openssl/ssl/record/methods/tls_common.c

1406 lines
43 KiB
C
Raw Normal View History

/*
* Copyright 2022 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <openssl/bio.h>
#include <openssl/ssl.h>
#include <openssl/err.h>
#include <openssl/core_names.h>
#include "internal/e_os.h"
#include "internal/packet.h"
#include "../../ssl_local.h"
#include "../record_local.h"
#include "recmethod_local.h"
# define SSL_AD_NO_ALERT -1
static void tls_int_free(OSSL_RECORD_LAYER *rl);
void ossl_rlayer_fatal(OSSL_RECORD_LAYER *rl, int al, int reason,
const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
ERR_vset_error(ERR_LIB_SSL, reason, fmt, args);
va_end(args);
rl->alert = al;
}
int ossl_set_tls_provider_parameters(OSSL_RECORD_LAYER *rl,
EVP_CIPHER_CTX *ctx,
const EVP_CIPHER *ciph,
const EVP_MD *md)
{
/*
* Provided cipher, the TLS padding/MAC removal is performed provider
* side so we need to tell the ctx about our TLS version and mac size
*/
OSSL_PARAM params[3], *pprm = params;
size_t macsize = 0;
int imacsize = -1;
if ((EVP_CIPHER_get_flags(ciph) & EVP_CIPH_FLAG_AEAD_CIPHER) == 0
&& !rl->use_etm)
imacsize = EVP_MD_get_size(md);
if (imacsize >= 0)
macsize = (size_t)imacsize;
*pprm++ = OSSL_PARAM_construct_int(OSSL_CIPHER_PARAM_TLS_VERSION,
&rl->version);
*pprm++ = OSSL_PARAM_construct_size_t(OSSL_CIPHER_PARAM_TLS_MAC_SIZE,
&macsize);
*pprm = OSSL_PARAM_construct_end();
if (!EVP_CIPHER_CTX_set_params(ctx, params)) {
ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
return 0;
}
return 1;
}
/*
* ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function
* which ssl3_cbc_digest_record supports.
*/
char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx)
{
switch (EVP_MD_CTX_get_type(ctx)) {
case NID_md5:
case NID_sha1:
case NID_sha224:
case NID_sha256:
case NID_sha384:
case NID_sha512:
return 1;
default:
return 0;
}
}
#ifndef OPENSSL_NO_COMP
static int rlayer_allow_compression(OSSL_RECORD_LAYER *rl)
{
if (rl->options & SSL_OP_NO_COMPRESSION)
return 0;
return rl->security(rl->cbarg, SSL_SECOP_COMPRESSION, 0, 0, NULL);
}
#endif
int rlayer_setup_read_buffer(OSSL_RECORD_LAYER *rl)
{
unsigned char *p;
size_t len, align = 0, headerlen;
SSL3_BUFFER *b;
b = &rl->rbuf;
if (rl->isdtls)
headerlen = DTLS1_RT_HEADER_LENGTH;
else
headerlen = SSL3_RT_HEADER_LENGTH;
#if defined(SSL3_ALIGN_PAYLOAD) && SSL3_ALIGN_PAYLOAD!=0
align = (-SSL3_RT_HEADER_LENGTH) & (SSL3_ALIGN_PAYLOAD - 1);
#endif
if (b->buf == NULL) {
len = SSL3_RT_MAX_PLAIN_LENGTH
+ SSL3_RT_MAX_ENCRYPTED_OVERHEAD + headerlen + align;
#ifndef OPENSSL_NO_COMP
if (rlayer_allow_compression(rl))
len += SSL3_RT_MAX_COMPRESSED_OVERHEAD;
#endif
if (b->default_len > len)
len = b->default_len;
if ((p = OPENSSL_malloc(len)) == NULL) {
/*
* We've got a malloc failure, and we're still initialising buffers.
* We assume we're so doomed that we won't even be able to send an
* alert.
*/
RLAYERfatal(rl, SSL_AD_NO_ALERT, ERR_R_MALLOC_FAILURE);
return 0;
}
b->buf = p;
b->len = len;
}
return 1;
}
static int rlayer_release_read_buffer(OSSL_RECORD_LAYER *rl)
{
SSL3_BUFFER *b;
b = &rl->rbuf;
if (rl->options & SSL_OP_CLEANSE_PLAINTEXT)
OPENSSL_cleanse(b->buf, b->len);
OPENSSL_free(b->buf);
b->buf = NULL;
return 1;
}
void tls_reset_packet_length(OSSL_RECORD_LAYER *rl)
{
rl->packet_length = 0;
}
/*
* Return values are as per SSL_read()
*/
int tls_default_read_n(OSSL_RECORD_LAYER *rl, size_t n, size_t max, int extend,
int clearold, size_t *readbytes)
{
/*
* If extend == 0, obtain new n-byte packet; if extend == 1, increase
* packet by another n bytes. The packet will be in the sub-array of
* s->rlayer.rbuf.buf specified by s->rlayer.packet and
* s->rlayer.packet_length. (If s->rlayer.read_ahead is set, 'max' bytes may
* be stored in rbuf [plus s->rlayer.packet_length bytes if extend == 1].)
* if clearold == 1, move the packet to the start of the buffer; if
* clearold == 0 then leave any old packets where they were
*/
size_t len, left, align = 0;
unsigned char *pkt;
SSL3_BUFFER *rb;
if (n == 0)
return OSSL_RECORD_RETURN_NON_FATAL_ERR;
rb = &rl->rbuf;
/*
* TODO(RECLAYER): Once this function is only called from inside the rlayer
* directly, we can probably remove this since it is initialised in
* tls_get_more_records
*/
if (rb->buf == NULL) {
if (!rlayer_setup_read_buffer(rl)) {
/* RLAYERfatal() already called */
return OSSL_RECORD_RETURN_FATAL;
}
}
left = rb->left;
#if defined(SSL3_ALIGN_PAYLOAD) && SSL3_ALIGN_PAYLOAD != 0
align = (size_t)rb->buf + SSL3_RT_HEADER_LENGTH;
align = SSL3_ALIGN_PAYLOAD - 1 - ((align - 1) % SSL3_ALIGN_PAYLOAD);
#endif
if (!extend) {
/* start with empty packet ... */
if (left == 0) {
rb->offset = align;
} else if (align != 0 && left >= SSL3_RT_HEADER_LENGTH) {
/*
* check if next packet length is large enough to justify payload
* alignment...
*/
pkt = rb->buf + rb->offset;
if (pkt[0] == SSL3_RT_APPLICATION_DATA
&& (pkt[3] << 8 | pkt[4]) >= 128) {
/*
* Note that even if packet is corrupted and its length field
* is insane, we can only be led to wrong decision about
* whether memmove will occur or not. Header values has no
* effect on memmove arguments and therefore no buffer
* overrun can be triggered.
*/
memmove(rb->buf + align, pkt, left);
rb->offset = align;
}
}
rl->packet = rb->buf + rb->offset;
rl->packet_length = 0;
/* ... now we can act as if 'extend' was set */
}
len = rl->packet_length;
pkt = rb->buf + align;
/*
* Move any available bytes to front of buffer: 'len' bytes already
* pointed to by 'packet', 'left' extra ones at the end
*/
if (rl->packet != pkt && clearold == 1) {
memmove(pkt, rl->packet, len + left);
rl->packet = pkt;
rb->offset = len + align;
}
/*
* For DTLS/UDP reads should not span multiple packets because the read
* operation returns the whole packet at once (as long as it fits into
* the buffer).
*/
if (rl->isdtls) {
if (left == 0 && extend)
return 0;
if (left > 0 && n > left)
n = left;
}
/* if there is enough in the buffer from a previous read, take some */
if (left >= n) {
rl->packet_length += n;
rb->left = left - n;
rb->offset += n;
*readbytes = n;
return OSSL_RECORD_RETURN_SUCCESS;
}
/* else we need to read more data */
if (n > rb->len - rb->offset) {
/* does not happen */
RLAYERfatal(rl, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return OSSL_RECORD_RETURN_FATAL;
}
/* We always act like read_ahead is set for DTLS */
if (!rl->read_ahead && !rl->isdtls) {
/* ignore max parameter */
max = n;
} else {
if (max < n)
max = n;
if (max > rb->len - rb->offset)
max = rb->len - rb->offset;
}
while (left < n) {
size_t bioread = 0;
int ret;
BIO *bio = rl->prev != NULL ? rl->prev : rl->bio;
/*
* Now we have len+left bytes at the front of s->s3.rbuf.buf and
* need to read in more until we have len+n (up to len+max if
* possible)
*/
clear_sys_error();
if (bio != NULL) {
ret = BIO_read(bio, pkt + len + left, max - left);
if (ret > 0) {
bioread = ret;
ret = OSSL_RECORD_RETURN_SUCCESS;
} else if (BIO_should_retry(bio)) {
if (rl->prev != NULL) {
/*
* We were reading from the previous epoch. Now there is no
* more data, so swap to the actual transport BIO
*/
BIO_free(rl->prev);
rl->prev = NULL;
continue;
}
ret = OSSL_RECORD_RETURN_RETRY;
} else if (BIO_eof(bio)) {
ret = OSSL_RECORD_RETURN_EOF;
} else {
ret = OSSL_RECORD_RETURN_FATAL;
}
} else {
RLAYERfatal(rl, SSL_AD_INTERNAL_ERROR, SSL_R_READ_BIO_NOT_SET);
ret = OSSL_RECORD_RETURN_FATAL;
}
if (ret <= OSSL_RECORD_RETURN_RETRY) {
rb->left = left;
if (rl->mode & SSL_MODE_RELEASE_BUFFERS && !rl->isdtls)
if (len + left == 0)
rlayer_release_read_buffer(rl);
return ret;
}
left += bioread;
/*
* reads should *never* span multiple packets for DTLS because the
* underlying transport protocol is message oriented as opposed to
* byte oriented as in the TLS case.
*/
if (rl->isdtls) {
if (n > left)
n = left; /* makes the while condition false */
}
}
/* done reading, now the book-keeping */
rb->offset += n;
rb->left = left - n;
rl->packet_length += n;
*readbytes = n;
return OSSL_RECORD_RETURN_SUCCESS;
}
/*
* Peeks ahead into "read_ahead" data to see if we have a whole record waiting
* for us in the buffer.
*/
static int tls_record_app_data_waiting(OSSL_RECORD_LAYER *rl)
{
SSL3_BUFFER *rbuf;
size_t left, len;
unsigned char *p;
rbuf = &rl->rbuf;
p = SSL3_BUFFER_get_buf(rbuf);
if (p == NULL)
return 0;
left = SSL3_BUFFER_get_left(rbuf);
if (left < SSL3_RT_HEADER_LENGTH)
return 0;
p += SSL3_BUFFER_get_offset(rbuf);
/*
* We only check the type and record length, we will sanity check version
* etc later
*/
if (*p != SSL3_RT_APPLICATION_DATA)
return 0;
p += 3;
n2s(p, len);
if (left < SSL3_RT_HEADER_LENGTH + len)
return 0;
return 1;
}
static int rlayer_early_data_count_ok(OSSL_RECORD_LAYER *rl, size_t length,
size_t overhead, int send)
{
uint32_t max_early_data = rl->max_early_data;
if (max_early_data == 0) {
RLAYERfatal(rl, send ? SSL_AD_INTERNAL_ERROR : SSL_AD_UNEXPECTED_MESSAGE,
SSL_R_TOO_MUCH_EARLY_DATA);
return 0;
}
/* If we are dealing with ciphertext we need to allow for the overhead */
max_early_data += overhead;
if (rl->early_data_count + length > max_early_data) {
RLAYERfatal(rl, send ? SSL_AD_INTERNAL_ERROR : SSL_AD_UNEXPECTED_MESSAGE,
SSL_R_TOO_MUCH_EARLY_DATA);
return 0;
}
rl->early_data_count += length;
return 1;
}
/*
* MAX_EMPTY_RECORDS defines the number of consecutive, empty records that
* will be processed per call to ssl3_get_record. Without this limit an
* attacker could send empty records at a faster rate than we can process and
* cause ssl3_get_record to loop forever.
*/
#define MAX_EMPTY_RECORDS 32
#define SSL2_RT_HEADER_LENGTH 2
/*-
* Call this to buffer new input records in rl->rrec.
* It will return a OSSL_RECORD_RETURN_* value.
* When it finishes successfully (OSSL_RECORD_RETURN_SUCCESS), |rl->num_recs|
* records have been decoded. For each record 'i':
* rrec[i].type - is the type of record
* rrec[i].data, - data
* rrec[i].length, - number of bytes
* Multiple records will only be returned if the record types are all
* SSL3_RT_APPLICATION_DATA. The number of records returned will always be <=
* |max_pipelines|
*/
int tls_get_more_records(OSSL_RECORD_LAYER *rl)
{
int enc_err, rret;
int i;
size_t more, n;
SSL3_RECORD *rr, *thisrr;
SSL3_BUFFER *rbuf;
unsigned char *p;
unsigned char md[EVP_MAX_MD_SIZE];
unsigned int version;
size_t mac_size = 0;
int imac_size;
size_t num_recs = 0, max_recs, j;
PACKET pkt, sslv2pkt;
SSL_MAC_BUF *macbufs = NULL;
int ret = OSSL_RECORD_RETURN_FATAL;
rr = rl->rrec;
rbuf = &rl->rbuf;
if (rbuf->buf == NULL) {
if (!rlayer_setup_read_buffer(rl)) {
/* RLAYERfatal() already called */
return OSSL_RECORD_RETURN_FATAL;
}
}
max_recs = rl->max_pipelines;
if (max_recs == 0)
max_recs = 1;
do {
thisrr = &rr[num_recs];
/* check if we have the header */
if ((rl->rstate != SSL_ST_READ_BODY) ||
(rl->packet_length < SSL3_RT_HEADER_LENGTH)) {
size_t sslv2len;
unsigned int type;
rret = rl->funcs->read_n(rl, SSL3_RT_HEADER_LENGTH,
SSL3_BUFFER_get_len(rbuf), 0,
num_recs == 0 ? 1 : 0, &n);
if (rret < OSSL_RECORD_RETURN_SUCCESS)
return rret; /* error or non-blocking */
rl->rstate = SSL_ST_READ_BODY;
p = rl->packet;
if (!PACKET_buf_init(&pkt, p, rl->packet_length)) {
RLAYERfatal(rl, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return OSSL_RECORD_RETURN_FATAL;
}
sslv2pkt = pkt;
if (!PACKET_get_net_2_len(&sslv2pkt, &sslv2len)
|| !PACKET_get_1(&sslv2pkt, &type)) {
RLAYERfatal(rl, SSL_AD_DECODE_ERROR, ERR_R_INTERNAL_ERROR);
return OSSL_RECORD_RETURN_FATAL;
}
/*
* The first record received by the server may be a V2ClientHello.
*/
if (rl->role == OSSL_RECORD_ROLE_SERVER
&& rl->is_first_record
&& (sslv2len & 0x8000) != 0
&& (type == SSL2_MT_CLIENT_HELLO)) {
/*
* SSLv2 style record
*
* |num_recs| here will actually always be 0 because
* |num_recs > 0| only ever occurs when we are processing
* multiple app data records - which we know isn't the case here
* because it is an SSLv2ClientHello. We keep it using
* |num_recs| for the sake of consistency
*/
thisrr->type = SSL3_RT_HANDSHAKE;
thisrr->rec_version = SSL2_VERSION;
thisrr->length = sslv2len & 0x7fff;
if (thisrr->length > SSL3_BUFFER_get_len(rbuf)
- SSL2_RT_HEADER_LENGTH) {
RLAYERfatal(rl, SSL_AD_RECORD_OVERFLOW,
SSL_R_PACKET_LENGTH_TOO_LONG);
return OSSL_RECORD_RETURN_FATAL;
}
} else {
/* SSLv3+ style record */
/* Pull apart the header into the SSL3_RECORD */
if (!PACKET_get_1(&pkt, &type)
|| !PACKET_get_net_2(&pkt, &version)
|| !PACKET_get_net_2_len(&pkt, &thisrr->length)) {
rl->msg_callback(0, 0, SSL3_RT_HEADER, p, 5, rl->cbarg);
RLAYERfatal(rl, SSL_AD_DECODE_ERROR, ERR_R_INTERNAL_ERROR);
return OSSL_RECORD_RETURN_FATAL;
}
thisrr->type = type;
thisrr->rec_version = version;
/*
* When we call validate_record_header() only records actually
* received in SSLv2 format should have the record version set
* to SSL2_VERSION. This way validate_record_header() can know
* what format the record was in based on the version.
*/
if (thisrr->rec_version == SSL2_VERSION) {
RLAYERfatal(rl, SSL_AD_PROTOCOL_VERSION,
SSL_R_WRONG_VERSION_NUMBER);
return OSSL_RECORD_RETURN_FATAL;
}
rl->msg_callback(0, version, SSL3_RT_HEADER, p, 5, rl->cbarg);
if (thisrr->length >
SSL3_BUFFER_get_len(rbuf) - SSL3_RT_HEADER_LENGTH) {
RLAYERfatal(rl, SSL_AD_RECORD_OVERFLOW,
SSL_R_PACKET_LENGTH_TOO_LONG);
return OSSL_RECORD_RETURN_FATAL;
}
}
if (!rl->funcs->validate_record_header(rl, thisrr)) {
/* RLAYERfatal already called */
return OSSL_RECORD_RETURN_FATAL;
}
/* now rl->rstate == SSL_ST_READ_BODY */
}
/*
* rl->rstate == SSL_ST_READ_BODY, get and decode the data. Calculate
* how much more data we need to read for the rest of the record
*/
if (thisrr->rec_version == SSL2_VERSION) {
more = thisrr->length + SSL2_RT_HEADER_LENGTH
- SSL3_RT_HEADER_LENGTH;
} else {
more = thisrr->length;
}
if (more > 0) {
/* now rl->packet_length == SSL3_RT_HEADER_LENGTH */
rret = rl->funcs->read_n(rl, more, more, 1, 0, &n);
if (rret < OSSL_RECORD_RETURN_SUCCESS)
return rret; /* error or non-blocking io */
}
/* set state for later operations */
rl->rstate = SSL_ST_READ_HEADER;
/*
* At this point, rl->packet_length == SSL3_RT_HEADER_LENGTH
* + thisrr->length, or rl->packet_length == SSL2_RT_HEADER_LENGTH
* + thisrr->length and we have that many bytes in rl->packet
*/
if (thisrr->rec_version == SSL2_VERSION)
thisrr->input = &(rl->packet[SSL2_RT_HEADER_LENGTH]);
else
thisrr->input = &(rl->packet[SSL3_RT_HEADER_LENGTH]);
/*
* ok, we can now read from 'rl->packet' data into 'thisrr'.
* thisrr->input points at thisrr->length bytes, which need to be copied
* into thisrr->data by either the decryption or by the decompression.
* When the data is 'copied' into the thisrr->data buffer,
* thisrr->input will be updated to point at the new buffer
*/
/*
* We now have - encrypted [ MAC [ compressed [ plain ] ] ]
* thisrr->length bytes of encrypted compressed stuff.
*/
/* decrypt in place in 'thisrr->input' */
thisrr->data = thisrr->input;
thisrr->orig_len = thisrr->length;
/* Mark this record as not read by upper layers yet */
thisrr->read = 0;
num_recs++;
/* we have pulled in a full packet so zero things */
tls_reset_packet_length(rl);
rl->is_first_record = 0;
} while (num_recs < max_recs
&& thisrr->type == SSL3_RT_APPLICATION_DATA
&& RLAYER_USE_EXPLICIT_IV(rl)
&& rl->enc_ctx != NULL
&& (EVP_CIPHER_get_flags(EVP_CIPHER_CTX_get0_cipher(rl->enc_ctx))
& EVP_CIPH_FLAG_PIPELINE) != 0
&& tls_record_app_data_waiting(rl));
if (num_recs == 1
&& thisrr->type == SSL3_RT_CHANGE_CIPHER_SPEC
/* The following can happen in tlsany_meth after HRR */
&& rl->version == TLS1_3_VERSION
&& rl->is_first_handshake) {
/*
* CCS messages must be exactly 1 byte long, containing the value 0x01
*/
if (thisrr->length != 1 || thisrr->data[0] != 0x01) {
RLAYERfatal(rl, SSL_AD_ILLEGAL_PARAMETER,
SSL_R_INVALID_CCS_MESSAGE);
return OSSL_RECORD_RETURN_FATAL;
}
/*
* CCS messages are ignored in TLSv1.3. We treat it like an empty
* handshake record
*/
thisrr->type = SSL3_RT_HANDSHAKE;
if (++(rl->empty_record_count) > MAX_EMPTY_RECORDS) {
RLAYERfatal(rl, SSL_AD_UNEXPECTED_MESSAGE,
SSL_R_UNEXPECTED_CCS_MESSAGE);
return OSSL_RECORD_RETURN_FATAL;
}
thisrr->read = 1;
rl->num_recs = 0;
rl->curr_rec = 0;
rl->num_released = 0;
return OSSL_RECORD_RETURN_SUCCESS;
}
if (rl->md_ctx != NULL) {
const EVP_MD *tmpmd = EVP_MD_CTX_get0_md(rl->md_ctx);
if (tmpmd != NULL) {
imac_size = EVP_MD_get_size(tmpmd);
if (!ossl_assert(imac_size >= 0 && imac_size <= EVP_MAX_MD_SIZE)) {
RLAYERfatal(rl, SSL_AD_INTERNAL_ERROR, ERR_R_EVP_LIB);
return OSSL_RECORD_RETURN_FATAL;
}
mac_size = (size_t)imac_size;
}
}
/*
* If in encrypt-then-mac mode calculate mac from encrypted record. All
* the details below are public so no timing details can leak.
*/
if (rl->use_etm && rl->md_ctx) {
unsigned char *mac;
for (j = 0; j < num_recs; j++) {
thisrr = &rr[j];
if (thisrr->length < mac_size) {
RLAYERfatal(rl, SSL_AD_DECODE_ERROR, SSL_R_LENGTH_TOO_SHORT);
return OSSL_RECORD_RETURN_FATAL;
}
thisrr->length -= mac_size;
mac = thisrr->data + thisrr->length;
i = rl->funcs->mac(rl, thisrr, md, 0 /* not send */);
if (i == 0 || CRYPTO_memcmp(md, mac, mac_size) != 0) {
RLAYERfatal(rl, SSL_AD_BAD_RECORD_MAC,
SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC);
return OSSL_RECORD_RETURN_FATAL;
}
}
/*
* We've handled the mac now - there is no MAC inside the encrypted
* record
*/
mac_size = 0;
}
if (mac_size > 0) {
macbufs = OPENSSL_zalloc(sizeof(*macbufs) * num_recs);
if (macbufs == NULL) {
RLAYERfatal(rl, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE);
return OSSL_RECORD_RETURN_FATAL;
}
}
/*
* TODO(RECLAYER): Only call rl functions once TLSv1.3/SSLv3 is moved to new
* record layer code
*/
enc_err = rl->funcs->cipher(rl, rr, num_recs, 0, macbufs, mac_size);
/*-
* enc_err is:
* 0: if the record is publicly invalid, or an internal error, or AEAD
* decryption failed, or ETM decryption failed.
* 1: Success or MTE decryption failed (MAC will be randomised)
*/
if (enc_err == 0) {
if (rl->alert != 0) {
/* RLAYERfatal() already got called */
goto end;
}
if (num_recs == 1 && rl->skip_early_data(rl->cbarg)) {
/*
* Valid early_data that we cannot decrypt will fail here. We treat
* it like an empty record.
*/
thisrr = &rr[0];
if (!rlayer_early_data_count_ok(rl, thisrr->length,
EARLY_DATA_CIPHERTEXT_OVERHEAD, 0)) {
/* RLAYERfatal() already called */
goto end;
}
thisrr->length = 0;
thisrr->read = 1;
rl->num_recs = 0;
rl->curr_rec = 0;
rl->num_released = 0;
/* Reset the read sequence */
memset(rl->sequence, 0, sizeof(rl->sequence));
ret = 1;
goto end;
}
RLAYERfatal(rl, SSL_AD_BAD_RECORD_MAC,
SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC);
goto end;
}
OSSL_TRACE_BEGIN(TLS) {
BIO_printf(trc_out, "dec %lu\n", (unsigned long)rr[0].length);
BIO_dump_indent(trc_out, rr[0].data, rr[0].length, 4);
} OSSL_TRACE_END(TLS);
/* r->length is now the compressed data plus mac */
if (rl->enc_ctx != NULL
&& !rl->use_etm
&& EVP_MD_CTX_get0_md(rl->md_ctx) != NULL) {
/* rl->md_ctx != NULL => mac_size != -1 */
for (j = 0; j < num_recs; j++) {
SSL_MAC_BUF *thismb = &macbufs[j];
thisrr = &rr[j];
i = rl->funcs->mac(rl, thisrr, md, 0 /* not send */);
if (i == 0 || thismb == NULL || thismb->mac == NULL
|| CRYPTO_memcmp(md, thismb->mac, (size_t)mac_size) != 0)
enc_err = 0;
if (thisrr->length > SSL3_RT_MAX_COMPRESSED_LENGTH + mac_size)
enc_err = 0;
}
}
if (enc_err == 0) {
if (rl->alert != 0) {
/* We already called RLAYERfatal() */
goto end;
}
/*
* A separate 'decryption_failed' alert was introduced with TLS 1.0,
* SSL 3.0 only has 'bad_record_mac'. But unless a decryption
* failure is directly visible from the ciphertext anyway, we should
* not reveal which kind of error occurred -- this might become
* visible to an attacker (e.g. via a logfile)
*/
RLAYERfatal(rl, SSL_AD_BAD_RECORD_MAC,
SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC);
goto end;
}
for (j = 0; j < num_recs; j++) {
thisrr = &rr[j];
if (!rl->funcs->post_process_record(rl, thisrr)) {
/* RLAYERfatal already called */
goto end;
}
/*
* Check if the received packet overflows the current
* Max Fragment Length setting.
* Note: rl->max_frag_len > 0 and KTLS are mutually exclusive.
*/
if (rl->max_frag_len > 0 && thisrr->length > rl->max_frag_len) {
RLAYERfatal(rl, SSL_AD_RECORD_OVERFLOW, SSL_R_DATA_LENGTH_TOO_LONG);
goto end;
}
thisrr->off = 0;
/*-
* So at this point the following is true
* thisrr->type is the type of record
* thisrr->length == number of bytes in record
* thisrr->off == offset to first valid byte
* thisrr->data == where to take bytes from, increment after use :-).
*/
/* just read a 0 length packet */
if (thisrr->length == 0) {
if (++(rl->empty_record_count) > MAX_EMPTY_RECORDS) {
RLAYERfatal(rl, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_RECORD_TOO_SMALL);
goto end;
}
} else {
rl->empty_record_count = 0;
}
}
if (rl->level == OSSL_RECORD_PROTECTION_LEVEL_EARLY) {
thisrr = &rr[0];
if (thisrr->type == SSL3_RT_APPLICATION_DATA
&& !rlayer_early_data_count_ok(rl, thisrr->length, 0, 0)) {
/* RLAYERfatal already called */
goto end;
}
}
rl->num_recs = num_recs;
rl->curr_rec = 0;
rl->num_released = 0;
ret = OSSL_RECORD_RETURN_SUCCESS;
end:
if (macbufs != NULL) {
for (j = 0; j < num_recs; j++) {
if (macbufs[j].alloced)
OPENSSL_free(macbufs[j].mac);
}
OPENSSL_free(macbufs);
}
return ret;
}
/* Shared by ssl3_meth and tls1_meth */
int tls_default_validate_record_header(OSSL_RECORD_LAYER *rl, SSL3_RECORD *rec)
{
size_t len = SSL3_RT_MAX_ENCRYPTED_LENGTH;
if (rec->rec_version != rl->version) {
RLAYERfatal(rl, SSL_AD_PROTOCOL_VERSION, SSL_R_WRONG_VERSION_NUMBER);
return 0;
}
#ifndef OPENSSL_NO_COMP
/*
* If OPENSSL_NO_COMP is defined then SSL3_RT_MAX_ENCRYPTED_LENGTH
* does not include the compression overhead anyway.
*/
if (rl->expand == NULL)
len -= SSL3_RT_MAX_COMPRESSED_OVERHEAD;
#endif
if (rec->length > len) {
RLAYERfatal(rl, SSL_AD_RECORD_OVERFLOW,
SSL_R_ENCRYPTED_LENGTH_TOO_LONG);
return 0;
}
return 1;
}
int tls_do_uncompress(OSSL_RECORD_LAYER *rl, SSL3_RECORD *rec)
{
#ifndef OPENSSL_NO_COMP
int i;
if (rec->comp == NULL) {
rec->comp = (unsigned char *)
OPENSSL_malloc(SSL3_RT_MAX_ENCRYPTED_LENGTH);
}
if (rec->comp == NULL)
return 0;
i = COMP_expand_block(rl->expand, rec->comp,
SSL3_RT_MAX_PLAIN_LENGTH, rec->data, (int)rec->length);
if (i < 0)
return 0;
else
rec->length = i;
rec->data = rec->comp;
return 1;
#else
return 0;
#endif
}
/* Shared by tlsany_meth, ssl3_meth and tls1_meth */
int tls_default_post_process_record(OSSL_RECORD_LAYER *rl, SSL3_RECORD *rec)
{
if (rl->expand != NULL) {
if (rec->length > SSL3_RT_MAX_COMPRESSED_LENGTH) {
RLAYERfatal(rl, SSL_AD_RECORD_OVERFLOW,
SSL_R_COMPRESSED_LENGTH_TOO_LONG);
return 0;
}
if (!tls_do_uncompress(rl, rec)) {
RLAYERfatal(rl, SSL_AD_DECOMPRESSION_FAILURE,
SSL_R_BAD_DECOMPRESSION);
return 0;
}
}
if (rec->length > SSL3_RT_MAX_PLAIN_LENGTH) {
RLAYERfatal(rl, SSL_AD_RECORD_OVERFLOW, SSL_R_DATA_LENGTH_TOO_LONG);
return 0;
}
return 1;
}
/* Shared by tls13_meth and ktls_meth */
int tls13_common_post_process_record(OSSL_RECORD_LAYER *rl, SSL3_RECORD *rec)
{
if (rec->type != SSL3_RT_APPLICATION_DATA
&& rec->type != SSL3_RT_ALERT
&& rec->type != SSL3_RT_HANDSHAKE) {
RLAYERfatal(rl, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_BAD_RECORD_TYPE);
return 0;
}
rl->msg_callback(0, rl->version, SSL3_RT_INNER_CONTENT_TYPE, &rec->type,
1, rl->cbarg);
/*
* TLSv1.3 alert and handshake records are required to be non-zero in
* length.
*/
if ((rec->type == SSL3_RT_HANDSHAKE
|| rec->type == SSL3_RT_ALERT)
&& rec->length == 0) {
RLAYERfatal(rl, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_BAD_LENGTH);
return 0;
}
return 1;
}
int tls_read_record(OSSL_RECORD_LAYER *rl, void **rechandle, int *rversion,
int *type, unsigned char **data, size_t *datalen,
uint16_t *epoch, unsigned char *seq_num)
{
SSL3_RECORD *rec;
/*
* tls_get_more_records() can return success without actually reading
* anything useful (i.e. if empty records are read). We loop here until
* we have something useful. tls_get_more_records() will eventually fail if
* too many sequential empty records are read.
*/
while (rl->curr_rec >= rl->num_recs) {
int ret;
if (rl->num_released != rl->num_recs) {
RLAYERfatal(rl, SSL_AD_INTERNAL_ERROR, SSL_R_RECORDS_NOT_RELEASED);
return OSSL_RECORD_RETURN_FATAL;
}
ret = rl->funcs->get_more_records(rl);
if (ret != OSSL_RECORD_RETURN_SUCCESS)
return ret;
}
/*
* We have now got rl->num_recs records buffered in rl->rrec. rl->curr_rec
* points to the next one to read.
*/
rec = &rl->rrec[rl->curr_rec++];
*rechandle = rec;
*rversion = rec->rec_version;
*type = rec->type;
*data = rec->data + rec->off;
*datalen = rec->length;
if (rl->isdtls) {
*epoch = (uint16_t)rec->epoch;
memcpy(seq_num, rec->seq_num, sizeof(rec->seq_num));
}
return OSSL_RECORD_RETURN_SUCCESS;
}
int tls_release_record(OSSL_RECORD_LAYER *rl, void *rechandle)
{
if (!ossl_assert(rl->num_released < rl->curr_rec)
|| !ossl_assert(rechandle == &rl->rrec[rl->num_released])) {
/* Should not happen */
RLAYERfatal(rl, SSL_AD_INTERNAL_ERROR, SSL_R_INVALID_RECORD);
return OSSL_RECORD_RETURN_FATAL;
}
rl->num_released++;
return OSSL_RECORD_RETURN_SUCCESS;
}
int
tls_int_new_record_layer(OSSL_LIB_CTX *libctx, const char *propq, int vers,
int role, int direction, int level, unsigned char *key,
size_t keylen, unsigned char *iv, size_t ivlen,
unsigned char *mackey, size_t mackeylen,
const EVP_CIPHER *ciph, size_t taglen,
/* TODO(RECLAYER): This probably should not be an int */
int mactype,
const EVP_MD *md, const SSL_COMP *comp, BIO *prev,
BIO *transport, BIO *next, BIO_ADDR *local,
BIO_ADDR *peer, const OSSL_PARAM *settings,
const OSSL_PARAM *options,
const OSSL_DISPATCH *fns, void *cbarg,
OSSL_RECORD_LAYER **retrl)
{
OSSL_RECORD_LAYER *rl = OPENSSL_zalloc(sizeof(*rl));
const OSSL_PARAM *p;
*retrl = NULL;
if (rl == NULL) {
RLAYERfatal(rl, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE);
return OSSL_RECORD_RETURN_FATAL;
}
/*
* TODO(RECLAYER): Need to handle the case where the params are updated
* after the record layer has been created.
*/
p = OSSL_PARAM_locate_const(options, OSSL_LIBSSL_RECORD_LAYER_PARAM_OPTIONS);
if (p != NULL && !OSSL_PARAM_get_uint64(p, &rl->options)) {
RLAYERfatal(rl, SSL_AD_INTERNAL_ERROR, SSL_R_FAILED_TO_GET_PARAMETER);
goto err;
}
p = OSSL_PARAM_locate_const(options, OSSL_LIBSSL_RECORD_LAYER_PARAM_MODE);
if (p != NULL && !OSSL_PARAM_get_uint32(p, &rl->mode)) {
RLAYERfatal(rl, SSL_AD_INTERNAL_ERROR, SSL_R_FAILED_TO_GET_PARAMETER);
goto err;
}
/* Loop through all the settings since they must all be understood */
for (p = settings; p->key != NULL; p++) {
if (strcmp(p->key, OSSL_LIBSSL_RECORD_LAYER_PARAM_USE_ETM) == 0) {
if (!OSSL_PARAM_get_int(p, &rl->use_etm)) {
RLAYERfatal(rl, SSL_AD_INTERNAL_ERROR, SSL_R_FAILED_TO_GET_PARAMETER);
goto err;
}
} else if (strcmp(p->key, OSSL_LIBSSL_RECORD_LAYER_PARAM_MAX_FRAG_LEN) == 0) {
if (!OSSL_PARAM_get_uint(p, &rl->max_frag_len)) {
RLAYERfatal(rl, SSL_AD_INTERNAL_ERROR, SSL_R_FAILED_TO_GET_PARAMETER);
goto err;
}
} else if (strcmp(p->key, OSSL_LIBSSL_RECORD_LAYER_PARAM_MAX_EARLY_DATA) == 0) {
if (!OSSL_PARAM_get_uint32(p, &rl->max_early_data)) {
RLAYERfatal(rl, SSL_AD_INTERNAL_ERROR, SSL_R_FAILED_TO_GET_PARAMETER);
goto err;
}
} else if (strcmp(p->key, OSSL_LIBSSL_RECORD_LAYER_PARAM_STREAM_MAC) == 0) {
if (!OSSL_PARAM_get_int(p, &rl->stream_mac)) {
RLAYERfatal(rl, SSL_AD_INTERNAL_ERROR, SSL_R_FAILED_TO_GET_PARAMETER);
goto err;
}
} else if (strcmp(p->key, OSSL_LIBSSL_RECORD_LAYER_PARAM_TLSTREE) == 0) {
if (!OSSL_PARAM_get_int(p, &rl->tlstree)) {
RLAYERfatal(rl, SSL_AD_INTERNAL_ERROR, SSL_R_FAILED_TO_GET_PARAMETER);
goto err;
}
} else {
RLAYERfatal(rl, SSL_AD_INTERNAL_ERROR, SSL_R_UNKNOWN_MANDATORY_PARAMETER);
goto err;
}
}
if (level == OSSL_RECORD_PROTECTION_LEVEL_APPLICATION) {
/*
* We ignore any read_ahead setting prior to the application protection
* level. Otherwise we may read ahead data in a lower protection level
* that is destined for a higher protection level. To simplify the logic
* we don't support that at this stage.
*/
/*
* TODO(RECLAYER): Handle the case of read_ahead at the application
* level and a key update/reneg occurs.
*/
p = OSSL_PARAM_locate_const(options, OSSL_LIBSSL_RECORD_LAYER_PARAM_READ_AHEAD);
if (p != NULL && !OSSL_PARAM_get_int(p, &rl->read_ahead)) {
RLAYERfatal(rl, SSL_AD_INTERNAL_ERROR, SSL_R_FAILED_TO_GET_PARAMETER);
goto err;
}
}
rl->libctx = libctx;
rl->propq = propq;
rl->version = vers;
rl->role = role;
rl->direction = direction;
rl->level = level;
if (level == OSSL_RECORD_PROTECTION_LEVEL_NONE)
rl->is_first_record = 1;
if (!tls_set1_bio(rl, transport))
goto err;
if (prev != NULL && !BIO_up_ref(prev))
goto err;
rl->prev = prev;
if (next != NULL && !BIO_up_ref(next))
goto err;
rl->next = next;
rl->cbarg = cbarg;
for (; fns->function_id != 0; fns++) {
switch (fns->function_id) {
case OSSL_FUNC_RLAYER_SKIP_EARLY_DATA:
rl->skip_early_data = OSSL_FUNC_rlayer_skip_early_data(fns);
break;
case OSSL_FUNC_RLAYER_MSG_CALLBACK:
rl->msg_callback = OSSL_FUNC_rlayer_msg_callback(fns);
break;
case OSSL_FUNC_RLAYER_SECURITY:
rl->security = OSSL_FUNC_rlayer_security(fns);
break;
default:
/* Just ignore anything we don't understand */
break;
}
}
*retrl = rl;
return OSSL_RECORD_RETURN_SUCCESS;
err:
tls_int_free(rl);
return OSSL_RECORD_RETURN_FATAL;
}
static int
tls_new_record_layer(OSSL_LIB_CTX *libctx, const char *propq, int vers,
int role, int direction, int level, unsigned int epoch,
unsigned char *key, size_t keylen, unsigned char *iv,
size_t ivlen, unsigned char *mackey, size_t mackeylen,
const EVP_CIPHER *ciph, size_t taglen,
/* TODO(RECLAYER): This probably should not be an int */
int mactype,
const EVP_MD *md, const SSL_COMP *comp, BIO *prev,
BIO *transport, BIO *next, BIO_ADDR *local, BIO_ADDR *peer,
const OSSL_PARAM *settings, const OSSL_PARAM *options,
const OSSL_DISPATCH *fns, void *cbarg,
OSSL_RECORD_LAYER **retrl)
{
int ret;
ret = tls_int_new_record_layer(libctx, propq, vers, role, direction, level,
key, keylen, iv, ivlen, mackey, mackeylen,
ciph, taglen, mactype, md, comp, prev,
transport, next, local, peer, settings,
options, fns, cbarg, retrl);
if (ret != OSSL_RECORD_RETURN_SUCCESS)
return ret;
switch (vers) {
case TLS_ANY_VERSION:
(*retrl)->funcs = &tls_any_funcs;
break;
case TLS1_3_VERSION:
(*retrl)->funcs = &tls_1_3_funcs;
break;
case TLS1_2_VERSION:
case TLS1_1_VERSION:
case TLS1_VERSION:
(*retrl)->funcs = &tls_1_funcs;
break;
case SSL3_VERSION:
(*retrl)->funcs = &ssl_3_0_funcs;
break;
default:
/* Should not happen */
ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
ret = OSSL_RECORD_RETURN_FATAL;
goto err;
}
ret = (*retrl)->funcs->set_crypto_state(*retrl, level, key, keylen, iv,
ivlen, mackey, mackeylen, ciph,
taglen, mactype, md, comp);
err:
if (ret != OSSL_RECORD_RETURN_SUCCESS) {
OPENSSL_free(*retrl);
*retrl = NULL;
}
return ret;
}
static void tls_int_free(OSSL_RECORD_LAYER *rl)
{
/* TODO(RECLAYER): Cleanse sensitive fields */
BIO_free(rl->prev);
BIO_free(rl->bio);
BIO_free(rl->next);
SSL3_BUFFER_release(&rl->rbuf);
EVP_CIPHER_CTX_free(rl->enc_ctx);
EVP_MD_CTX_free(rl->md_ctx);
#ifndef OPENSSL_NO_COMP
COMP_CTX_free(rl->expand);
#endif
OPENSSL_free(rl);
}
int tls_free(OSSL_RECORD_LAYER *rl)
{
SSL3_BUFFER *rbuf;
size_t left, written;
int ret = 1;
rbuf = &rl->rbuf;
left = SSL3_BUFFER_get_left(rbuf);
if (left > 0) {
/*
* This record layer is closing but we still have data left in our
* buffer. It must be destined for the next epoch - so push it there.
*/
ret = BIO_write_ex(rl->next, rbuf->buf + rbuf->offset, left, &written);
}
tls_int_free(rl);
return ret;
}
int tls_reset(OSSL_RECORD_LAYER *rl)
{
memset(rl, 0, sizeof(*rl));
return 1;
}
int tls_unprocessed_read_pending(OSSL_RECORD_LAYER *rl)
{
return SSL3_BUFFER_get_left(&rl->rbuf) != 0;
}
int tls_processed_read_pending(OSSL_RECORD_LAYER *rl)
{
return rl->curr_rec < rl->num_recs;
}
size_t tls_app_data_pending(OSSL_RECORD_LAYER *rl)
{
return 0;
}
int tls_write_pending(OSSL_RECORD_LAYER *rl)
{
return 0;
}
size_t tls_get_max_record_len(OSSL_RECORD_LAYER *rl)
{
return 0;
}
size_t tls_get_max_records(OSSL_RECORD_LAYER *rl)
{
return 0;
}
int tls_write_records(OSSL_RECORD_LAYER *rl, OSSL_RECORD_TEMPLATE **templates,
size_t numtempl, size_t allowance, size_t *sent)
{
return 0;
}
int tls_retry_write_records(OSSL_RECORD_LAYER *rl, size_t allowance,
size_t *sent)
{
return 0;
}
int tls_get_alert_code(OSSL_RECORD_LAYER *rl)
{
return rl->alert;
}
int tls_set1_bio(OSSL_RECORD_LAYER *rl, BIO *bio)
{
if (bio != NULL && !BIO_up_ref(bio))
return 0;
BIO_free(rl->bio);
rl->bio = bio;
return 1;
}
/* Shared by most methods except tlsany_meth */
int tls_default_set_protocol_version(OSSL_RECORD_LAYER *rl, int version)
{
if (rl->version != version)
return 0;
return 1;
}
int tls_set_protocol_version(OSSL_RECORD_LAYER *rl, int version)
{
return rl->funcs->set_protocol_version(rl, version);
}
void tls_set_plain_alerts(OSSL_RECORD_LAYER *rl, int allow)
{
rl->allow_plain_alerts = allow;
}
void tls_set_first_handshake(OSSL_RECORD_LAYER *rl, int first)
{
rl->is_first_handshake = first;
}
void tls_set_max_pipelines(OSSL_RECORD_LAYER *rl, size_t max_pipelines)
{
rl->max_pipelines = max_pipelines;
if (max_pipelines > 1)
rl->read_ahead = 1;
}
SSL3_BUFFER *tls_get0_rbuf(OSSL_RECORD_LAYER *rl)
{
return &rl->rbuf;
}
unsigned char *tls_get0_packet(OSSL_RECORD_LAYER *rl)
{
return rl->packet;
}
void tls_set0_packet(OSSL_RECORD_LAYER *rl, unsigned char *packet,
size_t packetlen)
{
rl->packet = packet;
rl->packet_length = packetlen;
}
size_t tls_get_packet_length(OSSL_RECORD_LAYER *rl)
{
return rl->packet_length;
}
const OSSL_RECORD_METHOD ossl_tls_record_method = {
tls_new_record_layer,
tls_free,
tls_reset,
tls_unprocessed_read_pending,
tls_processed_read_pending,
tls_app_data_pending,
tls_write_pending,
tls_get_max_record_len,
tls_get_max_records,
tls_write_records,
tls_retry_write_records,
tls_read_record,
tls_release_record,
tls_get_alert_code,
tls_set1_bio,
tls_set_protocol_version,
tls_set_plain_alerts,
tls_set_first_handshake,
tls_set_max_pipelines,
NULL,
/*
* TODO(RECLAYER): Remove these. These function pointers are temporary hacks
* during the record layer refactoring. They need to be removed before the
* refactor is complete.
*/
tls_default_read_n,
tls_get0_rbuf,
tls_get0_packet,
tls_set0_packet,
tls_get_packet_length,
tls_reset_packet_length
};