mirror of
https://git.openldap.org/openldap/openldap.git
synced 2024-12-27 03:20:22 +08:00
7e6ad5100c
Most function and variable definitions are now preceded by its extern definition, for error checking. Retyped a number of functions, usually to return void. Fixed a number of printf format errors. API changes (in ldap/include): Added avl_dup_ok, avl_prefixapply, removed ber_fatten (probably typo for ber_flatten), retyped ldap_sort_strcasecmp, grew lutil.h. A number of `extern' declarations are left (some added by protoize), to be cleaned away later. Mostly strdup(), strcasecmp(), mktemp(), optind, optarg, errno.
938 lines
19 KiB
C
938 lines
19 KiB
C
/* idl.c - ldap id list handling routines */
|
|
|
|
#include "portable.h"
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <ac/string.h>
|
|
#include <ac/socket.h>
|
|
|
|
#include "ldapconfig.h"
|
|
#include "slap.h"
|
|
#include "back-ldbm.h"
|
|
|
|
IDList *
|
|
idl_alloc( int nids )
|
|
{
|
|
IDList *new;
|
|
|
|
/* nmax + nids + space for the ids */
|
|
new = (IDList *) ch_calloc( (2 + nids), sizeof(ID) );
|
|
new->b_nmax = nids;
|
|
new->b_nids = 0;
|
|
|
|
return( new );
|
|
}
|
|
|
|
IDList *
|
|
idl_allids( Backend *be )
|
|
{
|
|
IDList *idl;
|
|
|
|
idl = idl_alloc( 0 );
|
|
idl->b_nmax = ALLIDSBLOCK;
|
|
idl->b_nids = next_id_get( be );
|
|
|
|
return( idl );
|
|
}
|
|
|
|
void
|
|
idl_free( IDList *idl )
|
|
{
|
|
if ( idl == NULL ) {
|
|
return;
|
|
}
|
|
|
|
free( (char *) idl );
|
|
}
|
|
|
|
static IDList *
|
|
idl_fetch_one(
|
|
Backend *be,
|
|
struct dbcache *db,
|
|
Datum key
|
|
)
|
|
{
|
|
Datum data;
|
|
IDList *idl;
|
|
|
|
#ifdef HAVE_BERKELEY_DB2
|
|
Datum k2;
|
|
memset( &k2, 0, sizeof( k2 ) );
|
|
memset( &data, 0, sizeof( data ) );
|
|
#endif
|
|
|
|
/* Debug( LDAP_DEBUG_TRACE, "=> idl_fetch_one\n", 0, 0, 0 ); */
|
|
|
|
data = ldbm_cache_fetch( db, key );
|
|
|
|
idl = (IDList *) data.dptr;
|
|
|
|
return( idl );
|
|
}
|
|
|
|
IDList *
|
|
idl_fetch(
|
|
Backend *be,
|
|
struct dbcache *db,
|
|
Datum key
|
|
)
|
|
{
|
|
Datum data, k2;
|
|
IDList *idl;
|
|
IDList **tmp;
|
|
char *kstr;
|
|
int i, nids;
|
|
|
|
#ifdef HAVE_BERKELEY_DB2
|
|
memset( &k2, 0, sizeof( k2 ) );
|
|
memset( &data, 0, sizeof( data ) );
|
|
#endif
|
|
|
|
/* Debug( LDAP_DEBUG_TRACE, "=> idl_fetch\n", 0, 0, 0 ); */
|
|
|
|
data = ldbm_cache_fetch( db, key );
|
|
|
|
if ( (idl = (IDList *) data.dptr) == NULL ) {
|
|
return( NULL );
|
|
}
|
|
|
|
/* regular block */
|
|
if ( ! INDIRECT_BLOCK( idl ) ) {
|
|
/*
|
|
Debug( LDAP_DEBUG_TRACE, "<= idl_fetch %d ids (%d max)\n",
|
|
idl->b_nids, idl->b_nmax, 0 );
|
|
*/
|
|
|
|
/* make sure we have the current value of highest id */
|
|
if ( idl->b_nmax == ALLIDSBLOCK ) {
|
|
idl_free( idl );
|
|
idl = idl_allids( be );
|
|
}
|
|
return( idl );
|
|
}
|
|
|
|
/*
|
|
* this is an indirect block which points to other blocks.
|
|
* we need to read in all the blocks it points to and construct
|
|
* a big id list containing all the ids, which we will return.
|
|
*/
|
|
|
|
/* count the number of blocks & allocate space for pointers to them */
|
|
for ( i = 0; idl->b_ids[i] != NOID; i++ )
|
|
; /* NULL */
|
|
tmp = (IDList **) ch_malloc( (i + 1) * sizeof(IDList *) );
|
|
|
|
/* read in all the blocks */
|
|
kstr = (char *) ch_malloc( key.dsize + 20 );
|
|
nids = 0;
|
|
for ( i = 0; idl->b_ids[i] != NOID; i++ ) {
|
|
sprintf( kstr, "%c%s%ld", CONT_PREFIX, key.dptr, idl->b_ids[i] );
|
|
k2.dptr = kstr;
|
|
k2.dsize = strlen( kstr ) + 1;
|
|
|
|
if ( (tmp[i] = idl_fetch_one( be, db, k2 )) == NULL ) {
|
|
Debug( LDAP_DEBUG_ANY,
|
|
"idl_fetch of (%s) returns NULL\n", k2.dptr, 0, 0 );
|
|
continue;
|
|
}
|
|
|
|
nids += tmp[i]->b_nids;
|
|
}
|
|
tmp[i] = NULL;
|
|
idl_free( idl );
|
|
|
|
/* allocate space for the big block */
|
|
idl = idl_alloc( nids );
|
|
idl->b_nids = nids;
|
|
nids = 0;
|
|
|
|
/* copy in all the ids from the component blocks */
|
|
for ( i = 0; tmp[i] != NULL; i++ ) {
|
|
if ( tmp[i] == NULL ) {
|
|
continue;
|
|
}
|
|
|
|
SAFEMEMCPY( (char *) &idl->b_ids[nids], (char *) tmp[i]->b_ids,
|
|
tmp[i]->b_nids * sizeof(ID) );
|
|
nids += tmp[i]->b_nids;
|
|
|
|
idl_free( tmp[i] );
|
|
}
|
|
free( (char *) tmp );
|
|
|
|
Debug( LDAP_DEBUG_TRACE, "<= idl_fetch %lu ids (%lu max)\n",
|
|
idl->b_nids, idl->b_nmax, 0 );
|
|
return( idl );
|
|
}
|
|
|
|
static int
|
|
idl_store(
|
|
Backend *be,
|
|
struct dbcache *db,
|
|
Datum key,
|
|
IDList *idl
|
|
)
|
|
{
|
|
int rc, flags;
|
|
Datum data;
|
|
struct ldbminfo *li = (struct ldbminfo *) be->be_private;
|
|
|
|
#ifdef HAVE_BERKELEY_DB2
|
|
memset( &data, 0, sizeof( data ) );
|
|
#endif
|
|
|
|
/* Debug( LDAP_DEBUG_TRACE, "=> idl_store\n", 0, 0, 0 ); */
|
|
|
|
data.dptr = (char *) idl;
|
|
data.dsize = (2 + idl->b_nmax) * sizeof(ID);
|
|
|
|
#ifdef LDBM_DEBUG
|
|
Statslog( LDAP_DEBUG_STATS, "<= idl_store(): rc=%d\n",
|
|
rc, 0, 0, 0, 0 );
|
|
#endif
|
|
|
|
flags = LDBM_REPLACE;
|
|
if( li->li_dbcachewsync ) flags |= LDBM_SYNC;
|
|
rc = ldbm_cache_store( db, key, data, flags );
|
|
|
|
/* Debug( LDAP_DEBUG_TRACE, "<= idl_store %d\n", rc, 0, 0 ); */
|
|
return( rc );
|
|
}
|
|
|
|
static void
|
|
idl_split_block(
|
|
IDList *b,
|
|
ID id,
|
|
IDList **n1,
|
|
IDList **n2
|
|
)
|
|
{
|
|
unsigned int i;
|
|
|
|
/* find where to split the block */
|
|
for ( i = 0; i < b->b_nids && id > b->b_ids[i]; i++ )
|
|
; /* NULL */
|
|
|
|
*n1 = idl_alloc( i == 0 ? 1 : i );
|
|
*n2 = idl_alloc( b->b_nids - i + (i == 0 ? 0 : 1));
|
|
|
|
/*
|
|
* everything before the id being inserted in the first block
|
|
* unless there is nothing, in which case the id being inserted
|
|
* goes there.
|
|
*/
|
|
SAFEMEMCPY( (char *) &(*n1)->b_ids[0], (char *) &b->b_ids[0],
|
|
i * sizeof(ID) );
|
|
(*n1)->b_nids = (i == 0 ? 1 : i);
|
|
|
|
if ( i == 0 ) {
|
|
(*n1)->b_ids[0] = id;
|
|
} else {
|
|
(*n2)->b_ids[0] = id;
|
|
}
|
|
|
|
/* the id being inserted & everything after in the second block */
|
|
SAFEMEMCPY( (char *) &(*n2)->b_ids[i == 0 ? 0 : 1],
|
|
(char *) &b->b_ids[i], (b->b_nids - i) * sizeof(ID) );
|
|
(*n2)->b_nids = b->b_nids - i + (i == 0 ? 0 : 1);
|
|
}
|
|
|
|
/*
|
|
* idl_change_first - called when an indirect block's first key has
|
|
* changed, meaning it needs to be stored under a new key, and the
|
|
* header block pointing to it needs updating.
|
|
*/
|
|
|
|
static int
|
|
idl_change_first(
|
|
Backend *be,
|
|
struct dbcache *db,
|
|
Datum hkey, /* header block key */
|
|
IDList *h, /* header block */
|
|
int pos, /* pos in h to update */
|
|
Datum bkey, /* data block key */
|
|
IDList *b /* data block */
|
|
)
|
|
{
|
|
int rc;
|
|
|
|
/* Debug( LDAP_DEBUG_TRACE, "=> idl_change_first\n", 0, 0, 0 ); */
|
|
|
|
/* delete old key block */
|
|
if ( (rc = ldbm_cache_delete( db, bkey )) != 0 ) {
|
|
Debug( LDAP_DEBUG_ANY,
|
|
"ldbm_delete of (%s) returns %d\n", bkey.dptr, rc,
|
|
0 );
|
|
return( rc );
|
|
}
|
|
|
|
/* write block with new key */
|
|
sprintf( bkey.dptr, "%c%s%ld", CONT_PREFIX, hkey.dptr, b->b_ids[0] );
|
|
bkey.dsize = strlen( bkey.dptr ) + 1;
|
|
if ( (rc = idl_store( be, db, bkey, b )) != 0 ) {
|
|
Debug( LDAP_DEBUG_ANY,
|
|
"idl_store of (%s) returns %d\n", bkey.dptr, rc, 0 );
|
|
return( rc );
|
|
}
|
|
|
|
/* update + write indirect header block */
|
|
h->b_ids[pos] = b->b_ids[0];
|
|
if ( (rc = idl_store( be, db, hkey, h )) != 0 ) {
|
|
Debug( LDAP_DEBUG_ANY,
|
|
"idl_store of (%s) returns %d\n", hkey.dptr, rc, 0 );
|
|
return( rc );
|
|
}
|
|
|
|
return( 0 );
|
|
}
|
|
|
|
int
|
|
idl_insert_key(
|
|
Backend *be,
|
|
struct dbcache *db,
|
|
Datum key,
|
|
ID id
|
|
)
|
|
{
|
|
int i, j, first, rc;
|
|
IDList *idl, *tmp, *tmp2, *tmp3;
|
|
char *kstr;
|
|
Datum k2;
|
|
|
|
#ifdef HAVE_BERKELEY_DB2
|
|
memset( &k2, 0, sizeof( k2 ) );
|
|
#endif
|
|
|
|
if ( (idl = idl_fetch_one( be, db, key )) == NULL ) {
|
|
#ifdef LDBM_DEBUG
|
|
Statslog( LDAP_DEBUG_STATS, "=> idl_insert_key(): no key yet\n",
|
|
0, 0, 0, 0, 0 );
|
|
#endif
|
|
|
|
idl = idl_alloc( 1 );
|
|
idl->b_ids[idl->b_nids++] = id;
|
|
rc = idl_store( be, db, key, idl );
|
|
|
|
idl_free( idl );
|
|
return( rc );
|
|
}
|
|
|
|
/* regular block */
|
|
if ( ! INDIRECT_BLOCK( idl ) ) {
|
|
switch ( idl_insert( &idl, id, db->dbc_maxids ) ) {
|
|
case 0: /* id inserted - store the updated block */
|
|
case 1:
|
|
rc = idl_store( be, db, key, idl );
|
|
break;
|
|
|
|
case 2: /* id already there - nothing to do */
|
|
rc = 0;
|
|
break;
|
|
|
|
case 3: /* id not inserted - block must be split */
|
|
/* check threshold for marking this an all-id block */
|
|
if ( db->dbc_maxindirect < 2 ) {
|
|
idl_free( idl );
|
|
idl = idl_allids( be );
|
|
rc = idl_store( be, db, key, idl );
|
|
idl_free( idl );
|
|
|
|
return( rc );
|
|
}
|
|
|
|
idl_split_block( idl, id, &tmp, &tmp2 );
|
|
idl_free( idl );
|
|
|
|
/* create the header indirect block */
|
|
idl = idl_alloc( 3 );
|
|
idl->b_nmax = 3;
|
|
idl->b_nids = INDBLOCK;
|
|
idl->b_ids[0] = tmp->b_ids[0];
|
|
idl->b_ids[1] = tmp2->b_ids[0];
|
|
idl->b_ids[2] = NOID;
|
|
|
|
/* store it */
|
|
rc = idl_store( be, db, key, idl );
|
|
|
|
/* store the first id block */
|
|
kstr = (char *) ch_malloc( key.dsize + 20 );
|
|
sprintf( kstr, "%c%s%ld", CONT_PREFIX, key.dptr,
|
|
tmp->b_ids[0] );
|
|
k2.dptr = kstr;
|
|
k2.dsize = strlen( kstr ) + 1;
|
|
rc = idl_store( be, db, k2, tmp );
|
|
|
|
/* store the second id block */
|
|
sprintf( kstr, "%c%s%ld", CONT_PREFIX, key.dptr,
|
|
tmp2->b_ids[0] );
|
|
k2.dptr = kstr;
|
|
k2.dsize = strlen( kstr ) + 1;
|
|
rc = idl_store( be, db, k2, tmp2 );
|
|
|
|
free( kstr );
|
|
idl_free( tmp );
|
|
idl_free( tmp2 );
|
|
break;
|
|
}
|
|
|
|
idl_free( idl );
|
|
return( rc );
|
|
}
|
|
|
|
/*
|
|
* this is an indirect block which points to other blocks.
|
|
* we need to read in the block into which the id should be
|
|
* inserted, then insert the id and store the block. we might
|
|
* have to split the block if it is full, which means we also
|
|
* need to write a new "header" block.
|
|
*/
|
|
|
|
/* select the block to try inserting into */
|
|
for ( i = 0; idl->b_ids[i] != NOID && id > idl->b_ids[i]; i++ )
|
|
; /* NULL */
|
|
if ( i != 0 ) {
|
|
i--;
|
|
first = 0;
|
|
} else {
|
|
first = 1;
|
|
}
|
|
|
|
/* get the block */
|
|
kstr = (char *) ch_malloc( key.dsize + 20 );
|
|
sprintf( kstr, "%c%s%ld", CONT_PREFIX, key.dptr, idl->b_ids[i] );
|
|
k2.dptr = kstr;
|
|
k2.dsize = strlen( kstr ) + 1;
|
|
if ( (tmp = idl_fetch_one( be, db, k2 )) == NULL ) {
|
|
Debug( LDAP_DEBUG_ANY, "nonexistent continuation block (%s)\n",
|
|
k2.dptr, 0, 0 );
|
|
return( -1 );
|
|
}
|
|
|
|
/* insert the id */
|
|
switch ( idl_insert( &tmp, id, db->dbc_maxids ) ) {
|
|
case 0: /* id inserted ok */
|
|
if ( (rc = idl_store( be, db, k2, tmp )) != 0 ) {
|
|
Debug( LDAP_DEBUG_ANY,
|
|
"idl_store of (%s) returns %d\n", k2.dptr, rc, 0 );
|
|
}
|
|
break;
|
|
|
|
case 1: /* id inserted - first id in block has changed */
|
|
/*
|
|
* key for this block has changed, so we have to
|
|
* write the block under the new key, delete the
|
|
* old key block + update and write the indirect
|
|
* header block.
|
|
*/
|
|
|
|
rc = idl_change_first( be, db, key, idl, i, k2, tmp );
|
|
break;
|
|
|
|
case 2: /* id not inserted - already there */
|
|
break;
|
|
|
|
case 3: /* id not inserted - block is full */
|
|
/*
|
|
* first, see if it will fit in the next block,
|
|
* without splitting, unless we're trying to insert
|
|
* into the beginning of the first block.
|
|
*/
|
|
|
|
/* is there a next block? */
|
|
if ( !first && idl->b_ids[i + 1] != NOID ) {
|
|
/* read it in */
|
|
sprintf( kstr, "%c%s%ld", CONT_PREFIX, key.dptr,
|
|
idl->b_ids[i + 1] );
|
|
k2.dptr = kstr;
|
|
k2.dsize = strlen( kstr ) + 1;
|
|
if ( (tmp2 = idl_fetch_one( be, db, k2 )) == NULL ) {
|
|
Debug( LDAP_DEBUG_ANY,
|
|
"idl_fetch_one (%s) returns NULL\n",
|
|
k2.dptr, 0, 0 );
|
|
break;
|
|
}
|
|
|
|
switch ( (rc = idl_insert( &tmp2, id,
|
|
db->dbc_maxids )) ) {
|
|
case 1: /* id inserted first in block */
|
|
rc = idl_change_first( be, db, key, idl,
|
|
i + 1, k2, tmp2 );
|
|
/* FALL */
|
|
|
|
case 2: /* id already there - how? */
|
|
case 0: /* id inserted */
|
|
if ( rc == 2 ) {
|
|
Debug( LDAP_DEBUG_ANY,
|
|
"id %lu already in next block\n",
|
|
id, 0, 0 );
|
|
}
|
|
free( kstr );
|
|
idl_free( tmp );
|
|
idl_free( tmp2 );
|
|
idl_free( idl );
|
|
return( 0 );
|
|
|
|
case 3: /* split the original block */
|
|
idl_free( tmp2 );
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* must split the block, write both new blocks + update
|
|
* and write the indirect header block.
|
|
*/
|
|
|
|
/* count how many indirect blocks */
|
|
for ( j = 0; idl->b_ids[j] != NOID; j++ )
|
|
; /* NULL */
|
|
|
|
/* check it against all-id thresholed */
|
|
if ( j + 1 > db->dbc_maxindirect ) {
|
|
/*
|
|
* we've passed the all-id threshold, meaning
|
|
* that this set of blocks should be replaced
|
|
* by a single "all-id" block. our job: delete
|
|
* all the indirect blocks, and replace the header
|
|
* block by an all-id block.
|
|
*/
|
|
|
|
/* delete all indirect blocks */
|
|
for ( j = 0; idl->b_ids[j] != NOID; j++ ) {
|
|
sprintf( kstr,"%c%s%ld", CONT_PREFIX, key.dptr,
|
|
idl->b_ids[j] );
|
|
k2.dptr = kstr;
|
|
k2.dsize = strlen( kstr ) + 1;
|
|
|
|
rc = ldbm_cache_delete( db, k2 );
|
|
}
|
|
|
|
/* store allid block in place of header block */
|
|
idl_free( idl );
|
|
idl = idl_allids( be );
|
|
rc = idl_store( be, db, key, idl );
|
|
|
|
free( kstr );
|
|
idl_free( idl );
|
|
idl_free( tmp );
|
|
return( rc );
|
|
}
|
|
|
|
idl_split_block( tmp, id, &tmp2, &tmp3 );
|
|
idl_free( tmp );
|
|
|
|
/* create a new updated indirect header block */
|
|
tmp = idl_alloc( idl->b_nmax + 1 );
|
|
tmp->b_nids = INDBLOCK;
|
|
/* everything up to the split block */
|
|
SAFEMEMCPY( (char *) tmp->b_ids, (char *) idl->b_ids,
|
|
i * sizeof(ID) );
|
|
/* the two new blocks */
|
|
tmp->b_ids[i] = tmp2->b_ids[0];
|
|
tmp->b_ids[i + 1] = tmp3->b_ids[0];
|
|
/* everything after the split block */
|
|
SAFEMEMCPY( (char *) &tmp->b_ids[i + 2], (char *)
|
|
&idl->b_ids[i + 1], (idl->b_nmax - i - 1) * sizeof(ID) );
|
|
|
|
/* store the header block */
|
|
rc = idl_store( be, db, key, tmp );
|
|
|
|
/* store the first id block */
|
|
sprintf( kstr, "%c%s%ld", CONT_PREFIX, key.dptr,
|
|
tmp2->b_ids[0] );
|
|
k2.dptr = kstr;
|
|
k2.dsize = strlen( kstr ) + 1;
|
|
rc = idl_store( be, db, k2, tmp2 );
|
|
|
|
/* store the second id block */
|
|
sprintf( kstr, "%c%s%ld", CONT_PREFIX, key.dptr,
|
|
tmp3->b_ids[0] );
|
|
k2.dptr = kstr;
|
|
k2.dsize = strlen( kstr ) + 1;
|
|
rc = idl_store( be, db, k2, tmp3 );
|
|
|
|
idl_free( tmp2 );
|
|
idl_free( tmp3 );
|
|
break;
|
|
}
|
|
|
|
free( kstr );
|
|
idl_free( tmp );
|
|
idl_free( idl );
|
|
return( rc );
|
|
}
|
|
|
|
/*
|
|
* idl_insert - insert an id into an id list.
|
|
* returns 0 id inserted
|
|
* 1 id inserted, first id in block has changed
|
|
* 2 id not inserted, already there
|
|
* 3 id not inserted, block must be split
|
|
*/
|
|
|
|
int
|
|
idl_insert( IDList **idl, ID id, int maxids )
|
|
{
|
|
unsigned int i, j;
|
|
|
|
if ( ALLIDS( *idl ) ) {
|
|
return( 2 ); /* already there */
|
|
}
|
|
|
|
/* is it already there? XXX bin search XXX */
|
|
for ( i = 0; i < (*idl)->b_nids && id > (*idl)->b_ids[i]; i++ ) {
|
|
; /* NULL */
|
|
}
|
|
if ( i < (*idl)->b_nids && (*idl)->b_ids[i] == id ) {
|
|
return( 2 ); /* already there */
|
|
}
|
|
|
|
/* do we need to make room for it? */
|
|
if ( (*idl)->b_nids == (*idl)->b_nmax ) {
|
|
/* make room or indicate block needs splitting */
|
|
if ( (*idl)->b_nmax == maxids ) {
|
|
return( 3 ); /* block needs splitting */
|
|
}
|
|
|
|
(*idl)->b_nmax *= 2;
|
|
if ( (*idl)->b_nmax > maxids ) {
|
|
(*idl)->b_nmax = maxids;
|
|
}
|
|
*idl = (IDList *) ch_realloc( (char *) *idl,
|
|
((*idl)->b_nmax + 2) * sizeof(ID) );
|
|
}
|
|
|
|
/* make a slot for the new id */
|
|
for ( j = (*idl)->b_nids; j != i; j-- ) {
|
|
(*idl)->b_ids[j] = (*idl)->b_ids[j-1];
|
|
}
|
|
(*idl)->b_ids[i] = id;
|
|
(*idl)->b_nids++;
|
|
(void) memset( (char *) &(*idl)->b_ids[(*idl)->b_nids], '\0',
|
|
((*idl)->b_nmax - (*idl)->b_nids) * sizeof(ID) );
|
|
|
|
return( i == 0 ? 1 : 0 ); /* inserted - first id changed or not */
|
|
}
|
|
|
|
int
|
|
idl_delete_key (
|
|
Backend *be,
|
|
struct dbcache *db,
|
|
Datum key,
|
|
ID id
|
|
)
|
|
{
|
|
Datum k2;
|
|
IDList *idl, *tmp;
|
|
unsigned i;
|
|
int j, nids;
|
|
char *kstr;
|
|
|
|
if ( (idl = idl_fetch_one( be, db, key ) ) == NULL )
|
|
{
|
|
/* It wasn't found. Hmm... */
|
|
return -1;
|
|
}
|
|
|
|
if ( ! INDIRECT_BLOCK( idl ) )
|
|
{
|
|
for ( i=0; i < idl->b_nids; i++ )
|
|
{
|
|
if ( idl->b_ids[i] == id )
|
|
{
|
|
memcpy ( &idl->b_ids[i], &idl->b_ids[i+1], sizeof(ID)*(idl->b_nids-(i+1)));
|
|
idl->b_ids[idl->b_nids-1] = NOID;
|
|
idl->b_nids--;
|
|
if ( idl->b_nids )
|
|
idl_store( be, db, key, idl );
|
|
else
|
|
ldbm_cache_delete( db, key );
|
|
return 0;
|
|
}
|
|
/* We didn't find the ID. Hmmm... */
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/* We have to go through an indirect block and find the ID
|
|
in the list of IDL's
|
|
*/
|
|
for ( nids = 0; idl->b_ids[nids] != NOID; nids++ )
|
|
; /* NULL */
|
|
kstr = (char *) ch_malloc( key.dsize + 20 );
|
|
for ( j = 0; idl->b_ids[j] != NOID; j++ )
|
|
{
|
|
memset( &k2, 0, sizeof(k2) );
|
|
sprintf( kstr, "%c%s%ld", CONT_PREFIX, key.dptr, idl->b_ids[j] );
|
|
k2.dptr = kstr;
|
|
k2.dsize = strlen( kstr ) + 1;
|
|
|
|
if ( (tmp = idl_fetch_one( be, db, k2 )) == NULL ) {
|
|
Debug( LDAP_DEBUG_ANY,
|
|
"idl_fetch of (%s) returns NULL\n", k2.dptr, 0, 0 );
|
|
continue;
|
|
}
|
|
/*
|
|
Now try to find the ID in tmp
|
|
*/
|
|
for ( i=0; i < tmp->b_nids; i++ )
|
|
{
|
|
if ( tmp->b_ids[i] == id )
|
|
{
|
|
memcpy ( &tmp->b_ids[i], &tmp->b_ids[i+1], sizeof(ID)*(tmp->b_nids-(i+1)));
|
|
tmp->b_ids[tmp->b_nids-1] = NOID;
|
|
tmp->b_nids--;
|
|
if ( tmp->b_nids )
|
|
idl_store ( be, db, k2, tmp );
|
|
else
|
|
{
|
|
ldbm_cache_delete( db, k2 );
|
|
memcpy ( &idl->b_ids[j], &idl->b_ids[j+1], sizeof(ID)*(nids-(j+1)));
|
|
idl->b_ids[nids-1] = NOID;
|
|
nids--;
|
|
if ( ! nids )
|
|
ldbm_cache_delete( db, key );
|
|
else
|
|
idl_store( be, db, key, idl );
|
|
}
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static IDList *
|
|
idl_dup( IDList *idl )
|
|
{
|
|
IDList *new;
|
|
|
|
if ( idl == NULL ) {
|
|
return( NULL );
|
|
}
|
|
|
|
new = idl_alloc( idl->b_nmax );
|
|
SAFEMEMCPY( (char *) new, (char *) idl, (idl->b_nmax + 2)
|
|
* sizeof(ID) );
|
|
|
|
return( new );
|
|
}
|
|
|
|
static IDList *
|
|
idl_min( IDList *a, IDList *b )
|
|
{
|
|
return( a->b_nids > b->b_nids ? b : a );
|
|
}
|
|
|
|
/*
|
|
* idl_intersection - return a intersection b
|
|
*/
|
|
|
|
IDList *
|
|
idl_intersection(
|
|
Backend *be,
|
|
IDList *a,
|
|
IDList *b
|
|
)
|
|
{
|
|
unsigned int ai, bi, ni;
|
|
IDList *n;
|
|
|
|
if ( a == NULL || b == NULL ) {
|
|
return( NULL );
|
|
}
|
|
if ( ALLIDS( a ) ) {
|
|
return( idl_dup( b ) );
|
|
}
|
|
if ( ALLIDS( b ) ) {
|
|
return( idl_dup( a ) );
|
|
}
|
|
|
|
n = idl_dup( idl_min( a, b ) );
|
|
|
|
for ( ni = 0, ai = 0, bi = 0; ai < a->b_nids; ai++ ) {
|
|
for ( ; bi < b->b_nids && b->b_ids[bi] < a->b_ids[ai]; bi++ )
|
|
; /* NULL */
|
|
|
|
if ( bi == b->b_nids ) {
|
|
break;
|
|
}
|
|
|
|
if ( b->b_ids[bi] == a->b_ids[ai] ) {
|
|
n->b_ids[ni++] = a->b_ids[ai];
|
|
}
|
|
}
|
|
|
|
if ( ni == 0 ) {
|
|
idl_free( n );
|
|
return( NULL );
|
|
}
|
|
n->b_nids = ni;
|
|
|
|
return( n );
|
|
}
|
|
|
|
/*
|
|
* idl_union - return a union b
|
|
*/
|
|
|
|
IDList *
|
|
idl_union(
|
|
Backend *be,
|
|
IDList *a,
|
|
IDList *b
|
|
)
|
|
{
|
|
unsigned int ai, bi, ni;
|
|
IDList *n;
|
|
|
|
if ( a == NULL ) {
|
|
return( idl_dup( b ) );
|
|
}
|
|
if ( b == NULL ) {
|
|
return( idl_dup( a ) );
|
|
}
|
|
if ( ALLIDS( a ) || ALLIDS( b ) ) {
|
|
return( idl_allids( be ) );
|
|
}
|
|
|
|
if ( b->b_nids < a->b_nids ) {
|
|
n = a;
|
|
a = b;
|
|
b = n;
|
|
}
|
|
|
|
n = idl_alloc( a->b_nids + b->b_nids );
|
|
|
|
for ( ni = 0, ai = 0, bi = 0; ai < a->b_nids && bi < b->b_nids; ) {
|
|
if ( a->b_ids[ai] < b->b_ids[bi] ) {
|
|
n->b_ids[ni++] = a->b_ids[ai++];
|
|
} else if ( b->b_ids[bi] < a->b_ids[ai] ) {
|
|
n->b_ids[ni++] = b->b_ids[bi++];
|
|
} else {
|
|
n->b_ids[ni++] = a->b_ids[ai];
|
|
ai++, bi++;
|
|
}
|
|
}
|
|
|
|
for ( ; ai < a->b_nids; ai++ ) {
|
|
n->b_ids[ni++] = a->b_ids[ai];
|
|
}
|
|
for ( ; bi < b->b_nids; bi++ ) {
|
|
n->b_ids[ni++] = b->b_ids[bi];
|
|
}
|
|
n->b_nids = ni;
|
|
|
|
return( n );
|
|
}
|
|
|
|
/*
|
|
* idl_notin - return a intersection ~b (or a minus b)
|
|
*/
|
|
|
|
IDList *
|
|
idl_notin(
|
|
Backend *be,
|
|
IDList *a,
|
|
IDList *b
|
|
)
|
|
{
|
|
unsigned int ni, ai, bi;
|
|
IDList *n;
|
|
|
|
if ( a == NULL ) {
|
|
return( NULL );
|
|
}
|
|
if ( b == NULL || ALLIDS( b )) {
|
|
return( idl_dup( a ) );
|
|
}
|
|
|
|
if ( ALLIDS( a ) ) {
|
|
n = idl_alloc( SLAPD_LDBM_MIN_MAXIDS );
|
|
ni = 0;
|
|
|
|
for ( ai = 1, bi = 0; ai < a->b_nids && ni < n->b_nmax &&
|
|
bi < b->b_nmax; ai++ ) {
|
|
if ( b->b_ids[bi] == ai ) {
|
|
bi++;
|
|
} else {
|
|
n->b_ids[ni++] = ai;
|
|
}
|
|
}
|
|
|
|
for ( ; ai < a->b_nids && ni < n->b_nmax; ai++ ) {
|
|
n->b_ids[ni++] = ai;
|
|
}
|
|
|
|
if ( ni == n->b_nmax ) {
|
|
idl_free( n );
|
|
return( idl_allids( be ) );
|
|
} else {
|
|
n->b_nids = ni;
|
|
return( n );
|
|
}
|
|
}
|
|
|
|
n = idl_dup( a );
|
|
|
|
ni = 0;
|
|
for ( ai = 0, bi = 0; ai < a->b_nids; ai++ ) {
|
|
for ( ; bi < b->b_nids && b->b_ids[bi] < a->b_ids[ai];
|
|
bi++ ) {
|
|
; /* NULL */
|
|
}
|
|
|
|
if ( bi == b->b_nids ) {
|
|
break;
|
|
}
|
|
|
|
if ( b->b_ids[bi] != a->b_ids[ai] ) {
|
|
n->b_ids[ni++] = a->b_ids[ai];
|
|
}
|
|
}
|
|
|
|
for ( ; ai < a->b_nids; ai++ ) {
|
|
n->b_ids[ni++] = a->b_ids[ai];
|
|
}
|
|
n->b_nids = ni;
|
|
|
|
return( n );
|
|
}
|
|
|
|
ID
|
|
idl_firstid( IDList *idl )
|
|
{
|
|
if ( idl == NULL || idl->b_nids == 0 ) {
|
|
return( NOID );
|
|
}
|
|
|
|
if ( ALLIDS( idl ) ) {
|
|
return( idl->b_nids == 1 ? NOID : 1 );
|
|
}
|
|
|
|
return( idl->b_ids[0] );
|
|
}
|
|
|
|
ID
|
|
idl_nextid( IDList *idl, ID id )
|
|
{
|
|
unsigned int i;
|
|
|
|
if ( ALLIDS( idl ) ) {
|
|
return( ++id < idl->b_nids ? id : NOID );
|
|
}
|
|
|
|
for ( i = 0; i < idl->b_nids && idl->b_ids[i] < id; i++ ) {
|
|
; /* NULL */
|
|
}
|
|
i++;
|
|
|
|
if ( i >= idl->b_nids ) {
|
|
return( NOID );
|
|
} else {
|
|
return( idl->b_ids[i] );
|
|
}
|
|
}
|