openssl/test/v3ext.c

479 lines
16 KiB
C
Raw Normal View History

/*
* Copyright 2016-2020 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdio.h>
#include <string.h>
#include <openssl/x509.h>
#include <openssl/x509v3.h>
#include <openssl/pem.h>
#include <openssl/err.h>
#include "internal/nelem.h"
#include "testutil.h"
static const char *infile;
static int test_pathlen(void)
{
X509 *x = NULL;
BIO *b = NULL;
long pathlen;
int ret = 0;
if (!TEST_ptr(b = BIO_new_file(infile, "r"))
|| !TEST_ptr(x = PEM_read_bio_X509(b, NULL, NULL, NULL))
|| !TEST_int_eq(pathlen = X509_get_pathlen(x), 6))
goto end;
ret = 1;
end:
BIO_free(b);
X509_free(x);
return ret;
}
#ifndef OPENSSL_NO_RFC3779
static int test_asid(void)
{
ASN1_INTEGER *val1 = NULL, *val2 = NULL;
ASIdentifiers *asid1 = ASIdentifiers_new(), *asid2 = ASIdentifiers_new(),
*asid3 = ASIdentifiers_new(), *asid4 = ASIdentifiers_new();
int testresult = 0;
if (!TEST_ptr(asid1)
|| !TEST_ptr(asid2)
|| !TEST_ptr(asid3))
goto err;
if (!TEST_ptr(val1 = ASN1_INTEGER_new())
|| !TEST_true(ASN1_INTEGER_set_int64(val1, 64496)))
goto err;
if (!TEST_true(X509v3_asid_add_id_or_range(asid1, V3_ASID_ASNUM, val1, NULL)))
goto err;
val1 = NULL;
if (!TEST_ptr(val2 = ASN1_INTEGER_new())
|| !TEST_true(ASN1_INTEGER_set_int64(val2, 64497)))
goto err;
if (!TEST_true(X509v3_asid_add_id_or_range(asid2, V3_ASID_ASNUM, val2, NULL)))
goto err;
val2 = NULL;
if (!TEST_ptr(val1 = ASN1_INTEGER_new())
|| !TEST_true(ASN1_INTEGER_set_int64(val1, 64496))
|| !TEST_ptr(val2 = ASN1_INTEGER_new())
|| !TEST_true(ASN1_INTEGER_set_int64(val2, 64497)))
goto err;
/*
* Just tests V3_ASID_ASNUM for now. Could be extended at some point to also
* test V3_ASID_RDI if we think it is worth it.
*/
if (!TEST_true(X509v3_asid_add_id_or_range(asid3, V3_ASID_ASNUM, val1, val2)))
goto err;
val1 = val2 = NULL;
/* Actual subsets */
if (!TEST_true(X509v3_asid_subset(NULL, NULL))
|| !TEST_true(X509v3_asid_subset(NULL, asid1))
|| !TEST_true(X509v3_asid_subset(asid1, asid1))
|| !TEST_true(X509v3_asid_subset(asid2, asid2))
|| !TEST_true(X509v3_asid_subset(asid1, asid3))
|| !TEST_true(X509v3_asid_subset(asid2, asid3))
|| !TEST_true(X509v3_asid_subset(asid3, asid3))
|| !TEST_true(X509v3_asid_subset(asid4, asid1))
|| !TEST_true(X509v3_asid_subset(asid4, asid2))
|| !TEST_true(X509v3_asid_subset(asid4, asid3)))
goto err;
/* Not subsets */
if (!TEST_false(X509v3_asid_subset(asid1, NULL))
|| !TEST_false(X509v3_asid_subset(asid1, asid2))
|| !TEST_false(X509v3_asid_subset(asid2, asid1))
|| !TEST_false(X509v3_asid_subset(asid3, asid1))
|| !TEST_false(X509v3_asid_subset(asid3, asid2))
|| !TEST_false(X509v3_asid_subset(asid1, asid4))
|| !TEST_false(X509v3_asid_subset(asid2, asid4))
|| !TEST_false(X509v3_asid_subset(asid3, asid4)))
goto err;
testresult = 1;
err:
ASN1_INTEGER_free(val1);
ASN1_INTEGER_free(val2);
ASIdentifiers_free(asid1);
ASIdentifiers_free(asid2);
ASIdentifiers_free(asid3);
ASIdentifiers_free(asid4);
return testresult;
}
static struct ip_ranges_st {
const unsigned int afi;
const char *ip1;
const char *ip2;
int rorp;
} ranges[] = {
{ IANA_AFI_IPV4, "192.168.0.0", "192.168.0.1", IPAddressOrRange_addressPrefix},
{ IANA_AFI_IPV4, "192.168.0.0", "192.168.0.2", IPAddressOrRange_addressRange},
{ IANA_AFI_IPV4, "192.168.0.0", "192.168.0.3", IPAddressOrRange_addressPrefix},
{ IANA_AFI_IPV4, "192.168.0.0", "192.168.0.254", IPAddressOrRange_addressRange},
{ IANA_AFI_IPV4, "192.168.0.0", "192.168.0.255", IPAddressOrRange_addressPrefix},
{ IANA_AFI_IPV4, "192.168.0.1", "192.168.0.255", IPAddressOrRange_addressRange},
{ IANA_AFI_IPV4, "192.168.0.1", "192.168.0.1", IPAddressOrRange_addressPrefix},
{ IANA_AFI_IPV4, "192.168.0.0", "192.168.255.255", IPAddressOrRange_addressPrefix},
{ IANA_AFI_IPV4, "192.168.1.0", "192.168.255.255", IPAddressOrRange_addressRange},
{ IANA_AFI_IPV6, "2001:0db8::0", "2001:0db8::1", IPAddressOrRange_addressPrefix},
{ IANA_AFI_IPV6, "2001:0db8::0", "2001:0db8::2", IPAddressOrRange_addressRange},
{ IANA_AFI_IPV6, "2001:0db8::0", "2001:0db8::3", IPAddressOrRange_addressPrefix},
{ IANA_AFI_IPV6, "2001:0db8::0", "2001:0db8::fffe", IPAddressOrRange_addressRange},
{ IANA_AFI_IPV6, "2001:0db8::0", "2001:0db8::ffff", IPAddressOrRange_addressPrefix},
{ IANA_AFI_IPV6, "2001:0db8::1", "2001:0db8::ffff", IPAddressOrRange_addressRange},
{ IANA_AFI_IPV6, "2001:0db8::1", "2001:0db8::1", IPAddressOrRange_addressPrefix},
{ IANA_AFI_IPV6, "2001:0db8::0:0", "2001:0db8::ffff:ffff", IPAddressOrRange_addressPrefix},
{ IANA_AFI_IPV6, "2001:0db8::1:0", "2001:0db8::ffff:ffff", IPAddressOrRange_addressRange}
};
static int check_addr(IPAddrBlocks *addr, int type)
{
IPAddressFamily *fam;
IPAddressOrRange *aorr;
if (!TEST_int_eq(sk_IPAddressFamily_num(addr), 1))
return 0;
fam = sk_IPAddressFamily_value(addr, 0);
if (!TEST_ptr(fam))
return 0;
if (!TEST_int_eq(fam->ipAddressChoice->type, IPAddressChoice_addressesOrRanges))
return 0;
if (!TEST_int_eq(sk_IPAddressOrRange_num(fam->ipAddressChoice->u.addressesOrRanges), 1))
return 0;
aorr = sk_IPAddressOrRange_value(fam->ipAddressChoice->u.addressesOrRanges, 0);
if (!TEST_ptr(aorr))
return 0;
if (!TEST_int_eq(aorr->type, type))
return 0;
return 1;
}
static int test_addr_ranges(void)
{
IPAddrBlocks *addr = NULL;
ASN1_OCTET_STRING *ip1 = NULL, *ip2 = NULL;
size_t i;
int testresult = 0;
for (i = 0; i < OSSL_NELEM(ranges); i++) {
addr = sk_IPAddressFamily_new_null();
if (!TEST_ptr(addr))
goto end;
/*
* Has the side effect of installing the comparison function onto the
* stack.
*/
if (!TEST_true(X509v3_addr_canonize(addr)))
goto end;
ip1 = a2i_IPADDRESS(ranges[i].ip1);
if (!TEST_ptr(ip1))
goto end;
if (!TEST_true(ip1->length == 4 || ip1->length == 16))
goto end;
ip2 = a2i_IPADDRESS(ranges[i].ip2);
if (!TEST_ptr(ip2))
goto end;
if (!TEST_int_eq(ip2->length, ip1->length))
goto end;
if (!TEST_true(memcmp(ip1->data, ip2->data, ip1->length) <= 0))
goto end;
if (!TEST_true(X509v3_addr_add_range(addr, ranges[i].afi, NULL, ip1->data, ip2->data)))
goto end;
if (!TEST_true(X509v3_addr_is_canonical(addr)))
goto end;
if (!check_addr(addr, ranges[i].rorp))
goto end;
sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
addr = NULL;
ASN1_OCTET_STRING_free(ip1);
ASN1_OCTET_STRING_free(ip2);
ip1 = ip2 = NULL;
}
testresult = 1;
end:
sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
ASN1_OCTET_STRING_free(ip1);
ASN1_OCTET_STRING_free(ip2);
return testresult;
}
static int test_addr_fam_len(void)
{
int testresult = 0;
IPAddrBlocks *addr = NULL;
IPAddressFamily *f1 = NULL;
ASN1_OCTET_STRING *ip1 = NULL, *ip2 = NULL;
unsigned char key[6];
unsigned int keylen;
unsigned afi = IANA_AFI_IPV4;
/* Create the IPAddrBlocks with a good IPAddressFamily */
addr = sk_IPAddressFamily_new_null();
if (!TEST_ptr(addr))
goto end;
ip1 = a2i_IPADDRESS(ranges[0].ip1);
if (!TEST_ptr(ip1))
goto end;
ip2 = a2i_IPADDRESS(ranges[0].ip2);
if (!TEST_ptr(ip2))
goto end;
if (!TEST_true(X509v3_addr_add_range(addr, ranges[0].afi, NULL, ip1->data, ip2->data)))
goto end;
if (!TEST_true(X509v3_addr_is_canonical(addr)))
goto end;
/* Create our malformed IPAddressFamily */
key[0] = (afi >> 8) & 0xFF;
key[1] = afi & 0xFF;
key[2] = 0xD;
key[3] = 0xE;
key[4] = 0xA;
key[5] = 0xD;
keylen = 6;
if ((f1 = IPAddressFamily_new()) == NULL)
goto end;
if (f1->ipAddressChoice == NULL &&
(f1->ipAddressChoice = IPAddressChoice_new()) == NULL)
goto end;
if (f1->addressFamily == NULL &&
(f1->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
goto end;
if (!ASN1_OCTET_STRING_set(f1->addressFamily, key, keylen))
goto end;
if (!sk_IPAddressFamily_push(addr, f1))
goto end;
/* Shouldn't be able to canonize this as the len is > 3*/
if (!TEST_false(X509v3_addr_canonize(addr)))
goto end;
/* Create a well formed IPAddressFamily */
f1 = sk_IPAddressFamily_pop(addr);
IPAddressFamily_free(f1);
key[0] = (afi >> 8) & 0xFF;
key[1] = afi & 0xFF;
key[2] = 0x1;
keylen = 3;
if ((f1 = IPAddressFamily_new()) == NULL)
goto end;
if (f1->ipAddressChoice == NULL &&
(f1->ipAddressChoice = IPAddressChoice_new()) == NULL)
goto end;
if (f1->addressFamily == NULL &&
(f1->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
goto end;
if (!ASN1_OCTET_STRING_set(f1->addressFamily, key, keylen))
goto end;
/* Mark this as inheritance so we skip some of the is_canonize checks */
f1->ipAddressChoice->type = IPAddressChoice_inherit;
if (!sk_IPAddressFamily_push(addr, f1))
goto end;
/* Should be able to canonize now */
if (!TEST_true(X509v3_addr_canonize(addr)))
goto end;
testresult = 1;
end:
sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
ASN1_OCTET_STRING_free(ip1);
ASN1_OCTET_STRING_free(ip2);
return testresult;
}
static struct extvalues_st {
const char *value;
int pass;
} extvalues[] = {
/* No prefix is ok */
{ "sbgp-ipAddrBlock = IPv4:192.0.0.1\n", 1 },
{ "sbgp-ipAddrBlock = IPv4:192.0.0.0/0\n", 1 },
{ "sbgp-ipAddrBlock = IPv4:192.0.0.0/1\n", 1 },
{ "sbgp-ipAddrBlock = IPv4:192.0.0.0/32\n", 1 },
/* Prefix is too long */
{ "sbgp-ipAddrBlock = IPv4:192.0.0.0/33\n", 0 },
/* Unreasonably large prefix */
{ "sbgp-ipAddrBlock = IPv4:192.0.0.0/12341234\n", 0 },
/* Invalid IP addresses */
{ "sbgp-ipAddrBlock = IPv4:192.0.0\n", 0 },
{ "sbgp-ipAddrBlock = IPv4:256.0.0.0\n", 0 },
{ "sbgp-ipAddrBlock = IPv4:-1.0.0.0\n", 0 },
{ "sbgp-ipAddrBlock = IPv4:192.0.0.0.0\n", 0 },
{ "sbgp-ipAddrBlock = IPv3:192.0.0.0\n", 0 },
/* IPv6 */
/* No prefix is ok */
{ "sbgp-ipAddrBlock = IPv6:2001:db8::\n", 1 },
{ "sbgp-ipAddrBlock = IPv6:2001::db8\n", 1 },
{ "sbgp-ipAddrBlock = IPv6:2001:0db8:0000:0000:0000:0000:0000:0000\n", 1 },
{ "sbgp-ipAddrBlock = IPv6:2001:db8::/0\n", 1 },
{ "sbgp-ipAddrBlock = IPv6:2001:db8::/1\n", 1 },
{ "sbgp-ipAddrBlock = IPv6:2001:db8::/32\n", 1 },
{ "sbgp-ipAddrBlock = IPv6:2001:0db8:0000:0000:0000:0000:0000:0000/32\n", 1 },
{ "sbgp-ipAddrBlock = IPv6:2001:db8::/128\n", 1 },
/* Prefix is too long */
{ "sbgp-ipAddrBlock = IPv6:2001:db8::/129\n", 0 },
/* Unreasonably large prefix */
{ "sbgp-ipAddrBlock = IPv6:2001:db8::/12341234\n", 0 },
/* Invalid IP addresses */
/* Not enough blocks of numbers */
{ "sbgp-ipAddrBlock = IPv6:2001:0db8:0000:0000:0000:0000:0000\n", 0 },
/* Too many blocks of numbers */
{ "sbgp-ipAddrBlock = IPv6:2001:0db8:0000:0000:0000:0000:0000:0000:0000\n", 0 },
/* First value too large */
{ "sbgp-ipAddrBlock = IPv6:1ffff:0db8:0000:0000:0000:0000:0000:0000\n", 0 },
/* First value with invalid characters */
{ "sbgp-ipAddrBlock = IPv6:fffg:0db8:0000:0000:0000:0000:0000:0000\n", 0 },
/* First value is negative */
{ "sbgp-ipAddrBlock = IPv6:-1:0db8:0000:0000:0000:0000:0000:0000\n", 0 }
};
static int test_ext_syntax(void)
{
size_t i;
int testresult = 1;
for (i = 0; i < OSSL_NELEM(extvalues); i++) {
X509V3_CTX ctx;
BIO *extbio = BIO_new_mem_buf(extvalues[i].value,
strlen(extvalues[i].value));
CONF *conf;
long eline;
if (!TEST_ptr(extbio))
return 0 ;
conf = NCONF_new_ex(NULL, NULL);
if (!TEST_ptr(conf)) {
BIO_free(extbio);
return 0;
}
if (!TEST_long_gt(NCONF_load_bio(conf, extbio, &eline), 0)) {
testresult = 0;
} else {
X509V3_set_ctx_test(&ctx);
X509V3_set_nconf(&ctx, conf);
if (extvalues[i].pass) {
if (!TEST_true(X509V3_EXT_add_nconf(conf, &ctx, "default",
NULL))) {
TEST_info("Value: %s", extvalues[i].value);
testresult = 0;
}
} else {
ERR_set_mark();
if (!TEST_false(X509V3_EXT_add_nconf(conf, &ctx, "default",
NULL))) {
testresult = 0;
TEST_info("Value: %s", extvalues[i].value);
ERR_clear_last_mark();
} else {
ERR_pop_to_mark();
}
}
}
BIO_free(extbio);
NCONF_free(conf);
}
return testresult;
}
static int test_addr_subset(void)
{
int i;
int ret = 0;
IPAddrBlocks *addrEmpty = NULL;
IPAddrBlocks *addr[3] = { NULL, NULL };
ASN1_OCTET_STRING *ip1[3] = { NULL, NULL };
ASN1_OCTET_STRING *ip2[3] = { NULL, NULL };
int sz = OSSL_NELEM(addr);
for (i = 0; i < sz; ++i) {
/* Create the IPAddrBlocks with a good IPAddressFamily */
if (!TEST_ptr(addr[i] = sk_IPAddressFamily_new_null())
|| !TEST_ptr(ip1[i] = a2i_IPADDRESS(ranges[i].ip1))
|| !TEST_ptr(ip2[i] = a2i_IPADDRESS(ranges[i].ip2))
|| !TEST_true(X509v3_addr_add_range(addr[i], ranges[i].afi, NULL,
ip1[i]->data, ip2[i]->data)))
goto end;
}
ret = TEST_ptr(addrEmpty = sk_IPAddressFamily_new_null())
&& TEST_true(X509v3_addr_subset(NULL, NULL))
&& TEST_true(X509v3_addr_subset(NULL, addr[0]))
&& TEST_true(X509v3_addr_subset(addrEmpty, addr[0]))
&& TEST_true(X509v3_addr_subset(addr[0], addr[0]))
&& TEST_true(X509v3_addr_subset(addr[0], addr[1]))
&& TEST_true(X509v3_addr_subset(addr[0], addr[2]))
&& TEST_true(X509v3_addr_subset(addr[1], addr[2]))
&& TEST_false(X509v3_addr_subset(addr[0], NULL))
&& TEST_false(X509v3_addr_subset(addr[1], addr[0]))
&& TEST_false(X509v3_addr_subset(addr[2], addr[1]))
&& TEST_false(X509v3_addr_subset(addr[0], addrEmpty));
end:
sk_IPAddressFamily_pop_free(addrEmpty, IPAddressFamily_free);
for (i = 0; i < sz; ++i) {
sk_IPAddressFamily_pop_free(addr[i], IPAddressFamily_free);
ASN1_OCTET_STRING_free(ip1[i]);
ASN1_OCTET_STRING_free(ip2[i]);
}
return ret;
}
#endif /* OPENSSL_NO_RFC3779 */
OPT_TEST_DECLARE_USAGE("cert.pem\n")
int setup_tests(void)
{
if (!test_skip_common_options()) {
TEST_error("Error parsing test options\n");
return 0;
}
if (!TEST_ptr(infile = test_get_argument(0)))
return 0;
ADD_TEST(test_pathlen);
#ifndef OPENSSL_NO_RFC3779
ADD_TEST(test_asid);
ADD_TEST(test_addr_ranges);
ADD_TEST(test_ext_syntax);
ADD_TEST(test_addr_fam_len);
ADD_TEST(test_addr_subset);
#endif /* OPENSSL_NO_RFC3779 */
return 1;
}