openldap/doc/man/man5/slapd-sql.5
Pierangelo Masarati d019bff7b8 First commit of Hallvard's backend documentation effort
Backend documentation patch, version 1

================
Most of this text is taken from OpenLDAP.  The work of rewriting it
to manual pages is done by by Hallvard B. Furuseth and placed into
the public domain.  This software is not subject to any license of
the University of Oslo.
================

Hallvard B. Furuseth <h.b.furuseth@usit.uio.no>, April 2002.
2002-04-29 20:24:29 +00:00

325 lines
12 KiB
Groff

.TH SLAPD-SQL 5 "25 April 2002" "OpenLDAP LDVERSION"
.\" $OpenLDAP$
.SH NAME
slapd-sql \- SQL backend to slapd
.SH SYNOPSIS
ETCDIR/slapd.conf
.SH PURPOSE
The primary purpose of this backend (8) to
.BR slapd (8)
is to PRESENT information stored in some RDBMS as an LDAP subtree
without any programming (some SQL and maybe stored procedures can't be
considered programming, anyway ;).
.LP
That is, for example, when you (some ISP) have account information you
use in RDBMS, and want to use modern solutions that expect such
information in LDAP (to authenticate users, make email lookups etc.).
Or you want to synchronize or distribute information between different
sites/applications that use RDBMSes and/or LDAP.
Or whatever else...
.LP
It is NOT designed as general-purpose backend that uses RDBMS instead
of BerkeleyDB (as the standard LDBM backend does), though it can be
used as such with several limitations.
You can take a look at
.B http://www.openldap.org/faq/index.cgi?file=378
(OpenLDAP FAQ-O-Matic/General LDAP FAQ/Directories vs. conventional
databases) to find out more on this point.
.LP
The idea (detailed below) is to use some metainformation to translate
LDAP queries to SQL queries, leaving relational schema untouched, so
that old applications can continue using it without any
modifications.
This allows SQL and LDAP applications to inter-operate without
replication, and exchange data as needed.
.LP
The SQL backend is designed to be tunable to virtually any relational
schema without having to change source (through that metainformation
mentioned).
Also, it uses ODBC to connect to RDBMSes, and is highly configurable
for SQL dialects RDBMSes may use, so it may be used for integration
and distribution of data on different RDBMSes, OSes, hosts etc., in
other words, in highly heterogeneous environment.
.SH "METAINFORMATION USED"
.LP
Almost everything mentioned later is illustrated in examples located
in the
.B slapd/back-sql/rdbms_depend/
directory in the OpenLDAP source tree, and contains scripts for
generating sample database for Oracle,MS SQL Server and mySQL.
.LP
First thing that one must arrange for himself is what set of LDAP
object classes can present your RDBMS information.
.LP
The easiest way is to create an objectclass for each entity you had in
ER-diagram when designing your relational schema.
Any relational schema, no matter how normalized it is, was designed
after some model of your application's domain (for instance, accounts,
services etc. in ISP), and is used in terms of its entities, not just
tables of normalized schema.
It means that for every attribute of every such instance there is an
effective SQL query that loads its values.
.LP
Also you might want your object classes to conform to some of standard
schemas like inetOrgPerson etc.
.LP
Nevertheless, when you think it out, we must define a way to translate
LDAP operation requests to (series of) SQL queries.
Let us deal with the SEARCH operation.
.LP
Example:
Let's suppose that we store information about persons working in our
organization in two tables:
.LP
.nf
PERSONS PHONES
---------- -------------
id integer id integer
first_name varchar pers_id integer references persons(id)
last_name varchar phone
middle_name varchar
...
.fi
.LP
(PHONES contains telephone numbers associated with persons).
A person can have several numbers, then PHONES contains several
records with corresponding pers_id, or no numbers (and no records in
PHONES with such pers_id).
An LDAP objectclass to present such information could look like this:
.LP
.nf
person
-------
MUST cn
MAY telephoneNumber
MAY firstName
MAY lastName
...
.fi
.LP
To fetch all values for cn attribute given person ID, we construct the
query:
.LP
.nf
SELECT CONCAT(persons.first_name,\' \',persons.last_name)
AS cn FROM persons WHERE persons.id=?
.fi
.LP
for telephoneNumber we can use:
.LP
.nf
SELECT phones.phone AS telephoneNumber FROM persons,phones
WHERE persons.id=phones.pers.id AND persons.id=?
.fi
.LP
If we wanted to service LDAP requests with filters like
(telephoneNumber=123*), we would construct something like:
.LP
.nf
SELECT ... FROM persons,phones
WHERE persons.id=phones.pers.id
AND persons.id=?
AND phones.phone like \'123%\'
.fi
.LP
So, if we had information about what tables contain values for each
attribute, how to join this tables and arrange these values, we could
try to automatically generate such statements, and translate search
filters to SQL WHERE clauses.
.LP
To store such information, we add three more tables to our schema, so
that and fill it with data (see samples):
.LP
.nf
ldap_oc_mappings (some columns are not listed for clarity)
---------------
id=1
name="person"
keytbl="persons"
keycol="id"
.fi
.LP
This table defines a mapping between objectclass (its name held in the
"name" column), and a table that holds primary key for corresponding
entities.
For instance, in our example, the person entity, which we are trying
to present as "person" objectclass, resides in two tables (persons and
phones), and is identified by persons.id column (that we will call
primary key for this entity).
Keytbl and keycol thus contain "persons" (name of the table), and "id"
(name of the column).
.LP
.nf
ldap_attr_mappings (some columns are not listed for clarity)
-----------
id=1
oc_id=1
name="cn"
sel_expr="CONCAT(persons.first_name,\' \',persons.last_name)"
from_tbls="persons"
join_where=NULL
************
id=<n>
oc_map_id=1
name="telephoneNumber"
sel_expr="phones.phone"
from_tbls="persons,phones"
join_where="phones.pers_id=persons.id"
.fi
.LP
This table defines mappings between LDAP attributes and SQL queries
that load their values.
Note that, unlike LDAP schema, these are not
.B attribute types
- attribute "cn" for "person" objectclass can well
have its values in different table than "cn" for other objectclass,
so attribute mappings depend on objectclass mappings (unlike attribute
types in LDAP schema, which are indifferent to objectclasses).
Thus, we have oc_map_id column with link to oc_mappings table.
.LP
Now we cut the SQL query that loads values for given attribute into 3 parts.
First goes into sel_expr column - this is the expression we had
between SELECT and FROM keywords, which defines WHAT to load.
Next is table list - text between FROM and WHERE keywords.
It may contain aliases for convenience (see exapmles).
The last is part of where clause, which (if exists at all) express the
condition for joining the table containing values wich table
containing primary key (foreign key equality and such).
If values are in the same table with primary key, then this column is
left NULL (as for cn attribute above).
.LP
Having this information in parts, we are able to not only construct
queries that load attribute values by id of entry (for this we could
store SQL query as a whole), but to construct queries that load id's
of objects that correspond to given search filter (or at least part of
it).
See below for examples.
.LP
.nf
ldap_entries
------------
id=1
dn=<dn you choose>
oc_map_id=...
parent=<parent record id>
keyval=<value of primary key>
.fi
.LP
This table defines mappings between DNs of entries in your LDAP tree,
and values of primary keys for corresponding relational data.
It has recursive structure (parent column references id column of the
same table), which allows you to add any tree structure(s) to your
flat relational data.
Having id of objectclass mapping, we can determine table and column
for primary key, and keyval stores value of it, thus defining exact
tuple corresponding to LDAP entry with this DN.
.LP
Note that such design (see exact SQL table creation query) implies one
important constraint - the key must be integer.
But all that I know about well-designed schemas makes me think that it
s not very narrow ;) If anyone needs support for different types for
keys - he may want to write a patch, and submit it to OpenLDAP ITS,
then I'll include it.
.LP
Also, several people complained that they don't really need very
structured tree, and they don't want to update one more table every
time they add or delete instance in relational schema.
Those can use a view instead of real table for ldap_entries, something
like this (by Robin Elfrink):
.LP
.nf
CREATE VIEW ldap_entries (id, dn, oc_map_id, parent, keyval)
AS SELECT (1000000000+userid),
UPPER(CONCAT(CONCAT(\'cn=\',gecos),\',o=MyCompany,c=NL\')),
1, 0, userid FROM unixusers UNION
SELECT (2000000000+groupnummer),
UPPER(CONCAT(CONCAT(\'cn=\',groupnaam),\',o=MyCompany,c=NL\')),
2, 0, groupnummer FROM groups;
.fi
.LP
.SH "Typical SQL backend operation"
Having metainformation loaded, the SQL backend uses these tables to
determine a set of primary keys of candidates (depending on search
scope and filter).
It tries to do it for each objectclass registered in ldap_objclasses.
.LP
Example:
for our query with filter (telephoneNumber=123*) we would get following
query generated (which loads candidate IDs)
.LP
.nf
SELECT ldap_entries.id,persons.id, \'person\' AS objectClass,
ldap_entries.dn AS dn
FROM ldap_entries,persons,phones
WHERE persons.id=ldap_entries.keyval
AND ldap_entries.objclass=?
AND ldap_entries.parent=?
AND phones.pers_id=persons.id
AND (phones.phone LIKE \'123%\')
.fi
.LP
(for ONELEVEL search)
or "... AND dn=?" (for BASE search)
or "... AND dn LIKE \'%?\'" (for SUBTREE)
.LP
Then, for each candidate, we load attributes requested using
per-attribute queries like
.LP
.nf
SELECT phones.phone AS telephoneNumber
FROM persons,phones
WHERE persons.id=? AND phones.pers_id=persons.id
.fi
.LP
Then, we use test_filter() from frontend API to test entry for full
LDAP search filter match (since we cannot effectively make sense of
SYNTAX of corresponding LDAP schema attribute, we translate the filter
into most relaxed SQL condition to filter candidates), and send it to
user.
.LP
ADD, DELETE, MODIFY operations also performed on per-attribute
metainformation (add_proc etc.).
In those fields one can specify an SQL statement or stored procedure
call which can add, or delete given value of given attribute, using
given entry keyval (see examples -- mostly ORACLE and MSSQL - since
there're no stored procs in mySQL).
.LP
We just add more columns to oc_mappings and attr_mappings, holding
statements to execute (like create_proc, add_proc, del_proc etc.), and
flags governing order of parameters passed to those statements.
Please see samples to find out what are the parameters passed, and other
information on this matter - they are self-explanatory for those familiar
with concept expressed above.
.LP
.SH "common techniques (referrals, multiclassing etc.)"
First of all, lets remember that among other major differences to
complete LDAP data model, the concept above does not directly support
such things as multiple objectclasses for entry, and referrals.
Fortunately, they are easy to adopt in this scheme.
The SQL backend suggests two more tables being added to schema -
ldap_entry_objectclasses(entry_id,oc_name), and
ldap_referrals(entry_id,url).
.LP
First contains any number of objectclass names that corresponding
entries will be found by, in addition to that mentioned in
mapping.
The SQL backend automatically adds attribute mapping for "objectclass"
attribute to each objectclass mapping, that loads values from this table.
So, you may, for instance, have mapping for inetOrgPerson, and use it
for queries for "person" objectclass...
.LP
Second table contains any number of referrals associated with given entry.
The SQL backend automatically adds attribute mapping for "ref" attribute
to each objectclass mapping, that loads values from this table.
So, if you add objectclass "referral" to this entry, and make one or
more tuples in ldap_referrals for this entry (they will be seen as
values of "ref" attribute), you will have slapd return referral, as
described in Administrators Guide.
.LP
.SH EXAMPLES
There are example SQL modules in the slapd/back-sql/rdbms_depend/
direcetory in the OpenLDAP source tree.
.SH SEE ALSO
.BR slapd.conf (5),
.BR slapd (8).