openssl/crypto/bn/asm/x86_64-mont.pl

1522 lines
31 KiB
Perl
Raw Normal View History

#! /usr/bin/env perl
# Copyright 2005-2016 The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the OpenSSL license (the "License"). You may not use
# this file except in compliance with the License. You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
# October 2005.
#
# Montgomery multiplication routine for x86_64. While it gives modest
# 9% improvement of rsa4096 sign on Opteron, rsa512 sign runs more
# than twice, >2x, as fast. Most common rsa1024 sign is improved by
# respectful 50%. It remains to be seen if loop unrolling and
# dedicated squaring routine can provide further improvement...
# July 2011.
#
# Add dedicated squaring procedure. Performance improvement varies
# from platform to platform, but in average it's ~5%/15%/25%/33%
# for 512-/1024-/2048-/4096-bit RSA *sign* benchmarks respectively.
# August 2011.
#
# Unroll and modulo-schedule inner loops in such manner that they
# are "fallen through" for input lengths of 8, which is critical for
# 1024-bit RSA *sign*. Average performance improvement in comparison
# to *initial* version of this module from 2005 is ~0%/30%/40%/45%
# for 512-/1024-/2048-/4096-bit RSA *sign* benchmarks respectively.
# June 2013.
#
# Optimize reduction in squaring procedure and improve 1024+-bit RSA
# sign performance by 10-16% on Intel Sandy Bridge and later
# (virtually same on non-Intel processors).
# August 2013.
#
# Add MULX/ADOX/ADCX code path.
$flavour = shift;
$output = shift;
if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
2006-12-29 19:05:20 +08:00
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
die "can't locate x86_64-xlate.pl";
open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\"";
*STDOUT=*OUT;
if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
=~ /GNU assembler version ([2-9]\.[0-9]+)/) {
$addx = ($1>=2.23);
}
if (!$addx && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) &&
`nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/) {
$addx = ($1>=2.10);
}
if (!$addx && $win64 && ($flavour =~ /masm/ || $ENV{ASM} =~ /ml64/) &&
`ml64 2>&1` =~ /Version ([0-9]+)\./) {
$addx = ($1>=12);
}
if (!$addx && `$ENV{CC} -v 2>&1` =~ /((?:^clang|LLVM) version|.*based on LLVM) ([3-9])\.([0-9]+)/) {
my $ver = $2 + $3/100.0; # 3.1->3.01, 3.10->3.10
$addx = ($ver>=3.03);
}
# int bn_mul_mont(
$rp="%rdi"; # BN_ULONG *rp,
$ap="%rsi"; # const BN_ULONG *ap,
$bp="%rdx"; # const BN_ULONG *bp,
$np="%rcx"; # const BN_ULONG *np,
$n0="%r8"; # const BN_ULONG *n0,
$num="%r9"; # int num);
$lo0="%r10";
$hi0="%r11";
$hi1="%r13";
$i="%r14";
$j="%r15";
$m0="%rbx";
$m1="%rbp";
$code=<<___;
.text
.extern OPENSSL_ia32cap_P
.globl bn_mul_mont
.type bn_mul_mont,\@function,6
.align 16
bn_mul_mont:
mov ${num}d,${num}d
mov %rsp,%rax
test \$3,${num}d
jnz .Lmul_enter
cmp \$8,${num}d
jb .Lmul_enter
___
$code.=<<___ if ($addx);
mov OPENSSL_ia32cap_P+8(%rip),%r11d
___
$code.=<<___;
cmp $ap,$bp
jne .Lmul4x_enter
test \$7,${num}d
jz .Lsqr8x_enter
jmp .Lmul4x_enter
.align 16
.Lmul_enter:
push %rbx
push %rbp
push %r12
push %r13
push %r14
push %r15
neg $num
mov %rsp,%r11
lea -16(%rsp,$num,8),%r10 # future alloca(8*(num+2))
neg $num # restore $num
and \$-1024,%r10 # minimize TLB usage
# An OS-agnostic version of __chkstk.
#
# Some OSes (Windows) insist on stack being "wired" to
# physical memory in strictly sequential manner, i.e. if stack
# allocation spans two pages, then reference to farmost one can
# be punishable by SEGV. But page walking can do good even on
# other OSes, because it guarantees that villain thread hits
# the guard page before it can make damage to innocent one...
sub %r10,%r11
and \$-4096,%r11
lea (%r10,%r11),%rsp
mov (%rsp),%r11
cmp %r10,%rsp
ja .Lmul_page_walk
jmp .Lmul_page_walk_done
.align 16
.Lmul_page_walk:
lea -4096(%rsp),%rsp
mov (%rsp),%r11
cmp %r10,%rsp
ja .Lmul_page_walk
.Lmul_page_walk_done:
mov %rax,8(%rsp,$num,8) # tp[num+1]=%rsp
.Lmul_body:
mov $bp,%r12 # reassign $bp
___
$bp="%r12";
$code.=<<___;
mov ($n0),$n0 # pull n0[0] value
mov ($bp),$m0 # m0=bp[0]
mov ($ap),%rax
xor $i,$i # i=0
xor $j,$j # j=0
mov $n0,$m1
mulq $m0 # ap[0]*bp[0]
mov %rax,$lo0
mov ($np),%rax
imulq $lo0,$m1 # "tp[0]"*n0
mov %rdx,$hi0
mulq $m1 # np[0]*m1
add %rax,$lo0 # discarded
mov 8($ap),%rax
adc \$0,%rdx
mov %rdx,$hi1
lea 1($j),$j # j++
jmp .L1st_enter
.align 16
.L1st:
add %rax,$hi1
mov ($ap,$j,8),%rax
adc \$0,%rdx
add $hi0,$hi1 # np[j]*m1+ap[j]*bp[0]
mov $lo0,$hi0
adc \$0,%rdx
mov $hi1,-16(%rsp,$j,8) # tp[j-1]
mov %rdx,$hi1
.L1st_enter:
mulq $m0 # ap[j]*bp[0]
add %rax,$hi0
mov ($np,$j,8),%rax
adc \$0,%rdx
lea 1($j),$j # j++
mov %rdx,$lo0
mulq $m1 # np[j]*m1
cmp $num,$j
jne .L1st
add %rax,$hi1
mov ($ap),%rax # ap[0]
adc \$0,%rdx
add $hi0,$hi1 # np[j]*m1+ap[j]*bp[0]
adc \$0,%rdx
mov $hi1,-16(%rsp,$j,8) # tp[j-1]
mov %rdx,$hi1
mov $lo0,$hi0
xor %rdx,%rdx
add $hi0,$hi1
adc \$0,%rdx
mov $hi1,-8(%rsp,$num,8)
mov %rdx,(%rsp,$num,8) # store upmost overflow bit
lea 1($i),$i # i++
jmp .Louter
.align 16
.Louter:
mov ($bp,$i,8),$m0 # m0=bp[i]
xor $j,$j # j=0
mov $n0,$m1
mov (%rsp),$lo0
mulq $m0 # ap[0]*bp[i]
add %rax,$lo0 # ap[0]*bp[i]+tp[0]
mov ($np),%rax
adc \$0,%rdx
imulq $lo0,$m1 # tp[0]*n0
mov %rdx,$hi0
mulq $m1 # np[0]*m1
add %rax,$lo0 # discarded
mov 8($ap),%rax
adc \$0,%rdx
mov 8(%rsp),$lo0 # tp[1]
mov %rdx,$hi1
lea 1($j),$j # j++
jmp .Linner_enter
.align 16
.Linner:
add %rax,$hi1
mov ($ap,$j,8),%rax
adc \$0,%rdx
add $lo0,$hi1 # np[j]*m1+ap[j]*bp[i]+tp[j]
mov (%rsp,$j,8),$lo0
adc \$0,%rdx
mov $hi1,-16(%rsp,$j,8) # tp[j-1]
mov %rdx,$hi1
.Linner_enter:
mulq $m0 # ap[j]*bp[i]
add %rax,$hi0
mov ($np,$j,8),%rax
adc \$0,%rdx
add $hi0,$lo0 # ap[j]*bp[i]+tp[j]
mov %rdx,$hi0
adc \$0,$hi0
lea 1($j),$j # j++
mulq $m1 # np[j]*m1
cmp $num,$j
jne .Linner
add %rax,$hi1
mov ($ap),%rax # ap[0]
adc \$0,%rdx
add $lo0,$hi1 # np[j]*m1+ap[j]*bp[i]+tp[j]
mov (%rsp,$j,8),$lo0
adc \$0,%rdx
mov $hi1,-16(%rsp,$j,8) # tp[j-1]
mov %rdx,$hi1
xor %rdx,%rdx
add $hi0,$hi1
adc \$0,%rdx
add $lo0,$hi1 # pull upmost overflow bit
adc \$0,%rdx
mov $hi1,-8(%rsp,$num,8)
mov %rdx,(%rsp,$num,8) # store upmost overflow bit
lea 1($i),$i # i++
cmp $num,$i
jb .Louter
xor $i,$i # i=0 and clear CF!
mov (%rsp),%rax # tp[0]
lea (%rsp),$ap # borrow ap for tp
mov $num,$j # j=num
jmp .Lsub
.align 16
.Lsub: sbb ($np,$i,8),%rax
mov %rax,($rp,$i,8) # rp[i]=tp[i]-np[i]
mov 8($ap,$i,8),%rax # tp[i+1]
lea 1($i),$i # i++
dec $j # doesnn't affect CF!
jnz .Lsub
sbb \$0,%rax # handle upmost overflow bit
xor $i,$i
and %rax,$ap
not %rax
mov $rp,$np
and %rax,$np
mov $num,$j # j=num
or $np,$ap # ap=borrow?tp:rp
.align 16
.Lcopy: # copy or in-place refresh
mov ($ap,$i,8),%rax
mov $i,(%rsp,$i,8) # zap temporary vector
mov %rax,($rp,$i,8) # rp[i]=tp[i]
lea 1($i),$i
sub \$1,$j
jnz .Lcopy
mov 8(%rsp,$num,8),%rsi # restore %rsp
mov \$1,%rax
mov -48(%rsi),%r15
mov -40(%rsi),%r14
mov -32(%rsi),%r13
mov -24(%rsi),%r12
mov -16(%rsi),%rbp
mov -8(%rsi),%rbx
lea (%rsi),%rsp
.Lmul_epilogue:
ret
.size bn_mul_mont,.-bn_mul_mont
___
{{{
my @A=("%r10","%r11");
my @N=("%r13","%rdi");
$code.=<<___;
.type bn_mul4x_mont,\@function,6
.align 16
bn_mul4x_mont:
mov ${num}d,${num}d
mov %rsp,%rax
.Lmul4x_enter:
___
$code.=<<___ if ($addx);
and \$0x80100,%r11d
cmp \$0x80100,%r11d
je .Lmulx4x_enter
___
$code.=<<___;
push %rbx
push %rbp
push %r12
push %r13
push %r14
push %r15
neg $num
mov %rsp,%r11
lea -32(%rsp,$num,8),%r10 # future alloca(8*(num+4))
neg $num # restore
and \$-1024,%r10 # minimize TLB usage
sub %r10,%r11
and \$-4096,%r11
lea (%r10,%r11),%rsp
mov (%rsp),%r11
cmp %r10,%rsp
ja .Lmul4x_page_walk
jmp .Lmul4x_page_walk_done
.Lmul4x_page_walk:
lea -4096(%rsp),%rsp
mov (%rsp),%r11
cmp %r10,%rsp
ja .Lmul4x_page_walk
.Lmul4x_page_walk_done:
mov %rax,8(%rsp,$num,8) # tp[num+1]=%rsp
.Lmul4x_body:
mov $rp,16(%rsp,$num,8) # tp[num+2]=$rp
mov %rdx,%r12 # reassign $bp
___
$bp="%r12";
$code.=<<___;
mov ($n0),$n0 # pull n0[0] value
mov ($bp),$m0 # m0=bp[0]
mov ($ap),%rax
xor $i,$i # i=0
xor $j,$j # j=0
mov $n0,$m1
mulq $m0 # ap[0]*bp[0]
mov %rax,$A[0]
mov ($np),%rax
imulq $A[0],$m1 # "tp[0]"*n0
mov %rdx,$A[1]
mulq $m1 # np[0]*m1
add %rax,$A[0] # discarded
mov 8($ap),%rax
adc \$0,%rdx
mov %rdx,$N[1]
mulq $m0
add %rax,$A[1]
mov 8($np),%rax
adc \$0,%rdx
mov %rdx,$A[0]
mulq $m1
add %rax,$N[1]
mov 16($ap),%rax
adc \$0,%rdx
add $A[1],$N[1]
lea 4($j),$j # j++
adc \$0,%rdx
mov $N[1],(%rsp)
mov %rdx,$N[0]
jmp .L1st4x
.align 16
.L1st4x:
mulq $m0 # ap[j]*bp[0]
add %rax,$A[0]
mov -16($np,$j,8),%rax
adc \$0,%rdx
mov %rdx,$A[1]
mulq $m1 # np[j]*m1
add %rax,$N[0]
mov -8($ap,$j,8),%rax
adc \$0,%rdx
add $A[0],$N[0] # np[j]*m1+ap[j]*bp[0]
adc \$0,%rdx
mov $N[0],-24(%rsp,$j,8) # tp[j-1]
mov %rdx,$N[1]
mulq $m0 # ap[j]*bp[0]
add %rax,$A[1]
mov -8($np,$j,8),%rax
adc \$0,%rdx
mov %rdx,$A[0]
mulq $m1 # np[j]*m1
add %rax,$N[1]
mov ($ap,$j,8),%rax
adc \$0,%rdx
add $A[1],$N[1] # np[j]*m1+ap[j]*bp[0]
adc \$0,%rdx
mov $N[1],-16(%rsp,$j,8) # tp[j-1]
mov %rdx,$N[0]
mulq $m0 # ap[j]*bp[0]
add %rax,$A[0]
mov ($np,$j,8),%rax
adc \$0,%rdx
mov %rdx,$A[1]
mulq $m1 # np[j]*m1
add %rax,$N[0]
mov 8($ap,$j,8),%rax
adc \$0,%rdx
add $A[0],$N[0] # np[j]*m1+ap[j]*bp[0]
adc \$0,%rdx
mov $N[0],-8(%rsp,$j,8) # tp[j-1]
mov %rdx,$N[1]
mulq $m0 # ap[j]*bp[0]
add %rax,$A[1]
mov 8($np,$j,8),%rax
adc \$0,%rdx
lea 4($j),$j # j++
mov %rdx,$A[0]
mulq $m1 # np[j]*m1
add %rax,$N[1]
mov -16($ap,$j,8),%rax
adc \$0,%rdx
add $A[1],$N[1] # np[j]*m1+ap[j]*bp[0]
adc \$0,%rdx
mov $N[1],-32(%rsp,$j,8) # tp[j-1]
mov %rdx,$N[0]
cmp $num,$j
jb .L1st4x
mulq $m0 # ap[j]*bp[0]
add %rax,$A[0]
mov -16($np,$j,8),%rax
adc \$0,%rdx
mov %rdx,$A[1]
mulq $m1 # np[j]*m1
add %rax,$N[0]
mov -8($ap,$j,8),%rax
adc \$0,%rdx
add $A[0],$N[0] # np[j]*m1+ap[j]*bp[0]
adc \$0,%rdx
mov $N[0],-24(%rsp,$j,8) # tp[j-1]
mov %rdx,$N[1]
mulq $m0 # ap[j]*bp[0]
add %rax,$A[1]
mov -8($np,$j,8),%rax
adc \$0,%rdx
mov %rdx,$A[0]
mulq $m1 # np[j]*m1
add %rax,$N[1]
mov ($ap),%rax # ap[0]
adc \$0,%rdx
add $A[1],$N[1] # np[j]*m1+ap[j]*bp[0]
adc \$0,%rdx
mov $N[1],-16(%rsp,$j,8) # tp[j-1]
mov %rdx,$N[0]
xor $N[1],$N[1]
add $A[0],$N[0]
adc \$0,$N[1]
mov $N[0],-8(%rsp,$j,8)
mov $N[1],(%rsp,$j,8) # store upmost overflow bit
lea 1($i),$i # i++
.align 4
.Louter4x:
mov ($bp,$i,8),$m0 # m0=bp[i]
xor $j,$j # j=0
mov (%rsp),$A[0]
mov $n0,$m1
mulq $m0 # ap[0]*bp[i]
add %rax,$A[0] # ap[0]*bp[i]+tp[0]
mov ($np),%rax
adc \$0,%rdx
imulq $A[0],$m1 # tp[0]*n0
mov %rdx,$A[1]
mulq $m1 # np[0]*m1
add %rax,$A[0] # "$N[0]", discarded
mov 8($ap),%rax
adc \$0,%rdx
mov %rdx,$N[1]
mulq $m0 # ap[j]*bp[i]
add %rax,$A[1]
mov 8($np),%rax
adc \$0,%rdx
add 8(%rsp),$A[1] # +tp[1]
adc \$0,%rdx
mov %rdx,$A[0]
mulq $m1 # np[j]*m1
add %rax,$N[1]
mov 16($ap),%rax
adc \$0,%rdx
add $A[1],$N[1] # np[j]*m1+ap[j]*bp[i]+tp[j]
lea 4($j),$j # j+=2
adc \$0,%rdx
mov $N[1],(%rsp) # tp[j-1]
mov %rdx,$N[0]
jmp .Linner4x
.align 16
.Linner4x:
mulq $m0 # ap[j]*bp[i]
add %rax,$A[0]
mov -16($np,$j,8),%rax
adc \$0,%rdx
add -16(%rsp,$j,8),$A[0] # ap[j]*bp[i]+tp[j]
adc \$0,%rdx
mov %rdx,$A[1]
mulq $m1 # np[j]*m1
add %rax,$N[0]
mov -8($ap,$j,8),%rax
adc \$0,%rdx
add $A[0],$N[0]
adc \$0,%rdx
mov $N[0],-24(%rsp,$j,8) # tp[j-1]
mov %rdx,$N[1]
mulq $m0 # ap[j]*bp[i]
add %rax,$A[1]
mov -8($np,$j,8),%rax
adc \$0,%rdx
add -8(%rsp,$j,8),$A[1]
adc \$0,%rdx
mov %rdx,$A[0]
mulq $m1 # np[j]*m1
add %rax,$N[1]
mov ($ap,$j,8),%rax
adc \$0,%rdx
add $A[1],$N[1]
adc \$0,%rdx
mov $N[1],-16(%rsp,$j,8) # tp[j-1]
mov %rdx,$N[0]
mulq $m0 # ap[j]*bp[i]
add %rax,$A[0]
mov ($np,$j,8),%rax
adc \$0,%rdx
add (%rsp,$j,8),$A[0] # ap[j]*bp[i]+tp[j]
adc \$0,%rdx
mov %rdx,$A[1]
mulq $m1 # np[j]*m1
add %rax,$N[0]
mov 8($ap,$j,8),%rax
adc \$0,%rdx
add $A[0],$N[0]
adc \$0,%rdx
mov $N[0],-8(%rsp,$j,8) # tp[j-1]
mov %rdx,$N[1]
mulq $m0 # ap[j]*bp[i]
add %rax,$A[1]
mov 8($np,$j,8),%rax
adc \$0,%rdx
add 8(%rsp,$j,8),$A[1]
adc \$0,%rdx
lea 4($j),$j # j++
mov %rdx,$A[0]
mulq $m1 # np[j]*m1
add %rax,$N[1]
mov -16($ap,$j,8),%rax
adc \$0,%rdx
add $A[1],$N[1]
adc \$0,%rdx
mov $N[1],-32(%rsp,$j,8) # tp[j-1]
mov %rdx,$N[0]
cmp $num,$j
jb .Linner4x
mulq $m0 # ap[j]*bp[i]
add %rax,$A[0]
mov -16($np,$j,8),%rax
adc \$0,%rdx
add -16(%rsp,$j,8),$A[0] # ap[j]*bp[i]+tp[j]
adc \$0,%rdx
mov %rdx,$A[1]
mulq $m1 # np[j]*m1
add %rax,$N[0]
mov -8($ap,$j,8),%rax
adc \$0,%rdx
add $A[0],$N[0]
adc \$0,%rdx
mov $N[0],-24(%rsp,$j,8) # tp[j-1]
mov %rdx,$N[1]
mulq $m0 # ap[j]*bp[i]
add %rax,$A[1]
mov -8($np,$j,8),%rax
adc \$0,%rdx
add -8(%rsp,$j,8),$A[1]
adc \$0,%rdx
lea 1($i),$i # i++
mov %rdx,$A[0]
mulq $m1 # np[j]*m1
add %rax,$N[1]
mov ($ap),%rax # ap[0]
adc \$0,%rdx
add $A[1],$N[1]
adc \$0,%rdx
mov $N[1],-16(%rsp,$j,8) # tp[j-1]
mov %rdx,$N[0]
xor $N[1],$N[1]
add $A[0],$N[0]
adc \$0,$N[1]
add (%rsp,$num,8),$N[0] # pull upmost overflow bit
adc \$0,$N[1]
mov $N[0],-8(%rsp,$j,8)
mov $N[1],(%rsp,$j,8) # store upmost overflow bit
cmp $num,$i
jb .Louter4x
___
{
my @ri=("%rax","%rdx",$m0,$m1);
$code.=<<___;
mov 16(%rsp,$num,8),$rp # restore $rp
mov 0(%rsp),@ri[0] # tp[0]
pxor %xmm0,%xmm0
mov 8(%rsp),@ri[1] # tp[1]
shr \$2,$num # num/=4
lea (%rsp),$ap # borrow ap for tp
xor $i,$i # i=0 and clear CF!
sub 0($np),@ri[0]
mov 16($ap),@ri[2] # tp[2]
mov 24($ap),@ri[3] # tp[3]
sbb 8($np),@ri[1]
lea -1($num),$j # j=num/4-1
jmp .Lsub4x
.align 16
.Lsub4x:
mov @ri[0],0($rp,$i,8) # rp[i]=tp[i]-np[i]
mov @ri[1],8($rp,$i,8) # rp[i]=tp[i]-np[i]
sbb 16($np,$i,8),@ri[2]
mov 32($ap,$i,8),@ri[0] # tp[i+1]
mov 40($ap,$i,8),@ri[1]
sbb 24($np,$i,8),@ri[3]
mov @ri[2],16($rp,$i,8) # rp[i]=tp[i]-np[i]
mov @ri[3],24($rp,$i,8) # rp[i]=tp[i]-np[i]
sbb 32($np,$i,8),@ri[0]
mov 48($ap,$i,8),@ri[2]
mov 56($ap,$i,8),@ri[3]
sbb 40($np,$i,8),@ri[1]
lea 4($i),$i # i++
dec $j # doesnn't affect CF!
jnz .Lsub4x
mov @ri[0],0($rp,$i,8) # rp[i]=tp[i]-np[i]
mov 32($ap,$i,8),@ri[0] # load overflow bit
sbb 16($np,$i,8),@ri[2]
mov @ri[1],8($rp,$i,8) # rp[i]=tp[i]-np[i]
sbb 24($np,$i,8),@ri[3]
mov @ri[2],16($rp,$i,8) # rp[i]=tp[i]-np[i]
sbb \$0,@ri[0] # handle upmost overflow bit
mov @ri[3],24($rp,$i,8) # rp[i]=tp[i]-np[i]
xor $i,$i # i=0
and @ri[0],$ap
not @ri[0]
mov $rp,$np
and @ri[0],$np
lea -1($num),$j
or $np,$ap # ap=borrow?tp:rp
movdqu ($ap),%xmm1
movdqa %xmm0,(%rsp)
movdqu %xmm1,($rp)
jmp .Lcopy4x
.align 16
.Lcopy4x: # copy or in-place refresh
movdqu 16($ap,$i),%xmm2
movdqu 32($ap,$i),%xmm1
movdqa %xmm0,16(%rsp,$i)
movdqu %xmm2,16($rp,$i)
movdqa %xmm0,32(%rsp,$i)
movdqu %xmm1,32($rp,$i)
lea 32($i),$i
dec $j
jnz .Lcopy4x
shl \$2,$num
movdqu 16($ap,$i),%xmm2
movdqa %xmm0,16(%rsp,$i)
movdqu %xmm2,16($rp,$i)
___
}
$code.=<<___;
mov 8(%rsp,$num,8),%rsi # restore %rsp
mov \$1,%rax
mov -48(%rsi),%r15
mov -40(%rsi),%r14
mov -32(%rsi),%r13
mov -24(%rsi),%r12
mov -16(%rsi),%rbp
mov -8(%rsi),%rbx
lea (%rsi),%rsp
.Lmul4x_epilogue:
ret
.size bn_mul4x_mont,.-bn_mul4x_mont
___
}}}
{{{
######################################################################
# void bn_sqr8x_mont(
my $rptr="%rdi"; # const BN_ULONG *rptr,
my $aptr="%rsi"; # const BN_ULONG *aptr,
my $bptr="%rdx"; # not used
my $nptr="%rcx"; # const BN_ULONG *nptr,
my $n0 ="%r8"; # const BN_ULONG *n0);
my $num ="%r9"; # int num, has to be divisible by 8
my ($i,$j,$tptr)=("%rbp","%rcx",$rptr);
my @A0=("%r10","%r11");
my @A1=("%r12","%r13");
my ($a0,$a1,$ai)=("%r14","%r15","%rbx");
$code.=<<___ if ($addx);
.extern bn_sqrx8x_internal # see x86_64-mont5 module
___
$code.=<<___;
.extern bn_sqr8x_internal # see x86_64-mont5 module
.type bn_sqr8x_mont,\@function,6
.align 32
bn_sqr8x_mont:
mov %rsp,%rax
.Lsqr8x_enter:
push %rbx
push %rbp
push %r12
push %r13
push %r14
push %r15
.Lsqr8x_prologue:
mov ${num}d,%r10d
shl \$3,${num}d # convert $num to bytes
shl \$3+2,%r10 # 4*$num
neg $num
##############################################################
# ensure that stack frame doesn't alias with $aptr modulo
# 4096. this is done to allow memory disambiguation logic
# do its job.
#
lea -64(%rsp,$num,2),%r11
mov %rsp,%rbp
mov ($n0),$n0 # *n0
sub $aptr,%r11
and \$4095,%r11
cmp %r11,%r10
jb .Lsqr8x_sp_alt
sub %r11,%rbp # align with $aptr
lea -64(%rbp,$num,2),%rbp # future alloca(frame+2*$num)
jmp .Lsqr8x_sp_done
.align 32
.Lsqr8x_sp_alt:
lea 4096-64(,$num,2),%r10 # 4096-frame-2*$num
lea -64(%rbp,$num,2),%rbp # future alloca(frame+2*$num)
sub %r10,%r11
mov \$0,%r10
cmovc %r10,%r11
sub %r11,%rbp
.Lsqr8x_sp_done:
and \$-64,%rbp
mov %rsp,%r11
sub %rbp,%r11
and \$-4096,%r11
lea (%rbp,%r11),%rsp
mov (%rsp),%r10
cmp %rbp,%rsp
ja .Lsqr8x_page_walk
jmp .Lsqr8x_page_walk_done
.align 16
.Lsqr8x_page_walk:
lea -4096(%rsp),%rsp
mov (%rsp),%r10
cmp %rbp,%rsp
ja .Lsqr8x_page_walk
.Lsqr8x_page_walk_done:
mov $num,%r10
neg $num
mov $n0, 32(%rsp)
mov %rax, 40(%rsp) # save original %rsp
.Lsqr8x_body:
movq $nptr, %xmm2 # save pointer to modulus
pxor %xmm0,%xmm0
movq $rptr,%xmm1 # save $rptr
movq %r10, %xmm3 # -$num
___
$code.=<<___ if ($addx);
mov OPENSSL_ia32cap_P+8(%rip),%eax
and \$0x80100,%eax
cmp \$0x80100,%eax
jne .Lsqr8x_nox
call bn_sqrx8x_internal # see x86_64-mont5 module
# %rax top-most carry
# %rbp nptr
# %rcx -8*num
# %r8 end of tp[2*num]
lea (%r8,%rcx),%rbx
mov %rcx,$num
mov %rcx,%rdx
movq %xmm1,$rptr
sar \$3+2,%rcx # %cf=0
jmp .Lsqr8x_sub
.align 32
.Lsqr8x_nox:
___
$code.=<<___;
call bn_sqr8x_internal # see x86_64-mont5 module
# %rax top-most carry
# %rbp nptr
# %r8 -8*num
# %rdi end of tp[2*num]
lea (%rdi,$num),%rbx
mov $num,%rcx
mov $num,%rdx
movq %xmm1,$rptr
sar \$3+2,%rcx # %cf=0
jmp .Lsqr8x_sub
.align 32
.Lsqr8x_sub:
mov 8*0(%rbx),%r12
mov 8*1(%rbx),%r13
mov 8*2(%rbx),%r14
mov 8*3(%rbx),%r15
lea 8*4(%rbx),%rbx
sbb 8*0(%rbp),%r12
sbb 8*1(%rbp),%r13
sbb 8*2(%rbp),%r14
sbb 8*3(%rbp),%r15
lea 8*4(%rbp),%rbp
mov %r12,8*0($rptr)
mov %r13,8*1($rptr)
mov %r14,8*2($rptr)
mov %r15,8*3($rptr)
lea 8*4($rptr),$rptr
inc %rcx # preserves %cf
jnz .Lsqr8x_sub
sbb \$0,%rax # top-most carry
lea (%rbx,$num),%rbx # rewind
lea ($rptr,$num),$rptr # rewind
movq %rax,%xmm1
pxor %xmm0,%xmm0
pshufd \$0,%xmm1,%xmm1
mov 40(%rsp),%rsi # restore %rsp
jmp .Lsqr8x_cond_copy
.align 32
.Lsqr8x_cond_copy:
movdqa 16*0(%rbx),%xmm2
movdqa 16*1(%rbx),%xmm3
lea 16*2(%rbx),%rbx
movdqu 16*0($rptr),%xmm4
movdqu 16*1($rptr),%xmm5
lea 16*2($rptr),$rptr
movdqa %xmm0,-16*2(%rbx) # zero tp
movdqa %xmm0,-16*1(%rbx)
movdqa %xmm0,-16*2(%rbx,%rdx)
movdqa %xmm0,-16*1(%rbx,%rdx)
pcmpeqd %xmm1,%xmm0
pand %xmm1,%xmm2
pand %xmm1,%xmm3
pand %xmm0,%xmm4
pand %xmm0,%xmm5
pxor %xmm0,%xmm0
por %xmm2,%xmm4
por %xmm3,%xmm5
movdqu %xmm4,-16*2($rptr)
movdqu %xmm5,-16*1($rptr)
add \$32,$num
jnz .Lsqr8x_cond_copy
mov \$1,%rax
mov -48(%rsi),%r15
mov -40(%rsi),%r14
mov -32(%rsi),%r13
mov -24(%rsi),%r12
mov -16(%rsi),%rbp
mov -8(%rsi),%rbx
lea (%rsi),%rsp
.Lsqr8x_epilogue:
ret
.size bn_sqr8x_mont,.-bn_sqr8x_mont
___
}}}
if ($addx) {{{
my $bp="%rdx"; # original value
$code.=<<___;
.type bn_mulx4x_mont,\@function,6
.align 32
bn_mulx4x_mont:
mov %rsp,%rax
.Lmulx4x_enter:
push %rbx
push %rbp
push %r12
push %r13
push %r14
push %r15
.Lmulx4x_prologue:
shl \$3,${num}d # convert $num to bytes
xor %r10,%r10
sub $num,%r10 # -$num
mov ($n0),$n0 # *n0
lea -72(%rsp,%r10),%rbp # future alloca(frame+$num+8)
and \$-128,%rbp
mov %rsp,%r11
sub %rbp,%r11
and \$-4096,%r11
lea (%rbp,%r11),%rsp
mov (%rsp),%r10
cmp %rbp,%rsp
ja .Lmulx4x_page_walk
jmp .Lmulx4x_page_walk_done
.align 16
.Lmulx4x_page_walk:
lea -4096(%rsp),%rsp
mov (%rsp),%r10
cmp %rbp,%rsp
ja .Lmulx4x_page_walk
.Lmulx4x_page_walk_done:
lea ($bp,$num),%r10
##############################################################
# Stack layout
# +0 num
# +8 off-loaded &b[i]
# +16 end of b[num]
# +24 saved n0
# +32 saved rp
# +40 saved %rsp
# +48 inner counter
# +56
# +64 tmp[num+1]
#
mov $num,0(%rsp) # save $num
shr \$5,$num
mov %r10,16(%rsp) # end of b[num]
sub \$1,$num
mov $n0, 24(%rsp) # save *n0
mov $rp, 32(%rsp) # save $rp
mov %rax,40(%rsp) # save original %rsp
mov $num,48(%rsp) # inner counter
jmp .Lmulx4x_body
.align 32
.Lmulx4x_body:
___
my ($aptr, $bptr, $nptr, $tptr, $mi, $bi, $zero, $num)=
("%rsi","%rdi","%rcx","%rbx","%r8","%r9","%rbp","%rax");
my $rptr=$bptr;
$code.=<<___;
lea 8($bp),$bptr
mov ($bp),%rdx # b[0], $bp==%rdx actually
lea 64+32(%rsp),$tptr
mov %rdx,$bi
mulx 0*8($aptr),$mi,%rax # a[0]*b[0]
mulx 1*8($aptr),%r11,%r14 # a[1]*b[0]
add %rax,%r11
mov $bptr,8(%rsp) # off-load &b[i]
mulx 2*8($aptr),%r12,%r13 # ...
adc %r14,%r12
adc \$0,%r13
mov $mi,$bptr # borrow $bptr
imulq 24(%rsp),$mi # "t[0]"*n0
xor $zero,$zero # cf=0, of=0
mulx 3*8($aptr),%rax,%r14
mov $mi,%rdx
lea 4*8($aptr),$aptr
adcx %rax,%r13
adcx $zero,%r14 # cf=0
mulx 0*8($nptr),%rax,%r10
adcx %rax,$bptr # discarded
adox %r11,%r10
mulx 1*8($nptr),%rax,%r11
adcx %rax,%r10
adox %r12,%r11
.byte 0xc4,0x62,0xfb,0xf6,0xa1,0x10,0x00,0x00,0x00 # mulx 2*8($nptr),%rax,%r12
mov 48(%rsp),$bptr # counter value
mov %r10,-4*8($tptr)
adcx %rax,%r11
adox %r13,%r12
mulx 3*8($nptr),%rax,%r15
mov $bi,%rdx
mov %r11,-3*8($tptr)
adcx %rax,%r12
adox $zero,%r15 # of=0
lea 4*8($nptr),$nptr
mov %r12,-2*8($tptr)
jmp .Lmulx4x_1st
.align 32
.Lmulx4x_1st:
adcx $zero,%r15 # cf=0, modulo-scheduled
mulx 0*8($aptr),%r10,%rax # a[4]*b[0]
adcx %r14,%r10
mulx 1*8($aptr),%r11,%r14 # a[5]*b[0]
adcx %rax,%r11
mulx 2*8($aptr),%r12,%rax # ...
adcx %r14,%r12
mulx 3*8($aptr),%r13,%r14
.byte 0x67,0x67
mov $mi,%rdx
adcx %rax,%r13
adcx $zero,%r14 # cf=0
lea 4*8($aptr),$aptr
lea 4*8($tptr),$tptr
adox %r15,%r10
mulx 0*8($nptr),%rax,%r15
adcx %rax,%r10
adox %r15,%r11
mulx 1*8($nptr),%rax,%r15
adcx %rax,%r11
adox %r15,%r12
mulx 2*8($nptr),%rax,%r15
mov %r10,-5*8($tptr)
adcx %rax,%r12
mov %r11,-4*8($tptr)
adox %r15,%r13
mulx 3*8($nptr),%rax,%r15
mov $bi,%rdx
mov %r12,-3*8($tptr)
adcx %rax,%r13
adox $zero,%r15
lea 4*8($nptr),$nptr
mov %r13,-2*8($tptr)
dec $bptr # of=0, pass cf
jnz .Lmulx4x_1st
mov 0(%rsp),$num # load num
mov 8(%rsp),$bptr # re-load &b[i]
adc $zero,%r15 # modulo-scheduled
add %r15,%r14
sbb %r15,%r15 # top-most carry
mov %r14,-1*8($tptr)
jmp .Lmulx4x_outer
.align 32
.Lmulx4x_outer:
mov ($bptr),%rdx # b[i]
lea 8($bptr),$bptr # b++
sub $num,$aptr # rewind $aptr
mov %r15,($tptr) # save top-most carry
lea 64+4*8(%rsp),$tptr
sub $num,$nptr # rewind $nptr
mulx 0*8($aptr),$mi,%r11 # a[0]*b[i]
xor %ebp,%ebp # xor $zero,$zero # cf=0, of=0
mov %rdx,$bi
mulx 1*8($aptr),%r14,%r12 # a[1]*b[i]
adox -4*8($tptr),$mi
adcx %r14,%r11
mulx 2*8($aptr),%r15,%r13 # ...
adox -3*8($tptr),%r11
adcx %r15,%r12
adox -2*8($tptr),%r12
adcx $zero,%r13
adox $zero,%r13
mov $bptr,8(%rsp) # off-load &b[i]
mov $mi,%r15
imulq 24(%rsp),$mi # "t[0]"*n0
xor %ebp,%ebp # xor $zero,$zero # cf=0, of=0
mulx 3*8($aptr),%rax,%r14
mov $mi,%rdx
adcx %rax,%r13
adox -1*8($tptr),%r13
adcx $zero,%r14
lea 4*8($aptr),$aptr
adox $zero,%r14
mulx 0*8($nptr),%rax,%r10
adcx %rax,%r15 # discarded
adox %r11,%r10
mulx 1*8($nptr),%rax,%r11
adcx %rax,%r10
adox %r12,%r11
mulx 2*8($nptr),%rax,%r12
mov %r10,-4*8($tptr)
adcx %rax,%r11
adox %r13,%r12
mulx 3*8($nptr),%rax,%r15
mov $bi,%rdx
mov %r11,-3*8($tptr)
lea 4*8($nptr),$nptr
adcx %rax,%r12
adox $zero,%r15 # of=0
mov 48(%rsp),$bptr # counter value
mov %r12,-2*8($tptr)
jmp .Lmulx4x_inner
.align 32
.Lmulx4x_inner:
mulx 0*8($aptr),%r10,%rax # a[4]*b[i]
adcx $zero,%r15 # cf=0, modulo-scheduled
adox %r14,%r10
mulx 1*8($aptr),%r11,%r14 # a[5]*b[i]
adcx 0*8($tptr),%r10
adox %rax,%r11
mulx 2*8($aptr),%r12,%rax # ...
adcx 1*8($tptr),%r11
adox %r14,%r12
mulx 3*8($aptr),%r13,%r14
mov $mi,%rdx
adcx 2*8($tptr),%r12
adox %rax,%r13
adcx 3*8($tptr),%r13
adox $zero,%r14 # of=0
lea 4*8($aptr),$aptr
lea 4*8($tptr),$tptr
adcx $zero,%r14 # cf=0
adox %r15,%r10
mulx 0*8($nptr),%rax,%r15
adcx %rax,%r10
adox %r15,%r11
mulx 1*8($nptr),%rax,%r15
adcx %rax,%r11
adox %r15,%r12
mulx 2*8($nptr),%rax,%r15
mov %r10,-5*8($tptr)
adcx %rax,%r12
adox %r15,%r13
mulx 3*8($nptr),%rax,%r15
mov $bi,%rdx
mov %r11,-4*8($tptr)
mov %r12,-3*8($tptr)
adcx %rax,%r13
adox $zero,%r15
lea 4*8($nptr),$nptr
mov %r13,-2*8($tptr)
dec $bptr # of=0, pass cf
jnz .Lmulx4x_inner
mov 0(%rsp),$num # load num
mov 8(%rsp),$bptr # re-load &b[i]
adc $zero,%r15 # modulo-scheduled
sub 0*8($tptr),$zero # pull top-most carry
adc %r15,%r14
sbb %r15,%r15 # top-most carry
mov %r14,-1*8($tptr)
cmp 16(%rsp),$bptr
jne .Lmulx4x_outer
lea 64(%rsp),$tptr
sub $num,$nptr # rewind $nptr
neg %r15
mov $num,%rdx
shr \$3+2,$num # %cf=0
mov 32(%rsp),$rptr # restore rp
jmp .Lmulx4x_sub
.align 32
.Lmulx4x_sub:
mov 8*0($tptr),%r11
mov 8*1($tptr),%r12
mov 8*2($tptr),%r13
mov 8*3($tptr),%r14
lea 8*4($tptr),$tptr
sbb 8*0($nptr),%r11
sbb 8*1($nptr),%r12
sbb 8*2($nptr),%r13
sbb 8*3($nptr),%r14
lea 8*4($nptr),$nptr
mov %r11,8*0($rptr)
mov %r12,8*1($rptr)
mov %r13,8*2($rptr)
mov %r14,8*3($rptr)
lea 8*4($rptr),$rptr
dec $num # preserves %cf
jnz .Lmulx4x_sub
sbb \$0,%r15 # top-most carry
lea 64(%rsp),$tptr
sub %rdx,$rptr # rewind
movq %r15,%xmm1
pxor %xmm0,%xmm0
pshufd \$0,%xmm1,%xmm1
mov 40(%rsp),%rsi # restore %rsp
jmp .Lmulx4x_cond_copy
.align 32
.Lmulx4x_cond_copy:
movdqa 16*0($tptr),%xmm2
movdqa 16*1($tptr),%xmm3
lea 16*2($tptr),$tptr
movdqu 16*0($rptr),%xmm4
movdqu 16*1($rptr),%xmm5
lea 16*2($rptr),$rptr
movdqa %xmm0,-16*2($tptr) # zero tp
movdqa %xmm0,-16*1($tptr)
pcmpeqd %xmm1,%xmm0
pand %xmm1,%xmm2
pand %xmm1,%xmm3
pand %xmm0,%xmm4
pand %xmm0,%xmm5
pxor %xmm0,%xmm0
por %xmm2,%xmm4
por %xmm3,%xmm5
movdqu %xmm4,-16*2($rptr)
movdqu %xmm5,-16*1($rptr)
sub \$32,%rdx
jnz .Lmulx4x_cond_copy
mov %rdx,($tptr)
mov \$1,%rax
mov -48(%rsi),%r15
mov -40(%rsi),%r14
mov -32(%rsi),%r13
mov -24(%rsi),%r12
mov -16(%rsi),%rbp
mov -8(%rsi),%rbx
lea (%rsi),%rsp
.Lmulx4x_epilogue:
ret
.size bn_mulx4x_mont,.-bn_mulx4x_mont
___
}}}
$code.=<<___;
.asciz "Montgomery Multiplication for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
.align 16
___
# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
# CONTEXT *context,DISPATCHER_CONTEXT *disp)
if ($win64) {
$rec="%rcx";
$frame="%rdx";
$context="%r8";
$disp="%r9";
$code.=<<___;
.extern __imp_RtlVirtualUnwind
.type mul_handler,\@abi-omnipotent
.align 16
mul_handler:
push %rsi
push %rdi
push %rbx
push %rbp
push %r12
push %r13
push %r14
push %r15
pushfq
sub \$64,%rsp
mov 120($context),%rax # pull context->Rax
mov 248($context),%rbx # pull context->Rip
mov 8($disp),%rsi # disp->ImageBase
mov 56($disp),%r11 # disp->HandlerData
mov 0(%r11),%r10d # HandlerData[0]
lea (%rsi,%r10),%r10 # end of prologue label
cmp %r10,%rbx # context->Rip<end of prologue label
jb .Lcommon_seh_tail
mov 152($context),%rax # pull context->Rsp
mov 4(%r11),%r10d # HandlerData[1]
lea (%rsi,%r10),%r10 # epilogue label
cmp %r10,%rbx # context->Rip>=epilogue label
jae .Lcommon_seh_tail
mov 192($context),%r10 # pull $num
mov 8(%rax,%r10,8),%rax # pull saved stack pointer
jmp .Lcommon_pop_regs
.size mul_handler,.-mul_handler
.type sqr_handler,\@abi-omnipotent
.align 16
sqr_handler:
push %rsi
push %rdi
push %rbx
push %rbp
push %r12
push %r13
push %r14
push %r15
pushfq
sub \$64,%rsp
mov 120($context),%rax # pull context->Rax
mov 248($context),%rbx # pull context->Rip
mov 8($disp),%rsi # disp->ImageBase
mov 56($disp),%r11 # disp->HandlerData
mov 0(%r11),%r10d # HandlerData[0]
lea (%rsi,%r10),%r10 # end of prologue label
cmp %r10,%rbx # context->Rip<.Lsqr_body
jb .Lcommon_seh_tail
mov 4(%r11),%r10d # HandlerData[1]
lea (%rsi,%r10),%r10 # body label
cmp %r10,%rbx # context->Rip>=.Lsqr_epilogue
jb .Lcommon_pop_regs
mov 152($context),%rax # pull context->Rsp
mov 8(%r11),%r10d # HandlerData[2]
lea (%rsi,%r10),%r10 # epilogue label
cmp %r10,%rbx # context->Rip>=.Lsqr_epilogue
jae .Lcommon_seh_tail
mov 40(%rax),%rax # pull saved stack pointer
.Lcommon_pop_regs:
mov -8(%rax),%rbx
mov -16(%rax),%rbp
mov -24(%rax),%r12
mov -32(%rax),%r13
mov -40(%rax),%r14
mov -48(%rax),%r15
mov %rbx,144($context) # restore context->Rbx
mov %rbp,160($context) # restore context->Rbp
mov %r12,216($context) # restore context->R12
mov %r13,224($context) # restore context->R13
mov %r14,232($context) # restore context->R14
mov %r15,240($context) # restore context->R15
.Lcommon_seh_tail:
mov 8(%rax),%rdi
mov 16(%rax),%rsi
mov %rax,152($context) # restore context->Rsp
mov %rsi,168($context) # restore context->Rsi
mov %rdi,176($context) # restore context->Rdi
mov 40($disp),%rdi # disp->ContextRecord
mov $context,%rsi # context
mov \$154,%ecx # sizeof(CONTEXT)
.long 0xa548f3fc # cld; rep movsq
mov $disp,%rsi
xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
mov 8(%rsi),%rdx # arg2, disp->ImageBase
mov 0(%rsi),%r8 # arg3, disp->ControlPc
mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
mov 40(%rsi),%r10 # disp->ContextRecord
lea 56(%rsi),%r11 # &disp->HandlerData
lea 24(%rsi),%r12 # &disp->EstablisherFrame
mov %r10,32(%rsp) # arg5
mov %r11,40(%rsp) # arg6
mov %r12,48(%rsp) # arg7
mov %rcx,56(%rsp) # arg8, (NULL)
call *__imp_RtlVirtualUnwind(%rip)
mov \$1,%eax # ExceptionContinueSearch
add \$64,%rsp
popfq
pop %r15
pop %r14
pop %r13
pop %r12
pop %rbp
pop %rbx
pop %rdi
pop %rsi
ret
.size sqr_handler,.-sqr_handler
.section .pdata
.align 4
.rva .LSEH_begin_bn_mul_mont
.rva .LSEH_end_bn_mul_mont
.rva .LSEH_info_bn_mul_mont
.rva .LSEH_begin_bn_mul4x_mont
.rva .LSEH_end_bn_mul4x_mont
.rva .LSEH_info_bn_mul4x_mont
.rva .LSEH_begin_bn_sqr8x_mont
.rva .LSEH_end_bn_sqr8x_mont
.rva .LSEH_info_bn_sqr8x_mont
___
$code.=<<___ if ($addx);
.rva .LSEH_begin_bn_mulx4x_mont
.rva .LSEH_end_bn_mulx4x_mont
.rva .LSEH_info_bn_mulx4x_mont
___
$code.=<<___;
.section .xdata
.align 8
.LSEH_info_bn_mul_mont:
.byte 9,0,0,0
.rva mul_handler
.rva .Lmul_body,.Lmul_epilogue # HandlerData[]
.LSEH_info_bn_mul4x_mont:
.byte 9,0,0,0
.rva mul_handler
.rva .Lmul4x_body,.Lmul4x_epilogue # HandlerData[]
.LSEH_info_bn_sqr8x_mont:
.byte 9,0,0,0
.rva sqr_handler
.rva .Lsqr8x_prologue,.Lsqr8x_body,.Lsqr8x_epilogue # HandlerData[]
.align 8
___
$code.=<<___ if ($addx);
.LSEH_info_bn_mulx4x_mont:
.byte 9,0,0,0
.rva sqr_handler
.rva .Lmulx4x_prologue,.Lmulx4x_body,.Lmulx4x_epilogue # HandlerData[]
.align 8
___
}
print $code;
close STDOUT;