]}
@{[sd_rev8_rv64i $VAL0, $Htable, 0, $TMP0]}
@{[sd_rev8_rv64i $VAL1, $Htable, 8, $TMP0]}
ret
.size gcm_init_rv64i_zbc,.-gcm_init_rv64i_zbc
___
}
{
my ($Htable,$H,$VAL0,$VAL1,$TMP0,$TMP1,$TMP2) = ("a0","a1","a2","a3","t0","t1","t2");
$code .= <<___;
.p2align 3
.globl gcm_init_rv64i_zbc__zbb
.type gcm_init_rv64i_zbc__zbb,\@function
gcm_init_rv64i_zbc__zbb:
ld $VAL0,0($H)
ld $VAL1,8($H)
@{[brev8_rv64i $VAL0, $TMP0, $TMP1, $TMP2]}
@{[brev8_rv64i $VAL1, $TMP0, $TMP1, $TMP2]}
@{[rev8 $VAL0, $VAL0]}
@{[rev8 $VAL1, $VAL1]}
sd $VAL0,0($Htable)
sd $VAL1,8($Htable)
ret
.size gcm_init_rv64i_zbc__zbb,.-gcm_init_rv64i_zbc__zbb
___
}
{
my ($Htable,$H,$TMP0,$TMP1) = ("a0","a1","t0","t1");
$code .= <<___;
.p2align 3
.globl gcm_init_rv64i_zbc__zbkb
.type gcm_init_rv64i_zbc__zbkb,\@function
gcm_init_rv64i_zbc__zbkb:
ld $TMP0,0($H)
ld $TMP1,8($H)
@{[brev8 $TMP0, $TMP0]}
@{[brev8 $TMP1, $TMP1]}
@{[rev8 $TMP0, $TMP0]}
@{[rev8 $TMP1, $TMP1]}
sd $TMP0,0($Htable)
sd $TMP1,8($Htable)
ret
.size gcm_init_rv64i_zbc__zbkb,.-gcm_init_rv64i_zbc__zbkb
___
}
################################################################################
# void gcm_gmult_rv64i_zbc(u64 Xi[2], const u128 Htable[16]);
# void gcm_gmult_rv64i_zbc__zbkb(u64 Xi[2], const u128 Htable[16]);
#
# input: Xi: current hash value
# Htable: copy of H
# output: Xi: next hash value Xi
#
# Compute GMULT (Xi*H mod f) using the Zbc (clmul) and Zbb (basic bit manip)
# extensions. Using the no-Karatsuba approach and clmul for the final reduction.
# This results in an implementation with minimized number of instructions.
# HW with clmul latencies higher than 2 cycles might observe a performance
# improvement with Karatsuba. HW with clmul latencies higher than 6 cycles
# might observe a performance improvement with additionally converting the
# reduction to shift&xor. For a full discussion of this estimates see
# https://github.com/riscv/riscv-crypto/blob/master/doc/supp/gcm-mode-cmul.adoc
{
my ($Xi,$Htable,$x0,$x1,$y0,$y1) = ("a0","a1","a4","a5","a6","a7");
my ($z0,$z1,$z2,$z3,$t0,$t1,$polymod) = ("t0","t1","t2","t3","t4","t5","t6");
$code .= <<___;
.p2align 3
.globl gcm_gmult_rv64i_zbc
.type gcm_gmult_rv64i_zbc,\@function
gcm_gmult_rv64i_zbc:
# Load Xi and bit-reverse it
ld $x0, 0($Xi)
ld $x1, 8($Xi)
@{[brev8_rv64i $x0, $z0, $z1, $z2]}
@{[brev8_rv64i $x1, $z0, $z1, $z2]}
# Load the key (already bit-reversed)
ld $y0, 0($Htable)
ld $y1, 8($Htable)
# Load the reduction constant
la $polymod, Lpolymod
lbu $polymod, 0($polymod)
# Multiplication (without Karatsuba)
@{[clmulh $z3, $x1, $y1]}
@{[clmul $z2, $x1, $y1]}
@{[clmulh $t1, $x0, $y1]}
@{[clmul $z1, $x0, $y1]}
xor $z2, $z2, $t1
@{[clmulh $t1, $x1, $y0]}
@{[clmul $t0, $x1, $y0]}
xor $z2, $z2, $t1
xor $z1, $z1, $t0
@{[clmulh $t1, $x0, $y0]}
@{[clmul $z0, $x0, $y0]}
xor $z1, $z1, $t1
# Reduction with clmul
@{[clmulh $t1, $z3, $polymod]}
@{[clmul $t0, $z3, $polymod]}
xor $z2, $z2, $t1
xor $z1, $z1, $t0
@{[clmulh $t1, $z2, $polymod]}
@{[clmul $t0, $z2, $polymod]}
xor $x1, $z1, $t1
xor $x0, $z0, $t0
# Bit-reverse Xi back and store it
@{[brev8_rv64i $x0, $z0, $z1, $z2]}
@{[brev8_rv64i $x1, $z0, $z1, $z2]}
sd $x0, 0($Xi)
sd $x1, 8($Xi)
ret
.size gcm_gmult_rv64i_zbc,.-gcm_gmult_rv64i_zbc
___
}
{
my ($Xi,$Htable,$x0,$x1,$y0,$y1) = ("a0","a1","a4","a5","a6","a7");
my ($z0,$z1,$z2,$z3,$t0,$t1,$polymod) = ("t0","t1","t2","t3","t4","t5","t6");
$code .= <<___;
.p2align 3
.globl gcm_gmult_rv64i_zbc__zbkb
.type gcm_gmult_rv64i_zbc__zbkb,\@function
gcm_gmult_rv64i_zbc__zbkb:
# Load Xi and bit-reverse it
ld $x0, 0($Xi)
ld $x1, 8($Xi)
@{[brev8 $x0, $x0]}
@{[brev8 $x1, $x1]}
# Load the key (already bit-reversed)
ld $y0, 0($Htable)
ld $y1, 8($Htable)
# Load the reduction constant
la $polymod, Lpolymod
lbu $polymod, 0($polymod)
# Multiplication (without Karatsuba)
@{[clmulh $z3, $x1, $y1]}
@{[clmul $z2, $x1, $y1]}
@{[clmulh $t1, $x0, $y1]}
@{[clmul $z1, $x0, $y1]}
xor $z2, $z2, $t1
@{[clmulh $t1, $x1, $y0]}
@{[clmul $t0, $x1, $y0]}
xor $z2, $z2, $t1
xor $z1, $z1, $t0
@{[clmulh $t1, $x0, $y0]}
@{[clmul $z0, $x0, $y0]}
xor $z1, $z1, $t1
# Reduction with clmul
@{[clmulh $t1, $z3, $polymod]}
@{[clmul $t0, $z3, $polymod]}
xor $z2, $z2, $t1
xor $z1, $z1, $t0
@{[clmulh $t1, $z2, $polymod]}
@{[clmul $t0, $z2, $polymod]}
xor $x1, $z1, $t1
xor $x0, $z0, $t0
# Bit-reverse Xi back and store it
@{[brev8 $x0, $x0]}
@{[brev8 $x1, $x1]}
sd $x0, 0($Xi)
sd $x1, 8($Xi)
ret
.size gcm_gmult_rv64i_zbc__zbkb,.-gcm_gmult_rv64i_zbc__zbkb
___
}
################################################################################
# void gcm_ghash_rv64i_zbc(u64 Xi[2], const u128 Htable[16],
# const u8 *inp, size_t len);
# void gcm_ghash_rv64i_zbc__zbkb(u64 Xi[2], const u128 Htable[16],
# const u8 *inp, size_t len);
#
# input: Xi: current hash value
# Htable: copy of H
# inp: pointer to input data
# len: length of input data in bytes (multiple of block size)
# output: Xi: Xi+1 (next hash value Xi)
{
my ($Xi,$Htable,$inp,$len,$x0,$x1,$y0,$y1) = ("a0","a1","a2","a3","a4","a5","a6","a7");
my ($z0,$z1,$z2,$z3,$t0,$t1,$polymod) = ("t0","t1","t2","t3","t4","t5","t6");
$code .= <<___;
.p2align 3
.globl gcm_ghash_rv64i_zbc
.type gcm_ghash_rv64i_zbc,\@function
gcm_ghash_rv64i_zbc:
# Load Xi and bit-reverse it
ld $x0, 0($Xi)
ld $x1, 8($Xi)
@{[brev8_rv64i $x0, $z0, $z1, $z2]}
@{[brev8_rv64i $x1, $z0, $z1, $z2]}
# Load the key (already bit-reversed)
ld $y0, 0($Htable)
ld $y1, 8($Htable)
# Load the reduction constant
la $polymod, Lpolymod
lbu $polymod, 0($polymod)
Lstep:
# Load the input data, bit-reverse them, and XOR them with Xi
ld $t0, 0($inp)
ld $t1, 8($inp)
add $inp, $inp, 16
add $len, $len, -16
@{[brev8_rv64i $t0, $z0, $z1, $z2]}
@{[brev8_rv64i $t1, $z0, $z1, $z2]}
xor $x0, $x0, $t0
xor $x1, $x1, $t1
# Multiplication (without Karatsuba)
@{[clmulh $z3, $x1, $y1]}
@{[clmul $z2, $x1, $y1]}
@{[clmulh $t1, $x0, $y1]}
@{[clmul $z1, $x0, $y1]}
xor $z2, $z2, $t1
@{[clmulh $t1, $x1, $y0]}
@{[clmul $t0, $x1, $y0]}
xor $z2, $z2, $t1
xor $z1, $z1, $t0
@{[clmulh $t1, $x0, $y0]}
@{[clmul $z0, $x0, $y0]}
xor $z1, $z1, $t1
# Reduction with clmul
@{[clmulh $t1, $z3, $polymod]}
@{[clmul $t0, $z3, $polymod]}
xor $z2, $z2, $t1
xor $z1, $z1, $t0
@{[clmulh $t1, $z2, $polymod]}
@{[clmul $t0, $z2, $polymod]}
xor $x1, $z1, $t1
xor $x0, $z0, $t0
# Iterate over all blocks
bnez $len, Lstep
# Bit-reverse final Xi back and store it
@{[brev8_rv64i $x0, $z0, $z1, $z2]}
@{[brev8_rv64i $x1, $z0, $z1, $z2]}
sd $x0, 0($Xi)
sd $x1, 8($Xi)
ret
.size gcm_ghash_rv64i_zbc,.-gcm_ghash_rv64i_zbc
___
}
{
my ($Xi,$Htable,$inp,$len,$x0,$x1,$y0,$y1) = ("a0","a1","a2","a3","a4","a5","a6","a7");
my ($z0,$z1,$z2,$z3,$t0,$t1,$polymod) = ("t0","t1","t2","t3","t4","t5","t6");
$code .= <<___;
.p2align 3
.globl gcm_ghash_rv64i_zbc__zbkb
.type gcm_ghash_rv64i_zbc__zbkb,\@function
gcm_ghash_rv64i_zbc__zbkb:
# Load Xi and bit-reverse it
ld $x0, 0($Xi)
ld $x1, 8($Xi)
@{[brev8 $x0, $x0]}
@{[brev8 $x1, $x1]}
# Load the key (already bit-reversed)
ld $y0, 0($Htable)
ld $y1, 8($Htable)
# Load the reduction constant
la $polymod, Lpolymod
lbu $polymod, 0($polymod)
Lstep_zkbk:
# Load the input data, bit-reverse them, and XOR them with Xi
ld $t0, 0($inp)
ld $t1, 8($inp)
add $inp, $inp, 16
add $len, $len, -16
@{[brev8 $t0, $t0]}
@{[brev8 $t1, $t1]}
xor $x0, $x0, $t0
xor $x1, $x1, $t1
# Multiplication (without Karatsuba)
@{[clmulh $z3, $x1, $y1]}
@{[clmul $z2, $x1, $y1]}
@{[clmulh $t1, $x0, $y1]}
@{[clmul $z1, $x0, $y1]}
xor $z2, $z2, $t1
@{[clmulh $t1, $x1, $y0]}
@{[clmul $t0, $x1, $y0]}
xor $z2, $z2, $t1
xor $z1, $z1, $t0
@{[clmulh $t1, $x0, $y0]}
@{[clmul $z0, $x0, $y0]}
xor $z1, $z1, $t1
# Reduction with clmul
@{[clmulh $t1, $z3, $polymod]}
@{[clmul $t0, $z3, $polymod]}
xor $z2, $z2, $t1
xor $z1, $z1, $t0
@{[clmulh $t1, $z2, $polymod]}
@{[clmul $t0, $z2, $polymod]}
xor $x1, $z1, $t1
xor $x0, $z0, $t0
# Iterate over all blocks
bnez $len, Lstep_zkbk
# Bit-reverse final Xi back and store it
@{[brev8 $x0, $x0]}
@{[brev8 $x1, $x1]}
sd $x0, 0($Xi)
sd $x1, 8($Xi)
ret
.size gcm_ghash_rv64i_zbc__zbkb,.-gcm_ghash_rv64i_zbc__zbkb
___
}
$code .= <<___;
.p2align 3
Lbrev8_const:
.dword 0xAAAAAAAAAAAAAAAA
.dword 0xCCCCCCCCCCCCCCCC
.dword 0xF0F0F0F0F0F0F0F0
.size Lbrev8_const,.-Lbrev8_const
Lpolymod:
.byte 0x87
.size Lpolymod,.-Lpolymod
___
print $code;
close STDOUT or die "error closing STDOUT: $!";