openssl/crypto/rsa/rsa_sp800_56b_check.c

392 lines
11 KiB
C
Raw Normal View History

/*
* Copyright 2018-2019 The OpenSSL Project Authors. All Rights Reserved.
* Copyright (c) 2018-2019, Oracle and/or its affiliates. All rights reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <openssl/err.h>
#include <openssl/bn.h>
#include "crypto/bn.h"
#include "rsa_local.h"
/*
* Part of the RSA keypair test.
* Check the Chinese Remainder Theorem components are valid.
*
* See SP800-5bBr1
* 6.4.1.2.3: rsakpv1-crt Step 7
* 6.4.1.3.3: rsakpv2-crt Step 7
*/
int rsa_check_crt_components(const RSA *rsa, BN_CTX *ctx)
{
int ret = 0;
BIGNUM *r = NULL, *p1 = NULL, *q1 = NULL;
/* check if only some of the crt components are set */
if (rsa->dmp1 == NULL || rsa->dmq1 == NULL || rsa->iqmp == NULL) {
if (rsa->dmp1 != NULL || rsa->dmq1 != NULL || rsa->iqmp != NULL)
return 0;
return 1; /* return ok if all components are NULL */
}
BN_CTX_start(ctx);
r = BN_CTX_get(ctx);
p1 = BN_CTX_get(ctx);
q1 = BN_CTX_get(ctx);
ret = (q1 != NULL)
/* p1 = p -1 */
&& (BN_copy(p1, rsa->p) != NULL)
&& BN_sub_word(p1, 1)
/* q1 = q - 1 */
&& (BN_copy(q1, rsa->q) != NULL)
&& BN_sub_word(q1, 1)
/* (a) 1 < dP < (p 1). */
&& (BN_cmp(rsa->dmp1, BN_value_one()) > 0)
&& (BN_cmp(rsa->dmp1, p1) < 0)
/* (b) 1 < dQ < (q - 1). */
&& (BN_cmp(rsa->dmq1, BN_value_one()) > 0)
&& (BN_cmp(rsa->dmq1, q1) < 0)
/* (c) 1 < qInv < p */
&& (BN_cmp(rsa->iqmp, BN_value_one()) > 0)
&& (BN_cmp(rsa->iqmp, rsa->p) < 0)
/* (d) 1 = (dP . e) mod (p - 1)*/
&& BN_mod_mul(r, rsa->dmp1, rsa->e, p1, ctx)
&& BN_is_one(r)
/* (e) 1 = (dQ . e) mod (q - 1) */
&& BN_mod_mul(r, rsa->dmq1, rsa->e, q1, ctx)
&& BN_is_one(r)
/* (f) 1 = (qInv . q) mod p */
&& BN_mod_mul(r, rsa->iqmp, rsa->q, rsa->p, ctx)
&& BN_is_one(r);
BN_clear(p1);
BN_clear(q1);
BN_CTX_end(ctx);
return ret;
}
/*
* Part of the RSA keypair test.
* Check that (2)(2^(nbits/2 - 1) <= p <= 2^(nbits/2) - 1
*
* See SP800-5bBr1 6.4.1.2.1 Part 5 (c) & (g) - used for both p and q.
*
* (2)(2^(nbits/2 - 1) = (2/2)(2^(nbits/2))
*/
int rsa_check_prime_factor_range(const BIGNUM *p, int nbits, BN_CTX *ctx)
{
int ret = 0;
BIGNUM *low;
int shift;
nbits >>= 1;
shift = nbits - BN_num_bits(&bn_inv_sqrt_2);
/* Upper bound check */
if (BN_num_bits(p) != nbits)
return 0;
BN_CTX_start(ctx);
low = BN_CTX_get(ctx);
if (low == NULL)
goto err;
/* set low = (√2)(2^(nbits/2 - 1) */
if (!BN_copy(low, &bn_inv_sqrt_2))
goto err;
if (shift >= 0) {
/*
* We don't have all the bits. bn_inv_sqrt_2 contains a rounded up
* value, so there is a very low probability that we'll reject a valid
* value.
*/
if (!BN_lshift(low, low, shift))
goto err;
} else if (!BN_rshift(low, low, -shift)) {
goto err;
}
if (BN_cmp(p, low) <= 0)
goto err;
ret = 1;
err:
BN_CTX_end(ctx);
return ret;
}
/*
* Part of the RSA keypair test.
* Check the prime factor (for either p or q)
* i.e: p is prime AND GCD(p - 1, e) = 1
*
* See SP800-56Br1 6.4.1.2.3 Step 5 (a to d) & (e to h).
*/
int rsa_check_prime_factor(BIGNUM *p, BIGNUM *e, int nbits, BN_CTX *ctx)
{
int ret = 0;
BIGNUM *p1 = NULL, *gcd = NULL;
/* (Steps 5 a-b) prime test */
if (BN_check_prime(p, ctx, NULL) != 1
/* (Step 5c) (√2)(2^(nbits/2 - 1) <= p <= 2^(nbits/2 - 1) */
|| rsa_check_prime_factor_range(p, nbits, ctx) != 1)
return 0;
BN_CTX_start(ctx);
p1 = BN_CTX_get(ctx);
gcd = BN_CTX_get(ctx);
ret = (gcd != NULL)
/* (Step 5d) GCD(p-1, e) = 1 */
&& (BN_copy(p1, p) != NULL)
&& BN_sub_word(p1, 1)
&& BN_gcd(gcd, p1, e, ctx)
&& BN_is_one(gcd);
BN_clear(p1);
BN_CTX_end(ctx);
return ret;
}
/*
* See SP800-56Br1 6.4.1.2.3 Part 6(a-b) Check the private exponent d
* satisfies:
* (Step 6a) 2^(nBit/2) < d < LCM(p1, q1).
* (Step 6b) 1 = (d*e) mod LCM(p1, q1)
*/
int rsa_check_private_exponent(const RSA *rsa, int nbits, BN_CTX *ctx)
{
int ret;
BIGNUM *r, *p1, *q1, *lcm, *p1q1, *gcd;
/* (Step 6a) 2^(nbits/2) < d */
if (BN_num_bits(rsa->d) <= (nbits >> 1))
return 0;
BN_CTX_start(ctx);
r = BN_CTX_get(ctx);
p1 = BN_CTX_get(ctx);
q1 = BN_CTX_get(ctx);
lcm = BN_CTX_get(ctx);
p1q1 = BN_CTX_get(ctx);
gcd = BN_CTX_get(ctx);
ret = (gcd != NULL
/* LCM(p - 1, q - 1) */
&& (rsa_get_lcm(ctx, rsa->p, rsa->q, lcm, gcd, p1, q1, p1q1) == 1)
/* (Step 6a) d < LCM(p - 1, q - 1) */
&& (BN_cmp(rsa->d, lcm) < 0)
/* (Step 6b) 1 = (e . d) mod LCM(p - 1, q - 1) */
&& BN_mod_mul(r, rsa->e, rsa->d, lcm, ctx)
&& BN_is_one(r));
BN_clear(p1);
BN_clear(q1);
BN_clear(lcm);
BN_clear(gcd);
BN_CTX_end(ctx);
return ret;
}
/* Check exponent is odd, and has a bitlen ranging from [17..256] */
int rsa_check_public_exponent(const BIGNUM *e)
{
int bitlen = BN_num_bits(e);
return (BN_is_odd(e) && bitlen > 16 && bitlen < 257);
}
/*
* SP800-56Br1 6.4.1.2.1 (Step 5i): |p - q| > 2^(nbits/2 - 100)
* i.e- numbits(p-q-1) > (nbits/2 -100)
*/
int rsa_check_pminusq_diff(BIGNUM *diff, const BIGNUM *p, const BIGNUM *q,
int nbits)
{
int bitlen = (nbits >> 1) - 100;
if (!BN_sub(diff, p, q))
return -1;
BN_set_negative(diff, 0);
if (BN_is_zero(diff))
return 0;
if (!BN_sub_word(diff, 1))
return -1;
return (BN_num_bits(diff) > bitlen);
}
/* return LCM(p-1, q-1) */
int rsa_get_lcm(BN_CTX *ctx, const BIGNUM *p, const BIGNUM *q,
BIGNUM *lcm, BIGNUM *gcd, BIGNUM *p1, BIGNUM *q1,
BIGNUM *p1q1)
{
return BN_sub(p1, p, BN_value_one()) /* p-1 */
&& BN_sub(q1, q, BN_value_one()) /* q-1 */
&& BN_mul(p1q1, p1, q1, ctx) /* (p-1)(q-1) */
&& BN_gcd(gcd, p1, q1, ctx)
&& BN_div(lcm, NULL, p1q1, gcd, ctx); /* LCM((p-1, q-1)) */
}
/*
* SP800-56Br1 6.4.2.2 Partial Public Key Validation for RSA refers to
* SP800-89 5.3.3 (Explicit) Partial Public Key Validation for RSA
* caveat is that the modulus must be as specified in SP800-56Br1
*/
int rsa_sp800_56b_check_public(const RSA *rsa)
{
int ret = 0, status;
#ifdef FIPS_MODE
int nbits;
#endif
BN_CTX *ctx = NULL;
BIGNUM *gcd = NULL;
if (rsa->n == NULL || rsa->e == NULL)
return 0;
#ifdef FIPS_MODE
/*
* (Step a): modulus must be 2048 or 3072 (caveat from SP800-56Br1)
* NOTE: changed to allow keys >= 2048
*/
nbits = BN_num_bits(rsa->n);
if (!rsa_sp800_56b_validate_strength(nbits, -1)) {
RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_INVALID_KEY_LENGTH);
return 0;
}
#endif
if (!BN_is_odd(rsa->n)) {
RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_INVALID_MODULUS);
return 0;
}
/* (Steps b-c): 2^16 < e < 2^256, n and e must be odd */
if (!rsa_check_public_exponent(rsa->e)) {
RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC,
RSA_R_PUB_EXPONENT_OUT_OF_RANGE);
return 0;
}
ctx = BN_CTX_new_ex(rsa->libctx);
gcd = BN_new();
if (ctx == NULL || gcd == NULL)
goto err;
/* (Steps d-f):
* The modulus is composite, but not a power of a prime.
* The modulus has no factors smaller than 752.
*/
if (!BN_gcd(gcd, rsa->n, bn_get0_small_factors(), ctx) || !BN_is_one(gcd)) {
RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_INVALID_MODULUS);
goto err;
}
ret = bn_miller_rabin_is_prime(rsa->n, 0, ctx, NULL, 1, &status);
if (ret != 1 || status != BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME) {
RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_INVALID_MODULUS);
ret = 0;
goto err;
}
ret = 1;
err:
BN_free(gcd);
BN_CTX_free(ctx);
return ret;
}
/*
* Perform validation of the RSA private key to check that 0 < D < N.
*/
int rsa_sp800_56b_check_private(const RSA *rsa)
{
if (rsa->d == NULL || rsa->n == NULL)
return 0;
return BN_cmp(rsa->d, BN_value_one()) >= 0 && BN_cmp(rsa->d, rsa->n) < 0;
}
/*
* RSA key pair validation.
*
* SP800-56Br1.
* 6.4.1.2 "RSAKPV1 Family: RSA Key - Pair Validation with a Fixed Exponent"
* 6.4.1.3 "RSAKPV2 Family: RSA Key - Pair Validation with a Random Exponent"
*
* It uses:
* 6.4.1.2.3 "rsakpv1 - crt"
* 6.4.1.3.3 "rsakpv2 - crt"
*/
int rsa_sp800_56b_check_keypair(const RSA *rsa, const BIGNUM *efixed,
int strength, int nbits)
{
int ret = 0;
BN_CTX *ctx = NULL;
BIGNUM *r = NULL;
if (rsa->p == NULL
|| rsa->q == NULL
|| rsa->e == NULL
|| rsa->d == NULL
|| rsa->n == NULL) {
RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_REQUEST);
return 0;
}
/* (Step 1): Check Ranges */
if (!rsa_sp800_56b_validate_strength(nbits, strength))
return 0;
/* If the exponent is known */
if (efixed != NULL) {
/* (2): Check fixed exponent matches public exponent. */
if (BN_cmp(efixed, rsa->e) != 0) {
RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_REQUEST);
return 0;
}
}
/* (Step 1.c): e is odd integer 65537 <= e < 2^256 */
if (!rsa_check_public_exponent(rsa->e)) {
/* exponent out of range */
RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR,
RSA_R_PUB_EXPONENT_OUT_OF_RANGE);
return 0;
}
/* (Step 3.b): check the modulus */
if (nbits != BN_num_bits(rsa->n)) {
RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_KEYPAIR);
return 0;
}
ctx = BN_CTX_new_ex(rsa->libctx);
if (ctx == NULL)
return 0;
BN_CTX_start(ctx);
r = BN_CTX_get(ctx);
if (r == NULL || !BN_mul(r, rsa->p, rsa->q, ctx))
goto err;
/* (Step 4.c): Check n = pq */
if (BN_cmp(rsa->n, r) != 0) {
RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_REQUEST);
goto err;
}
/* (Step 5): check prime factors p & q */
ret = rsa_check_prime_factor(rsa->p, rsa->e, nbits, ctx)
&& rsa_check_prime_factor(rsa->q, rsa->e, nbits, ctx)
&& (rsa_check_pminusq_diff(r, rsa->p, rsa->q, nbits) > 0)
/* (Step 6): Check the private exponent d */
&& rsa_check_private_exponent(rsa, nbits, ctx)
/* 6.4.1.2.3 (Step 7): Check the CRT components */
&& rsa_check_crt_components(rsa, ctx);
if (ret != 1)
RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_KEYPAIR);
err:
BN_clear(r);
BN_CTX_end(ctx);
BN_CTX_free(ctx);
return ret;
}