openssl/ssl/t1_enc.c

648 lines
21 KiB
C
Raw Normal View History

/*
* Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
* Copyright 2005 Nokia. All rights reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdio.h>
#include "ssl_locl.h"
#include <openssl/comp.h>
#include <openssl/evp.h>
#include <openssl/kdf.h>
2009-12-07 21:31:02 +08:00
#include <openssl/rand.h>
/* seed1 through seed5 are concatenated */
static int tls1_PRF(SSL *s,
const void *seed1, size_t seed1_len,
const void *seed2, size_t seed2_len,
const void *seed3, size_t seed3_len,
const void *seed4, size_t seed4_len,
const void *seed5, size_t seed5_len,
const unsigned char *sec, size_t slen,
unsigned char *out, size_t olen)
{
const EVP_MD *md = ssl_prf_md(s);
EVP_PKEY_CTX *pctx = NULL;
int ret = 0;
if (md == NULL) {
/* Should never happen */
SSLerr(SSL_F_TLS1_PRF, ERR_R_INTERNAL_ERROR);
return 0;
}
pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_TLS1_PRF, NULL);
if (pctx == NULL || EVP_PKEY_derive_init(pctx) <= 0
|| EVP_PKEY_CTX_set_tls1_prf_md(pctx, md) <= 0
|| EVP_PKEY_CTX_set1_tls1_prf_secret(pctx, sec, (int)slen) <= 0)
goto err;
if (EVP_PKEY_CTX_add1_tls1_prf_seed(pctx, seed1, (int)seed1_len) <= 0)
goto err;
if (EVP_PKEY_CTX_add1_tls1_prf_seed(pctx, seed2, (int)seed2_len) <= 0)
goto err;
if (EVP_PKEY_CTX_add1_tls1_prf_seed(pctx, seed3, (int)seed3_len) <= 0)
goto err;
if (EVP_PKEY_CTX_add1_tls1_prf_seed(pctx, seed4, (int)seed4_len) <= 0)
goto err;
if (EVP_PKEY_CTX_add1_tls1_prf_seed(pctx, seed5, (int)seed5_len) <= 0)
goto err;
if (EVP_PKEY_derive(pctx, out, &olen) <= 0)
goto err;
ret = 1;
err:
EVP_PKEY_CTX_free(pctx);
return ret;
}
static int tls1_generate_key_block(SSL *s, unsigned char *km, size_t num)
{
int ret;
ret = tls1_PRF(s,
TLS_MD_KEY_EXPANSION_CONST,
TLS_MD_KEY_EXPANSION_CONST_SIZE, s->s3->server_random,
SSL3_RANDOM_SIZE, s->s3->client_random, SSL3_RANDOM_SIZE,
NULL, 0, NULL, 0, s->session->master_key,
s->session->master_key_length, km, num);
return ret;
}
1999-04-20 05:31:43 +08:00
int tls1_change_cipher_state(SSL *s, int which)
{
unsigned char *p, *mac_secret;
unsigned char tmp1[EVP_MAX_KEY_LENGTH];
unsigned char tmp2[EVP_MAX_KEY_LENGTH];
unsigned char iv1[EVP_MAX_IV_LENGTH * 2];
unsigned char iv2[EVP_MAX_IV_LENGTH * 2];
unsigned char *ms, *key, *iv;
EVP_CIPHER_CTX *dd;
const EVP_CIPHER *c;
2005-10-01 07:35:33 +08:00
#ifndef OPENSSL_NO_COMP
const SSL_COMP *comp;
2005-10-01 07:35:33 +08:00
#endif
const EVP_MD *m;
int mac_type;
size_t *mac_secret_size;
EVP_MD_CTX *mac_ctx;
EVP_PKEY *mac_key;
size_t n, i, j, k, cl;
int reuse_dd = 0;
c = s->s3->tmp.new_sym_enc;
m = s->s3->tmp.new_hash;
mac_type = s->s3->tmp.new_mac_pkey_type;
2005-10-01 07:35:33 +08:00
#ifndef OPENSSL_NO_COMP
comp = s->s3->tmp.new_compression;
2005-10-01 07:35:33 +08:00
#endif
if (which & SSL3_CC_READ) {
if (s->ext.use_etm)
s->s3->flags |= TLS1_FLAGS_ENCRYPT_THEN_MAC_READ;
else
s->s3->flags &= ~TLS1_FLAGS_ENCRYPT_THEN_MAC_READ;
if (s->s3->tmp.new_cipher->algorithm2 & TLS1_STREAM_MAC)
s->mac_flags |= SSL_MAC_FLAG_READ_MAC_STREAM;
else
s->mac_flags &= ~SSL_MAC_FLAG_READ_MAC_STREAM;
if (s->enc_read_ctx != NULL)
reuse_dd = 1;
else if ((s->enc_read_ctx = EVP_CIPHER_CTX_new()) == NULL)
goto err;
else
/*
* make sure it's initialised in case we exit later with an error
*/
EVP_CIPHER_CTX_reset(s->enc_read_ctx);
dd = s->enc_read_ctx;
mac_ctx = ssl_replace_hash(&s->read_hash, NULL);
if (mac_ctx == NULL)
goto err;
2005-10-01 07:35:33 +08:00
#ifndef OPENSSL_NO_COMP
COMP_CTX_free(s->expand);
s->expand = NULL;
if (comp != NULL) {
s->expand = COMP_CTX_new(comp->method);
if (s->expand == NULL) {
SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE,
SSL_R_COMPRESSION_LIBRARY_ERROR);
goto err2;
}
}
2005-10-01 07:35:33 +08:00
#endif
/*
* this is done by dtls1_reset_seq_numbers for DTLS
*/
if (!SSL_IS_DTLS(s))
RECORD_LAYER_reset_read_sequence(&s->rlayer);
mac_secret = &(s->s3->read_mac_secret[0]);
mac_secret_size = &(s->s3->read_mac_secret_size);
} else {
if (s->ext.use_etm)
s->s3->flags |= TLS1_FLAGS_ENCRYPT_THEN_MAC_WRITE;
else
s->s3->flags &= ~TLS1_FLAGS_ENCRYPT_THEN_MAC_WRITE;
if (s->s3->tmp.new_cipher->algorithm2 & TLS1_STREAM_MAC)
s->mac_flags |= SSL_MAC_FLAG_WRITE_MAC_STREAM;
else
s->mac_flags &= ~SSL_MAC_FLAG_WRITE_MAC_STREAM;
if (s->enc_write_ctx != NULL && !SSL_IS_DTLS(s))
reuse_dd = 1;
else if ((s->enc_write_ctx = EVP_CIPHER_CTX_new()) == NULL)
goto err;
dd = s->enc_write_ctx;
if (SSL_IS_DTLS(s)) {
mac_ctx = EVP_MD_CTX_new();
if (mac_ctx == NULL)
goto err;
s->write_hash = mac_ctx;
} else {
mac_ctx = ssl_replace_hash(&s->write_hash, NULL);
if (mac_ctx == NULL)
goto err;
}
2005-10-01 07:35:33 +08:00
#ifndef OPENSSL_NO_COMP
COMP_CTX_free(s->compress);
s->compress = NULL;
if (comp != NULL) {
s->compress = COMP_CTX_new(comp->method);
if (s->compress == NULL) {
SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE,
SSL_R_COMPRESSION_LIBRARY_ERROR);
goto err2;
}
}
2005-10-01 07:35:33 +08:00
#endif
/*
* this is done by dtls1_reset_seq_numbers for DTLS
*/
if (!SSL_IS_DTLS(s))
RECORD_LAYER_reset_write_sequence(&s->rlayer);
mac_secret = &(s->s3->write_mac_secret[0]);
mac_secret_size = &(s->s3->write_mac_secret_size);
}
if (reuse_dd)
EVP_CIPHER_CTX_reset(dd);
p = s->s3->tmp.key_block;
i = *mac_secret_size = s->s3->tmp.new_mac_secret_size;
/* TODO(size_t): convert me */
cl = EVP_CIPHER_key_length(c);
j = cl;
/* Was j=(exp)?5:EVP_CIPHER_key_length(c); */
/* If GCM/CCM mode only part of IV comes from PRF */
if (EVP_CIPHER_mode(c) == EVP_CIPH_GCM_MODE)
k = EVP_GCM_TLS_FIXED_IV_LEN;
else if (EVP_CIPHER_mode(c) == EVP_CIPH_CCM_MODE)
k = EVP_CCM_TLS_FIXED_IV_LEN;
else
k = EVP_CIPHER_iv_length(c);
if ((which == SSL3_CHANGE_CIPHER_CLIENT_WRITE) ||
(which == SSL3_CHANGE_CIPHER_SERVER_READ)) {
ms = &(p[0]);
n = i + i;
key = &(p[n]);
n += j + j;
iv = &(p[n]);
n += k + k;
} else {
n = i;
ms = &(p[n]);
n += i + j;
key = &(p[n]);
n += j + k;
iv = &(p[n]);
n += k;
}
if (n > s->s3->tmp.key_block_length) {
SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR);
goto err2;
}
memcpy(mac_secret, ms, i);
if (!(EVP_CIPHER_flags(c) & EVP_CIPH_FLAG_AEAD_CIPHER)) {
/* TODO(size_t): Convert this function */
mac_key = EVP_PKEY_new_mac_key(mac_type, NULL,
mac_secret, (int)*mac_secret_size);
if (mac_key == NULL
|| EVP_DigestSignInit(mac_ctx, NULL, m, NULL, mac_key) <= 0) {
EVP_PKEY_free(mac_key);
SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR);
goto err2;
}
EVP_PKEY_free(mac_key);
}
#ifdef SSL_DEBUG
printf("which = %04X\nmac key=", which);
{
size_t z;
for (z = 0; z < i; z++)
printf("%02X%c", ms[z], ((z + 1) % 16) ? ' ' : '\n');
}
#endif
if (EVP_CIPHER_mode(c) == EVP_CIPH_GCM_MODE) {
if (!EVP_CipherInit_ex(dd, c, NULL, key, NULL, (which & SSL3_CC_WRITE))
|| !EVP_CIPHER_CTX_ctrl(dd, EVP_CTRL_GCM_SET_IV_FIXED, (int)k,
iv)) {
SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR);
goto err2;
}
} else if (EVP_CIPHER_mode(c) == EVP_CIPH_CCM_MODE) {
int taglen;
if (s->s3->tmp.
new_cipher->algorithm_enc & (SSL_AES128CCM8 | SSL_AES256CCM8))
taglen = EVP_CCM8_TLS_TAG_LEN;
else
taglen = EVP_CCM_TLS_TAG_LEN;
if (!EVP_CipherInit_ex(dd, c, NULL, NULL, NULL, (which & SSL3_CC_WRITE))
|| !EVP_CIPHER_CTX_ctrl(dd, EVP_CTRL_AEAD_SET_IVLEN, 12, NULL)
|| !EVP_CIPHER_CTX_ctrl(dd, EVP_CTRL_AEAD_SET_TAG, taglen, NULL)
|| !EVP_CIPHER_CTX_ctrl(dd, EVP_CTRL_CCM_SET_IV_FIXED, (int)k, iv)
|| !EVP_CipherInit_ex(dd, NULL, NULL, key, NULL, -1)) {
SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR);
goto err2;
}
} else {
if (!EVP_CipherInit_ex(dd, c, NULL, key, iv, (which & SSL3_CC_WRITE))) {
SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR);
goto err2;
}
}
/* Needed for "composite" AEADs, such as RC4-HMAC-MD5 */
if ((EVP_CIPHER_flags(c) & EVP_CIPH_FLAG_AEAD_CIPHER) && *mac_secret_size
&& !EVP_CIPHER_CTX_ctrl(dd, EVP_CTRL_AEAD_SET_MAC_KEY,
(int)*mac_secret_size, mac_secret)) {
SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR);
goto err2;
}
#ifdef SSL_DEBUG
printf("which = %04X\nkey=", which);
{
int z;
for (z = 0; z < EVP_CIPHER_key_length(c); z++)
printf("%02X%c", key[z], ((z + 1) % 16) ? ' ' : '\n');
}
printf("\niv=");
{
size_t z;
for (z = 0; z < k; z++)
printf("%02X%c", iv[z], ((z + 1) % 16) ? ' ' : '\n');
}
printf("\n");
#endif
OPENSSL_cleanse(tmp1, sizeof(tmp1));
OPENSSL_cleanse(tmp2, sizeof(tmp1));
OPENSSL_cleanse(iv1, sizeof(iv1));
OPENSSL_cleanse(iv2, sizeof(iv2));
return (1);
err:
SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_MALLOC_FAILURE);
err2:
OPENSSL_cleanse(tmp1, sizeof(tmp1));
OPENSSL_cleanse(tmp2, sizeof(tmp1));
OPENSSL_cleanse(iv1, sizeof(iv1));
OPENSSL_cleanse(iv2, sizeof(iv2));
return (0);
}
1999-04-20 05:31:43 +08:00
int tls1_setup_key_block(SSL *s)
{
unsigned char *p;
const EVP_CIPHER *c;
const EVP_MD *hash;
SSL_COMP *comp;
int mac_type = NID_undef;
size_t num, mac_secret_size = 0;
int ret = 0;
if (s->s3->tmp.key_block_length != 0)
return (1);
if (!ssl_cipher_get_evp(s->session, &c, &hash, &mac_type, &mac_secret_size,
&comp, s->ext.use_etm)) {
SSLerr(SSL_F_TLS1_SETUP_KEY_BLOCK, SSL_R_CIPHER_OR_HASH_UNAVAILABLE);
return (0);
}
s->s3->tmp.new_sym_enc = c;
s->s3->tmp.new_hash = hash;
s->s3->tmp.new_mac_pkey_type = mac_type;
s->s3->tmp.new_mac_secret_size = mac_secret_size;
num = EVP_CIPHER_key_length(c) + mac_secret_size + EVP_CIPHER_iv_length(c);
num *= 2;
ssl3_cleanup_key_block(s);
if ((p = OPENSSL_malloc(num)) == NULL) {
SSLerr(SSL_F_TLS1_SETUP_KEY_BLOCK, ERR_R_MALLOC_FAILURE);
goto err;
}
s->s3->tmp.key_block_length = num;
s->s3->tmp.key_block = p;
#ifdef SSL_DEBUG
printf("client random\n");
{
int z;
for (z = 0; z < SSL3_RANDOM_SIZE; z++)
printf("%02X%c", s->s3->client_random[z],
((z + 1) % 16) ? ' ' : '\n');
}
printf("server random\n");
{
int z;
for (z = 0; z < SSL3_RANDOM_SIZE; z++)
printf("%02X%c", s->s3->server_random[z],
((z + 1) % 16) ? ' ' : '\n');
}
printf("master key\n");
{
size_t z;
for (z = 0; z < s->session->master_key_length; z++)
printf("%02X%c", s->session->master_key[z],
((z + 1) % 16) ? ' ' : '\n');
}
#endif
if (!tls1_generate_key_block(s, p, num))
goto err;
#ifdef SSL_DEBUG
printf("\nkey block\n");
{
size_t z;
for (z = 0; z < num; z++)
printf("%02X%c", p[z], ((z + 1) % 16) ? ' ' : '\n');
}
#endif
if (!(s->options & SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS)
&& s->method->version <= TLS1_VERSION) {
/*
* enable vulnerability countermeasure for CBC ciphers with known-IV
* problem (http://www.openssl.org/~bodo/tls-cbc.txt)
*/
s->s3->need_empty_fragments = 1;
if (s->session->cipher != NULL) {
if (s->session->cipher->algorithm_enc == SSL_eNULL)
s->s3->need_empty_fragments = 0;
#ifndef OPENSSL_NO_RC4
if (s->session->cipher->algorithm_enc == SSL_RC4)
s->s3->need_empty_fragments = 0;
#endif
}
}
ret = 1;
err:
return (ret);
}
size_t tls1_final_finish_mac(SSL *s, const char *str, size_t slen,
unsigned char *out)
{
size_t hashlen;
unsigned char hash[EVP_MAX_MD_SIZE];
if (!ssl3_digest_cached_records(s, 0))
return 0;
if (!ssl_handshake_hash(s, hash, sizeof(hash), &hashlen))
return 0;
if (!tls1_PRF(s, str, slen, hash, hashlen, NULL, 0, NULL, 0, NULL, 0,
s->session->master_key, s->session->master_key_length,
out, TLS1_FINISH_MAC_LENGTH))
return 0;
OPENSSL_cleanse(hash, hashlen);
return TLS1_FINISH_MAC_LENGTH;
}
1999-04-20 05:31:43 +08:00
int tls1_generate_master_secret(SSL *s, unsigned char *out, unsigned char *p,
size_t len, size_t *secret_size)
{
if (s->session->flags & SSL_SESS_FLAG_EXTMS) {
unsigned char hash[EVP_MAX_MD_SIZE * 2];
size_t hashlen;
/*
* Digest cached records keeping record buffer (if present): this wont
* affect client auth because we're freezing the buffer at the same
* point (after client key exchange and before certificate verify)
*/
if (!ssl3_digest_cached_records(s, 1))
return 0;
if(!ssl_handshake_hash(s, hash, sizeof(hash), &hashlen))
return 0;
#ifdef SSL_DEBUG
fprintf(stderr, "Handshake hashes:\n");
BIO_dump_fp(stderr, (char *)hash, hashlen);
#endif
tls1_PRF(s,
TLS_MD_EXTENDED_MASTER_SECRET_CONST,
TLS_MD_EXTENDED_MASTER_SECRET_CONST_SIZE,
hash, hashlen,
NULL, 0,
NULL, 0,
NULL, 0, p, len, out,
SSL3_MASTER_SECRET_SIZE);
OPENSSL_cleanse(hash, hashlen);
} else {
tls1_PRF(s,
TLS_MD_MASTER_SECRET_CONST,
TLS_MD_MASTER_SECRET_CONST_SIZE,
s->s3->client_random, SSL3_RANDOM_SIZE,
NULL, 0,
s->s3->server_random, SSL3_RANDOM_SIZE,
NULL, 0, p, len, out,
SSL3_MASTER_SECRET_SIZE);
}
#ifdef SSL_DEBUG
fprintf(stderr, "Premaster Secret:\n");
BIO_dump_fp(stderr, (char *)p, len);
fprintf(stderr, "Client Random:\n");
BIO_dump_fp(stderr, (char *)s->s3->client_random, SSL3_RANDOM_SIZE);
fprintf(stderr, "Server Random:\n");
BIO_dump_fp(stderr, (char *)s->s3->server_random, SSL3_RANDOM_SIZE);
fprintf(stderr, "Master Secret:\n");
BIO_dump_fp(stderr, (char *)s->session->master_key,
SSL3_MASTER_SECRET_SIZE);
#endif
*secret_size = SSL3_MASTER_SECRET_SIZE;
return 1;
}
int tls1_export_keying_material(SSL *s, unsigned char *out, size_t olen,
const char *label, size_t llen,
const unsigned char *context,
size_t contextlen, int use_context)
{
unsigned char *val = NULL;
size_t vallen = 0, currentvalpos;
int rv;
2011-11-16 07:50:52 +08:00
/*
* construct PRF arguments we construct the PRF argument ourself rather
* than passing separate values into the TLS PRF to ensure that the
* concatenation of values does not create a prohibited label.
*/
vallen = llen + SSL3_RANDOM_SIZE * 2;
if (use_context) {
vallen += 2 + contextlen;
}
val = OPENSSL_malloc(vallen);
if (val == NULL)
goto err2;
currentvalpos = 0;
memcpy(val + currentvalpos, (unsigned char *)label, llen);
currentvalpos += llen;
memcpy(val + currentvalpos, s->s3->client_random, SSL3_RANDOM_SIZE);
currentvalpos += SSL3_RANDOM_SIZE;
memcpy(val + currentvalpos, s->s3->server_random, SSL3_RANDOM_SIZE);
currentvalpos += SSL3_RANDOM_SIZE;
if (use_context) {
val[currentvalpos] = (contextlen >> 8) & 0xff;
currentvalpos++;
val[currentvalpos] = contextlen & 0xff;
currentvalpos++;
if ((contextlen > 0) || (context != NULL)) {
memcpy(val + currentvalpos, context, contextlen);
}
}
/*
* disallow prohibited labels note that SSL3_RANDOM_SIZE > max(prohibited
* label len) = 15, so size of val > max(prohibited label len) = 15 and
* the comparisons won't have buffer overflow
*/
if (memcmp(val, TLS_MD_CLIENT_FINISH_CONST,
TLS_MD_CLIENT_FINISH_CONST_SIZE) == 0)
goto err1;
if (memcmp(val, TLS_MD_SERVER_FINISH_CONST,
TLS_MD_SERVER_FINISH_CONST_SIZE) == 0)
goto err1;
if (memcmp(val, TLS_MD_MASTER_SECRET_CONST,
TLS_MD_MASTER_SECRET_CONST_SIZE) == 0)
goto err1;
if (memcmp(val, TLS_MD_EXTENDED_MASTER_SECRET_CONST,
TLS_MD_EXTENDED_MASTER_SECRET_CONST_SIZE) == 0)
goto err1;
if (memcmp(val, TLS_MD_KEY_EXPANSION_CONST,
TLS_MD_KEY_EXPANSION_CONST_SIZE) == 0)
goto err1;
rv = tls1_PRF(s,
val, vallen,
NULL, 0,
NULL, 0,
NULL, 0,
NULL, 0,
s->session->master_key, s->session->master_key_length,
out, olen);
2011-11-16 07:50:52 +08:00
goto ret;
err1:
SSLerr(SSL_F_TLS1_EXPORT_KEYING_MATERIAL, SSL_R_TLS_ILLEGAL_EXPORTER_LABEL);
rv = 0;
goto ret;
err2:
SSLerr(SSL_F_TLS1_EXPORT_KEYING_MATERIAL, ERR_R_MALLOC_FAILURE);
rv = 0;
ret:
OPENSSL_clear_free(val, vallen);
return (rv);
}
2011-11-16 07:50:52 +08:00
1999-04-20 05:31:43 +08:00
int tls1_alert_code(int code)
{
switch (code) {
case SSL_AD_CLOSE_NOTIFY:
return (SSL3_AD_CLOSE_NOTIFY);
case SSL_AD_UNEXPECTED_MESSAGE:
return (SSL3_AD_UNEXPECTED_MESSAGE);
case SSL_AD_BAD_RECORD_MAC:
return (SSL3_AD_BAD_RECORD_MAC);
case SSL_AD_DECRYPTION_FAILED:
return (TLS1_AD_DECRYPTION_FAILED);
case SSL_AD_RECORD_OVERFLOW:
return (TLS1_AD_RECORD_OVERFLOW);
case SSL_AD_DECOMPRESSION_FAILURE:
return (SSL3_AD_DECOMPRESSION_FAILURE);
case SSL_AD_HANDSHAKE_FAILURE:
return (SSL3_AD_HANDSHAKE_FAILURE);
case SSL_AD_NO_CERTIFICATE:
return (-1);
case SSL_AD_BAD_CERTIFICATE:
return (SSL3_AD_BAD_CERTIFICATE);
case SSL_AD_UNSUPPORTED_CERTIFICATE:
return (SSL3_AD_UNSUPPORTED_CERTIFICATE);
case SSL_AD_CERTIFICATE_REVOKED:
return (SSL3_AD_CERTIFICATE_REVOKED);
case SSL_AD_CERTIFICATE_EXPIRED:
return (SSL3_AD_CERTIFICATE_EXPIRED);
case SSL_AD_CERTIFICATE_UNKNOWN:
return (SSL3_AD_CERTIFICATE_UNKNOWN);
case SSL_AD_ILLEGAL_PARAMETER:
return (SSL3_AD_ILLEGAL_PARAMETER);
case SSL_AD_UNKNOWN_CA:
return (TLS1_AD_UNKNOWN_CA);
case SSL_AD_ACCESS_DENIED:
return (TLS1_AD_ACCESS_DENIED);
case SSL_AD_DECODE_ERROR:
return (TLS1_AD_DECODE_ERROR);
case SSL_AD_DECRYPT_ERROR:
return (TLS1_AD_DECRYPT_ERROR);
case SSL_AD_EXPORT_RESTRICTION:
return (TLS1_AD_EXPORT_RESTRICTION);
case SSL_AD_PROTOCOL_VERSION:
return (TLS1_AD_PROTOCOL_VERSION);
case SSL_AD_INSUFFICIENT_SECURITY:
return (TLS1_AD_INSUFFICIENT_SECURITY);
case SSL_AD_INTERNAL_ERROR:
return (TLS1_AD_INTERNAL_ERROR);
case SSL_AD_USER_CANCELLED:
return (TLS1_AD_USER_CANCELLED);
case SSL_AD_NO_RENEGOTIATION:
return (TLS1_AD_NO_RENEGOTIATION);
case SSL_AD_UNSUPPORTED_EXTENSION:
return (TLS1_AD_UNSUPPORTED_EXTENSION);
case SSL_AD_CERTIFICATE_UNOBTAINABLE:
return (TLS1_AD_CERTIFICATE_UNOBTAINABLE);
case SSL_AD_UNRECOGNIZED_NAME:
return (TLS1_AD_UNRECOGNIZED_NAME);
case SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE:
return (TLS1_AD_BAD_CERTIFICATE_STATUS_RESPONSE);
case SSL_AD_BAD_CERTIFICATE_HASH_VALUE:
return (TLS1_AD_BAD_CERTIFICATE_HASH_VALUE);
case SSL_AD_UNKNOWN_PSK_IDENTITY:
return (TLS1_AD_UNKNOWN_PSK_IDENTITY);
case SSL_AD_INAPPROPRIATE_FALLBACK:
return (TLS1_AD_INAPPROPRIATE_FALLBACK);
case SSL_AD_NO_APPLICATION_PROTOCOL:
return (TLS1_AD_NO_APPLICATION_PROTOCOL);
case SSL_AD_CERTIFICATE_REQUIRED:
return SSL_AD_HANDSHAKE_FAILURE;
default:
return (-1);
}
}