openldap/servers/slapd/back-bdb/idl.c
Quanah Gibson-Mount 1705fa7e55 Happy New Year
2015-02-11 15:36:57 -06:00

1578 lines
34 KiB
C

/* idl.c - ldap id list handling routines */
/* $OpenLDAP$ */
/* This work is part of OpenLDAP Software <http://www.openldap.org/>.
*
* Copyright 2000-2015 The OpenLDAP Foundation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted only as authorized by the OpenLDAP
* Public License.
*
* A copy of this license is available in the file LICENSE in the
* top-level directory of the distribution or, alternatively, at
* <http://www.OpenLDAP.org/license.html>.
*/
#include "portable.h"
#include <stdio.h>
#include <ac/string.h>
#include "back-bdb.h"
#include "idl.h"
#define IDL_MAX(x,y) ( (x) > (y) ? (x) : (y) )
#define IDL_MIN(x,y) ( (x) < (y) ? (x) : (y) )
#define IDL_CMP(x,y) ( (x) < (y) ? -1 : (x) > (y) )
#define IDL_LRU_DELETE( bdb, e ) do { \
if ( (e) == (bdb)->bi_idl_lru_head ) { \
if ( (e)->idl_lru_next == (bdb)->bi_idl_lru_head ) { \
(bdb)->bi_idl_lru_head = NULL; \
} else { \
(bdb)->bi_idl_lru_head = (e)->idl_lru_next; \
} \
} \
if ( (e) == (bdb)->bi_idl_lru_tail ) { \
if ( (e)->idl_lru_prev == (bdb)->bi_idl_lru_tail ) { \
assert( (bdb)->bi_idl_lru_head == NULL ); \
(bdb)->bi_idl_lru_tail = NULL; \
} else { \
(bdb)->bi_idl_lru_tail = (e)->idl_lru_prev; \
} \
} \
(e)->idl_lru_next->idl_lru_prev = (e)->idl_lru_prev; \
(e)->idl_lru_prev->idl_lru_next = (e)->idl_lru_next; \
} while ( 0 )
static int
bdb_idl_entry_cmp( const void *v_idl1, const void *v_idl2 )
{
const bdb_idl_cache_entry_t *idl1 = v_idl1, *idl2 = v_idl2;
int rc;
if ((rc = SLAP_PTRCMP( idl1->db, idl2->db ))) return rc;
if ((rc = idl1->kstr.bv_len - idl2->kstr.bv_len )) return rc;
return ( memcmp ( idl1->kstr.bv_val, idl2->kstr.bv_val , idl1->kstr.bv_len ) );
}
#if IDL_DEBUG > 0
static void idl_check( ID *ids )
{
if( BDB_IDL_IS_RANGE( ids ) ) {
assert( BDB_IDL_RANGE_FIRST(ids) <= BDB_IDL_RANGE_LAST(ids) );
} else {
ID i;
for( i=1; i < ids[0]; i++ ) {
assert( ids[i+1] > ids[i] );
}
}
}
#if IDL_DEBUG > 1
static void idl_dump( ID *ids )
{
if( BDB_IDL_IS_RANGE( ids ) ) {
Debug( LDAP_DEBUG_ANY,
"IDL: range ( %ld - %ld )\n",
(long) BDB_IDL_RANGE_FIRST( ids ),
(long) BDB_IDL_RANGE_LAST( ids ) );
} else {
ID i;
Debug( LDAP_DEBUG_ANY, "IDL: size %ld", (long) ids[0], 0, 0 );
for( i=1; i<=ids[0]; i++ ) {
if( i % 16 == 1 ) {
Debug( LDAP_DEBUG_ANY, "\n", 0, 0, 0 );
}
Debug( LDAP_DEBUG_ANY, " %02lx", (long) ids[i], 0, 0 );
}
Debug( LDAP_DEBUG_ANY, "\n", 0, 0, 0 );
}
idl_check( ids );
}
#endif /* IDL_DEBUG > 1 */
#endif /* IDL_DEBUG > 0 */
unsigned bdb_idl_search( ID *ids, ID id )
{
#define IDL_BINARY_SEARCH 1
#ifdef IDL_BINARY_SEARCH
/*
* binary search of id in ids
* if found, returns position of id
* if not found, returns first postion greater than id
*/
unsigned base = 0;
unsigned cursor = 1;
int val = 0;
unsigned n = ids[0];
#if IDL_DEBUG > 0
idl_check( ids );
#endif
while( 0 < n ) {
unsigned pivot = n >> 1;
cursor = base + pivot + 1;
val = IDL_CMP( id, ids[cursor] );
if( val < 0 ) {
n = pivot;
} else if ( val > 0 ) {
base = cursor;
n -= pivot + 1;
} else {
return cursor;
}
}
if( val > 0 ) {
++cursor;
}
return cursor;
#else
/* (reverse) linear search */
int i;
#if IDL_DEBUG > 0
idl_check( ids );
#endif
for( i=ids[0]; i; i-- ) {
if( id > ids[i] ) {
break;
}
}
return i+1;
#endif
}
int bdb_idl_insert( ID *ids, ID id )
{
unsigned x;
#if IDL_DEBUG > 1
Debug( LDAP_DEBUG_ANY, "insert: %04lx at %d\n", (long) id, x, 0 );
idl_dump( ids );
#elif IDL_DEBUG > 0
idl_check( ids );
#endif
if (BDB_IDL_IS_RANGE( ids )) {
/* if already in range, treat as a dup */
if (id >= BDB_IDL_RANGE_FIRST(ids) && id <= BDB_IDL_RANGE_LAST(ids))
return -1;
if (id < BDB_IDL_RANGE_FIRST(ids))
ids[1] = id;
else if (id > BDB_IDL_RANGE_LAST(ids))
ids[2] = id;
return 0;
}
x = bdb_idl_search( ids, id );
assert( x > 0 );
if( x < 1 ) {
/* internal error */
return -2;
}
if ( x <= ids[0] && ids[x] == id ) {
/* duplicate */
return -1;
}
if ( ++ids[0] >= BDB_IDL_DB_MAX ) {
if( id < ids[1] ) {
ids[1] = id;
ids[2] = ids[ids[0]-1];
} else if ( ids[ids[0]-1] < id ) {
ids[2] = id;
} else {
ids[2] = ids[ids[0]-1];
}
ids[0] = NOID;
} else {
/* insert id */
AC_MEMCPY( &ids[x+1], &ids[x], (ids[0]-x) * sizeof(ID) );
ids[x] = id;
}
#if IDL_DEBUG > 1
idl_dump( ids );
#elif IDL_DEBUG > 0
idl_check( ids );
#endif
return 0;
}
int bdb_idl_delete( ID *ids, ID id )
{
unsigned x;
#if IDL_DEBUG > 1
Debug( LDAP_DEBUG_ANY, "delete: %04lx at %d\n", (long) id, x, 0 );
idl_dump( ids );
#elif IDL_DEBUG > 0
idl_check( ids );
#endif
if (BDB_IDL_IS_RANGE( ids )) {
/* If deleting a range boundary, adjust */
if ( ids[1] == id )
ids[1]++;
else if ( ids[2] == id )
ids[2]--;
/* deleting from inside a range is a no-op */
/* If the range has collapsed, re-adjust */
if ( ids[1] > ids[2] )
ids[0] = 0;
else if ( ids[1] == ids[2] )
ids[1] = 1;
return 0;
}
x = bdb_idl_search( ids, id );
assert( x > 0 );
if( x <= 0 ) {
/* internal error */
return -2;
}
if( x > ids[0] || ids[x] != id ) {
/* not found */
return -1;
} else if ( --ids[0] == 0 ) {
if( x != 1 ) {
return -3;
}
} else {
AC_MEMCPY( &ids[x], &ids[x+1], (1+ids[0]-x) * sizeof(ID) );
}
#if IDL_DEBUG > 1
idl_dump( ids );
#elif IDL_DEBUG > 0
idl_check( ids );
#endif
return 0;
}
static char *
bdb_show_key(
DBT *key,
char *buf )
{
if ( key->size == 4 /* LUTIL_HASH_BYTES */ ) {
unsigned char *c = key->data;
sprintf( buf, "[%02x%02x%02x%02x]", c[0], c[1], c[2], c[3] );
return buf;
} else {
return key->data;
}
}
/* Find a db/key pair in the IDL cache. If ids is non-NULL,
* copy the cached IDL into it, otherwise just return the status.
*/
int
bdb_idl_cache_get(
struct bdb_info *bdb,
DB *db,
DBT *key,
ID *ids )
{
bdb_idl_cache_entry_t idl_tmp;
bdb_idl_cache_entry_t *matched_idl_entry;
int rc = LDAP_NO_SUCH_OBJECT;
DBT2bv( key, &idl_tmp.kstr );
idl_tmp.db = db;
ldap_pvt_thread_rdwr_rlock( &bdb->bi_idl_tree_rwlock );
matched_idl_entry = avl_find( bdb->bi_idl_tree, &idl_tmp,
bdb_idl_entry_cmp );
if ( matched_idl_entry != NULL ) {
if ( matched_idl_entry->idl && ids )
BDB_IDL_CPY( ids, matched_idl_entry->idl );
matched_idl_entry->idl_flags |= CACHE_ENTRY_REFERENCED;
if ( matched_idl_entry->idl )
rc = LDAP_SUCCESS;
else
rc = DB_NOTFOUND;
}
ldap_pvt_thread_rdwr_runlock( &bdb->bi_idl_tree_rwlock );
return rc;
}
void
bdb_idl_cache_put(
struct bdb_info *bdb,
DB *db,
DBT *key,
ID *ids,
int rc )
{
bdb_idl_cache_entry_t idl_tmp;
bdb_idl_cache_entry_t *ee, *eprev;
if ( rc == DB_NOTFOUND || BDB_IDL_IS_ZERO( ids ))
return;
DBT2bv( key, &idl_tmp.kstr );
ee = (bdb_idl_cache_entry_t *) ch_malloc(
sizeof( bdb_idl_cache_entry_t ) );
ee->db = db;
ee->idl = (ID*) ch_malloc( BDB_IDL_SIZEOF ( ids ) );
BDB_IDL_CPY( ee->idl, ids );
ee->idl_lru_prev = NULL;
ee->idl_lru_next = NULL;
ee->idl_flags = 0;
ber_dupbv( &ee->kstr, &idl_tmp.kstr );
ldap_pvt_thread_rdwr_wlock( &bdb->bi_idl_tree_rwlock );
if ( avl_insert( &bdb->bi_idl_tree, (caddr_t) ee,
bdb_idl_entry_cmp, avl_dup_error ))
{
ch_free( ee->kstr.bv_val );
ch_free( ee->idl );
ch_free( ee );
ldap_pvt_thread_rdwr_wunlock( &bdb->bi_idl_tree_rwlock );
return;
}
ldap_pvt_thread_mutex_lock( &bdb->bi_idl_tree_lrulock );
/* LRU_ADD */
if ( bdb->bi_idl_lru_head ) {
assert( bdb->bi_idl_lru_tail != NULL );
assert( bdb->bi_idl_lru_head->idl_lru_prev != NULL );
assert( bdb->bi_idl_lru_head->idl_lru_next != NULL );
ee->idl_lru_next = bdb->bi_idl_lru_head;
ee->idl_lru_prev = bdb->bi_idl_lru_head->idl_lru_prev;
bdb->bi_idl_lru_head->idl_lru_prev->idl_lru_next = ee;
bdb->bi_idl_lru_head->idl_lru_prev = ee;
} else {
ee->idl_lru_next = ee->idl_lru_prev = ee;
bdb->bi_idl_lru_tail = ee;
}
bdb->bi_idl_lru_head = ee;
if ( bdb->bi_idl_cache_size >= bdb->bi_idl_cache_max_size ) {
int i;
eprev = bdb->bi_idl_lru_tail;
for ( i = 0; (ee = eprev) != NULL && i < 10; i++ ) {
eprev = ee->idl_lru_prev;
if ( eprev == ee ) {
eprev = NULL;
}
if ( ee->idl_flags & CACHE_ENTRY_REFERENCED ) {
ee->idl_flags ^= CACHE_ENTRY_REFERENCED;
continue;
}
if ( avl_delete( &bdb->bi_idl_tree, (caddr_t) ee,
bdb_idl_entry_cmp ) == NULL ) {
Debug( LDAP_DEBUG_ANY, "=> bdb_idl_cache_put: "
"AVL delete failed\n",
0, 0, 0 );
}
IDL_LRU_DELETE( bdb, ee );
i++;
--bdb->bi_idl_cache_size;
ch_free( ee->kstr.bv_val );
ch_free( ee->idl );
ch_free( ee );
}
bdb->bi_idl_lru_tail = eprev;
assert( bdb->bi_idl_lru_tail != NULL
|| bdb->bi_idl_lru_head == NULL );
}
bdb->bi_idl_cache_size++;
ldap_pvt_thread_mutex_unlock( &bdb->bi_idl_tree_lrulock );
ldap_pvt_thread_rdwr_wunlock( &bdb->bi_idl_tree_rwlock );
}
void
bdb_idl_cache_del(
struct bdb_info *bdb,
DB *db,
DBT *key )
{
bdb_idl_cache_entry_t *matched_idl_entry, idl_tmp;
DBT2bv( key, &idl_tmp.kstr );
idl_tmp.db = db;
ldap_pvt_thread_rdwr_wlock( &bdb->bi_idl_tree_rwlock );
matched_idl_entry = avl_find( bdb->bi_idl_tree, &idl_tmp,
bdb_idl_entry_cmp );
if ( matched_idl_entry != NULL ) {
if ( avl_delete( &bdb->bi_idl_tree, (caddr_t) matched_idl_entry,
bdb_idl_entry_cmp ) == NULL ) {
Debug( LDAP_DEBUG_ANY, "=> bdb_idl_cache_del: "
"AVL delete failed\n",
0, 0, 0 );
}
--bdb->bi_idl_cache_size;
ldap_pvt_thread_mutex_lock( &bdb->bi_idl_tree_lrulock );
IDL_LRU_DELETE( bdb, matched_idl_entry );
ldap_pvt_thread_mutex_unlock( &bdb->bi_idl_tree_lrulock );
free( matched_idl_entry->kstr.bv_val );
if ( matched_idl_entry->idl )
free( matched_idl_entry->idl );
free( matched_idl_entry );
}
ldap_pvt_thread_rdwr_wunlock( &bdb->bi_idl_tree_rwlock );
}
void
bdb_idl_cache_add_id(
struct bdb_info *bdb,
DB *db,
DBT *key,
ID id )
{
bdb_idl_cache_entry_t *cache_entry, idl_tmp;
DBT2bv( key, &idl_tmp.kstr );
idl_tmp.db = db;
ldap_pvt_thread_rdwr_wlock( &bdb->bi_idl_tree_rwlock );
cache_entry = avl_find( bdb->bi_idl_tree, &idl_tmp,
bdb_idl_entry_cmp );
if ( cache_entry != NULL ) {
if ( !BDB_IDL_IS_RANGE( cache_entry->idl ) &&
cache_entry->idl[0] < BDB_IDL_DB_MAX ) {
size_t s = BDB_IDL_SIZEOF( cache_entry->idl ) + sizeof(ID);
cache_entry->idl = ch_realloc( cache_entry->idl, s );
}
bdb_idl_insert( cache_entry->idl, id );
}
ldap_pvt_thread_rdwr_wunlock( &bdb->bi_idl_tree_rwlock );
}
void
bdb_idl_cache_del_id(
struct bdb_info *bdb,
DB *db,
DBT *key,
ID id )
{
bdb_idl_cache_entry_t *cache_entry, idl_tmp;
DBT2bv( key, &idl_tmp.kstr );
idl_tmp.db = db;
ldap_pvt_thread_rdwr_wlock( &bdb->bi_idl_tree_rwlock );
cache_entry = avl_find( bdb->bi_idl_tree, &idl_tmp,
bdb_idl_entry_cmp );
if ( cache_entry != NULL ) {
bdb_idl_delete( cache_entry->idl, id );
if ( cache_entry->idl[0] == 0 ) {
if ( avl_delete( &bdb->bi_idl_tree, (caddr_t) cache_entry,
bdb_idl_entry_cmp ) == NULL ) {
Debug( LDAP_DEBUG_ANY, "=> bdb_idl_cache_del: "
"AVL delete failed\n",
0, 0, 0 );
}
--bdb->bi_idl_cache_size;
ldap_pvt_thread_mutex_lock( &bdb->bi_idl_tree_lrulock );
IDL_LRU_DELETE( bdb, cache_entry );
ldap_pvt_thread_mutex_unlock( &bdb->bi_idl_tree_lrulock );
free( cache_entry->kstr.bv_val );
free( cache_entry->idl );
free( cache_entry );
}
}
ldap_pvt_thread_rdwr_wunlock( &bdb->bi_idl_tree_rwlock );
}
int
bdb_idl_fetch_key(
BackendDB *be,
DB *db,
DB_TXN *txn,
DBT *key,
ID *ids,
DBC **saved_cursor,
int get_flag )
{
struct bdb_info *bdb = (struct bdb_info *) be->be_private;
int rc;
DBT data, key2, *kptr;
DBC *cursor;
ID *i;
void *ptr;
size_t len;
int rc2;
int flags = bdb->bi_db_opflags | DB_MULTIPLE;
int opflag;
/* If using BerkeleyDB 4.0, the buf must be large enough to
* grab the entire IDL in one get(), otherwise BDB will leak
* resources on subsequent get's. We can safely call get()
* twice - once for the data, and once to get the DB_NOTFOUND
* result meaning there's no more data. See ITS#2040 for details.
* This bug is fixed in BDB 4.1 so a smaller buffer will work if
* stack space is too limited.
*
* configure now requires Berkeley DB 4.1.
*/
#if DB_VERSION_FULL < 0x04010000
# define BDB_ENOUGH 5
#else
/* We sometimes test with tiny IDLs, and BDB always wants buffers
* that are at least one page in size.
*/
# if BDB_IDL_DB_SIZE < 4096
# define BDB_ENOUGH 2048
# else
# define BDB_ENOUGH 1
# endif
#endif
ID buf[BDB_IDL_DB_SIZE*BDB_ENOUGH];
char keybuf[16];
Debug( LDAP_DEBUG_ARGS,
"bdb_idl_fetch_key: %s\n",
bdb_show_key( key, keybuf ), 0, 0 );
assert( ids != NULL );
if ( saved_cursor && *saved_cursor ) {
opflag = DB_NEXT;
} else if ( get_flag == LDAP_FILTER_GE ) {
opflag = DB_SET_RANGE;
} else if ( get_flag == LDAP_FILTER_LE ) {
opflag = DB_FIRST;
} else {
opflag = DB_SET;
}
/* only non-range lookups can use the IDL cache */
if ( bdb->bi_idl_cache_size && opflag == DB_SET ) {
rc = bdb_idl_cache_get( bdb, db, key, ids );
if ( rc != LDAP_NO_SUCH_OBJECT ) return rc;
}
DBTzero( &data );
data.data = buf;
data.ulen = sizeof(buf);
data.flags = DB_DBT_USERMEM;
/* If we're not reusing an existing cursor, get a new one */
if( opflag != DB_NEXT ) {
rc = db->cursor( db, txn, &cursor, bdb->bi_db_opflags );
if( rc != 0 ) {
Debug( LDAP_DEBUG_ANY, "=> bdb_idl_fetch_key: "
"cursor failed: %s (%d)\n", db_strerror(rc), rc, 0 );
return rc;
}
} else {
cursor = *saved_cursor;
}
/* If this is a LE lookup, save original key so we can determine
* when to stop. If this is a GE lookup, save the key since it
* will be overwritten.
*/
if ( get_flag == LDAP_FILTER_LE || get_flag == LDAP_FILTER_GE ) {
DBTzero( &key2 );
key2.flags = DB_DBT_USERMEM;
key2.ulen = sizeof(keybuf);
key2.data = keybuf;
key2.size = key->size;
AC_MEMCPY( keybuf, key->data, key->size );
kptr = &key2;
} else {
kptr = key;
}
len = key->size;
rc = cursor->c_get( cursor, kptr, &data, flags | opflag );
/* skip presence key on range inequality lookups */
while (rc == 0 && kptr->size != len) {
rc = cursor->c_get( cursor, kptr, &data, flags | DB_NEXT_NODUP );
}
/* If we're doing a LE compare and the new key is greater than
* our search key, we're done
*/
if (rc == 0 && get_flag == LDAP_FILTER_LE && memcmp( kptr->data,
key->data, key->size ) > 0 ) {
rc = DB_NOTFOUND;
}
if (rc == 0) {
i = ids;
while (rc == 0) {
u_int8_t *j;
DB_MULTIPLE_INIT( ptr, &data );
while (ptr) {
DB_MULTIPLE_NEXT(ptr, &data, j, len);
if (j) {
++i;
BDB_DISK2ID( j, i );
}
}
rc = cursor->c_get( cursor, key, &data, flags | DB_NEXT_DUP );
}
if ( rc == DB_NOTFOUND ) rc = 0;
ids[0] = i - ids;
/* On disk, a range is denoted by 0 in the first element */
if (ids[1] == 0) {
if (ids[0] != BDB_IDL_RANGE_SIZE) {
Debug( LDAP_DEBUG_ANY, "=> bdb_idl_fetch_key: "
"range size mismatch: expected %d, got %ld\n",
BDB_IDL_RANGE_SIZE, ids[0], 0 );
cursor->c_close( cursor );
return -1;
}
BDB_IDL_RANGE( ids, ids[2], ids[3] );
}
data.size = BDB_IDL_SIZEOF(ids);
}
if ( saved_cursor && rc == 0 ) {
if ( !*saved_cursor )
*saved_cursor = cursor;
rc2 = 0;
}
else
rc2 = cursor->c_close( cursor );
if (rc2) {
Debug( LDAP_DEBUG_ANY, "=> bdb_idl_fetch_key: "
"close failed: %s (%d)\n", db_strerror(rc2), rc2, 0 );
return rc2;
}
if( rc == DB_NOTFOUND ) {
return rc;
} else if( rc != 0 ) {
Debug( LDAP_DEBUG_ANY, "=> bdb_idl_fetch_key: "
"get failed: %s (%d)\n",
db_strerror(rc), rc, 0 );
return rc;
} else if ( data.size == 0 || data.size % sizeof( ID ) ) {
/* size not multiple of ID size */
Debug( LDAP_DEBUG_ANY, "=> bdb_idl_fetch_key: "
"odd size: expected %ld multiple, got %ld\n",
(long) sizeof( ID ), (long) data.size, 0 );
return -1;
} else if ( data.size != BDB_IDL_SIZEOF(ids) ) {
/* size mismatch */
Debug( LDAP_DEBUG_ANY, "=> bdb_idl_fetch_key: "
"get size mismatch: expected %ld, got %ld\n",
(long) ((1 + ids[0]) * sizeof( ID )), (long) data.size, 0 );
return -1;
}
if ( bdb->bi_idl_cache_max_size ) {
bdb_idl_cache_put( bdb, db, key, ids, rc );
}
return rc;
}
int
bdb_idl_insert_key(
BackendDB *be,
DB *db,
DB_TXN *tid,
DBT *key,
ID id )
{
struct bdb_info *bdb = (struct bdb_info *) be->be_private;
int rc;
DBT data;
DBC *cursor;
ID lo, hi, nlo, nhi, nid;
char *err;
{
char buf[16];
Debug( LDAP_DEBUG_ARGS,
"bdb_idl_insert_key: %lx %s\n",
(long) id, bdb_show_key( key, buf ), 0 );
}
assert( id != NOID );
DBTzero( &data );
data.size = sizeof( ID );
data.ulen = data.size;
data.flags = DB_DBT_USERMEM;
BDB_ID2DISK( id, &nid );
rc = db->cursor( db, tid, &cursor, bdb->bi_db_opflags );
if ( rc != 0 ) {
Debug( LDAP_DEBUG_ANY, "=> bdb_idl_insert_key: "
"cursor failed: %s (%d)\n", db_strerror(rc), rc, 0 );
return rc;
}
data.data = &nlo;
/* Fetch the first data item for this key, to see if it
* exists and if it's a range.
*/
rc = cursor->c_get( cursor, key, &data, DB_SET );
err = "c_get";
if ( rc == 0 ) {
if ( nlo != 0 ) {
/* not a range, count the number of items */
db_recno_t count;
rc = cursor->c_count( cursor, &count, 0 );
if ( rc != 0 ) {
err = "c_count";
goto fail;
}
if ( count >= BDB_IDL_DB_MAX ) {
/* No room, convert to a range */
DBT key2 = *key;
db_recno_t i;
key2.dlen = key2.ulen;
key2.flags |= DB_DBT_PARTIAL;
BDB_DISK2ID( &nlo, &lo );
data.data = &nhi;
rc = cursor->c_get( cursor, &key2, &data, DB_NEXT_NODUP );
if ( rc != 0 && rc != DB_NOTFOUND ) {
err = "c_get next_nodup";
goto fail;
}
if ( rc == DB_NOTFOUND ) {
rc = cursor->c_get( cursor, key, &data, DB_LAST );
if ( rc != 0 ) {
err = "c_get last";
goto fail;
}
} else {
rc = cursor->c_get( cursor, key, &data, DB_PREV );
if ( rc != 0 ) {
err = "c_get prev";
goto fail;
}
}
BDB_DISK2ID( &nhi, &hi );
/* Update hi/lo if needed, then delete all the items
* between lo and hi
*/
if ( id < lo ) {
lo = id;
nlo = nid;
} else if ( id > hi ) {
hi = id;
nhi = nid;
}
data.data = &nid;
/* Don't fetch anything, just position cursor */
data.flags = DB_DBT_USERMEM | DB_DBT_PARTIAL;
data.dlen = data.ulen = 0;
rc = cursor->c_get( cursor, key, &data, DB_SET );
if ( rc != 0 ) {
err = "c_get 2";
goto fail;
}
rc = cursor->c_del( cursor, 0 );
if ( rc != 0 ) {
err = "c_del range1";
goto fail;
}
/* Delete all the records */
for ( i=1; i<count; i++ ) {
rc = cursor->c_get( cursor, &key2, &data, DB_NEXT_DUP );
if ( rc != 0 ) {
err = "c_get next_dup";
goto fail;
}
rc = cursor->c_del( cursor, 0 );
if ( rc != 0 ) {
err = "c_del range";
goto fail;
}
}
/* Store the range marker */
data.size = data.ulen = sizeof(ID);
data.flags = DB_DBT_USERMEM;
nid = 0;
rc = cursor->c_put( cursor, key, &data, DB_KEYFIRST );
if ( rc != 0 ) {
err = "c_put range";
goto fail;
}
nid = nlo;
rc = cursor->c_put( cursor, key, &data, DB_KEYLAST );
if ( rc != 0 ) {
err = "c_put lo";
goto fail;
}
nid = nhi;
rc = cursor->c_put( cursor, key, &data, DB_KEYLAST );
if ( rc != 0 ) {
err = "c_put hi";
goto fail;
}
} else {
/* There's room, just store it */
goto put1;
}
} else {
/* It's a range, see if we need to rewrite
* the boundaries
*/
hi = id;
data.data = &nlo;
rc = cursor->c_get( cursor, key, &data, DB_NEXT_DUP );
if ( rc != 0 ) {
err = "c_get lo";
goto fail;
}
BDB_DISK2ID( &nlo, &lo );
if ( id > lo ) {
data.data = &nhi;
rc = cursor->c_get( cursor, key, &data, DB_NEXT_DUP );
if ( rc != 0 ) {
err = "c_get hi";
goto fail;
}
BDB_DISK2ID( &nhi, &hi );
}
if ( id < lo || id > hi ) {
/* Delete the current lo/hi */
rc = cursor->c_del( cursor, 0 );
if ( rc != 0 ) {
err = "c_del";
goto fail;
}
data.data = &nid;
rc = cursor->c_put( cursor, key, &data, DB_KEYFIRST );
if ( rc != 0 ) {
err = "c_put lo/hi";
goto fail;
}
}
}
} else if ( rc == DB_NOTFOUND ) {
put1: data.data = &nid;
rc = cursor->c_put( cursor, key, &data, DB_NODUPDATA );
/* Don't worry if it's already there */
if ( rc != 0 && rc != DB_KEYEXIST ) {
err = "c_put id";
goto fail;
}
} else {
/* initial c_get failed, nothing was done */
fail:
Debug( LDAP_DEBUG_ANY, "=> bdb_idl_insert_key: "
"%s failed: %s (%d)\n", err, db_strerror(rc), rc );
cursor->c_close( cursor );
return rc;
}
/* If key was added (didn't already exist) and using IDL cache,
* update key in IDL cache.
*/
if ( !rc && bdb->bi_idl_cache_max_size ) {
bdb_idl_cache_add_id( bdb, db, key, id );
}
rc = cursor->c_close( cursor );
if( rc != 0 ) {
Debug( LDAP_DEBUG_ANY, "=> bdb_idl_insert_key: "
"c_close failed: %s (%d)\n",
db_strerror(rc), rc, 0 );
}
return rc;
}
int
bdb_idl_delete_key(
BackendDB *be,
DB *db,
DB_TXN *tid,
DBT *key,
ID id )
{
struct bdb_info *bdb = (struct bdb_info *) be->be_private;
int rc;
DBT data;
DBC *cursor;
ID lo, hi, tmp, nid, nlo, nhi;
char *err;
{
char buf[16];
Debug( LDAP_DEBUG_ARGS,
"bdb_idl_delete_key: %lx %s\n",
(long) id, bdb_show_key( key, buf ), 0 );
}
assert( id != NOID );
if ( bdb->bi_idl_cache_size ) {
bdb_idl_cache_del( bdb, db, key );
}
BDB_ID2DISK( id, &nid );
DBTzero( &data );
data.data = &tmp;
data.size = sizeof( id );
data.ulen = data.size;
data.flags = DB_DBT_USERMEM;
rc = db->cursor( db, tid, &cursor, bdb->bi_db_opflags );
if ( rc != 0 ) {
Debug( LDAP_DEBUG_ANY, "=> bdb_idl_delete_key: "
"cursor failed: %s (%d)\n", db_strerror(rc), rc, 0 );
return rc;
}
/* Fetch the first data item for this key, to see if it
* exists and if it's a range.
*/
rc = cursor->c_get( cursor, key, &data, DB_SET );
err = "c_get";
if ( rc == 0 ) {
if ( tmp != 0 ) {
/* Not a range, just delete it */
if (tmp != nid) {
/* position to correct item */
tmp = nid;
rc = cursor->c_get( cursor, key, &data, DB_GET_BOTH );
if ( rc != 0 ) {
err = "c_get id";
goto fail;
}
}
rc = cursor->c_del( cursor, 0 );
if ( rc != 0 ) {
err = "c_del id";
goto fail;
}
} else {
/* It's a range, see if we need to rewrite
* the boundaries
*/
data.data = &nlo;
rc = cursor->c_get( cursor, key, &data, DB_NEXT_DUP );
if ( rc != 0 ) {
err = "c_get lo";
goto fail;
}
BDB_DISK2ID( &nlo, &lo );
data.data = &nhi;
rc = cursor->c_get( cursor, key, &data, DB_NEXT_DUP );
if ( rc != 0 ) {
err = "c_get hi";
goto fail;
}
BDB_DISK2ID( &nhi, &hi );
if ( id == lo || id == hi ) {
if ( id == lo ) {
id++;
lo = id;
} else if ( id == hi ) {
id--;
hi = id;
}
if ( lo >= hi ) {
/* The range has collapsed... */
rc = db->del( db, tid, key, 0 );
if ( rc != 0 ) {
err = "del";
goto fail;
}
} else {
if ( id == lo ) {
/* reposition on lo slot */
data.data = &nlo;
cursor->c_get( cursor, key, &data, DB_PREV );
}
rc = cursor->c_del( cursor, 0 );
if ( rc != 0 ) {
err = "c_del";
goto fail;
}
}
if ( lo <= hi ) {
BDB_ID2DISK( id, &nid );
data.data = &nid;
rc = cursor->c_put( cursor, key, &data, DB_KEYFIRST );
if ( rc != 0 ) {
err = "c_put lo/hi";
goto fail;
}
}
}
}
} else {
/* initial c_get failed, nothing was done */
fail:
if ( rc != DB_NOTFOUND ) {
Debug( LDAP_DEBUG_ANY, "=> bdb_idl_delete_key: "
"%s failed: %s (%d)\n", err, db_strerror(rc), rc );
}
cursor->c_close( cursor );
return rc;
}
rc = cursor->c_close( cursor );
if( rc != 0 ) {
Debug( LDAP_DEBUG_ANY,
"=> bdb_idl_delete_key: c_close failed: %s (%d)\n",
db_strerror(rc), rc, 0 );
}
return rc;
}
/*
* idl_intersection - return a = a intersection b
*/
int
bdb_idl_intersection(
ID *a,
ID *b )
{
ID ida, idb;
ID idmax, idmin;
ID cursora = 0, cursorb = 0, cursorc;
int swap = 0;
if ( BDB_IDL_IS_ZERO( a ) || BDB_IDL_IS_ZERO( b ) ) {
a[0] = 0;
return 0;
}
idmin = IDL_MAX( BDB_IDL_FIRST(a), BDB_IDL_FIRST(b) );
idmax = IDL_MIN( BDB_IDL_LAST(a), BDB_IDL_LAST(b) );
if ( idmin > idmax ) {
a[0] = 0;
return 0;
} else if ( idmin == idmax ) {
a[0] = 1;
a[1] = idmin;
return 0;
}
if ( BDB_IDL_IS_RANGE( a ) ) {
if ( BDB_IDL_IS_RANGE(b) ) {
/* If both are ranges, just shrink the boundaries */
a[1] = idmin;
a[2] = idmax;
return 0;
} else {
/* Else swap so that b is the range, a is a list */
ID *tmp = a;
a = b;
b = tmp;
swap = 1;
}
}
/* If a range completely covers the list, the result is
* just the list. If idmin to idmax is contiguous, just
* turn it into a range.
*/
if ( BDB_IDL_IS_RANGE( b )
&& BDB_IDL_RANGE_FIRST( b ) <= BDB_IDL_FIRST( a )
&& BDB_IDL_RANGE_LAST( b ) >= BDB_IDL_LLAST( a ) ) {
if (idmax - idmin + 1 == a[0])
{
a[0] = NOID;
a[1] = idmin;
a[2] = idmax;
}
goto done;
}
/* Fine, do the intersection one element at a time.
* First advance to idmin in both IDLs.
*/
cursora = cursorb = idmin;
ida = bdb_idl_first( a, &cursora );
idb = bdb_idl_first( b, &cursorb );
cursorc = 0;
while( ida <= idmax || idb <= idmax ) {
if( ida == idb ) {
a[++cursorc] = ida;
ida = bdb_idl_next( a, &cursora );
idb = bdb_idl_next( b, &cursorb );
} else if ( ida < idb ) {
ida = bdb_idl_next( a, &cursora );
} else {
idb = bdb_idl_next( b, &cursorb );
}
}
a[0] = cursorc;
done:
if (swap)
BDB_IDL_CPY( b, a );
return 0;
}
/*
* idl_union - return a = a union b
*/
int
bdb_idl_union(
ID *a,
ID *b )
{
ID ida, idb;
ID cursora = 0, cursorb = 0, cursorc;
if ( BDB_IDL_IS_ZERO( b ) ) {
return 0;
}
if ( BDB_IDL_IS_ZERO( a ) ) {
BDB_IDL_CPY( a, b );
return 0;
}
if ( BDB_IDL_IS_RANGE( a ) || BDB_IDL_IS_RANGE(b) ) {
over: ida = IDL_MIN( BDB_IDL_FIRST(a), BDB_IDL_FIRST(b) );
idb = IDL_MAX( BDB_IDL_LAST(a), BDB_IDL_LAST(b) );
a[0] = NOID;
a[1] = ida;
a[2] = idb;
return 0;
}
ida = bdb_idl_first( a, &cursora );
idb = bdb_idl_first( b, &cursorb );
cursorc = b[0];
/* The distinct elements of a are cat'd to b */
while( ida != NOID || idb != NOID ) {
if ( ida < idb ) {
if( ++cursorc > BDB_IDL_UM_MAX ) {
goto over;
}
b[cursorc] = ida;
ida = bdb_idl_next( a, &cursora );
} else {
if ( ida == idb )
ida = bdb_idl_next( a, &cursora );
idb = bdb_idl_next( b, &cursorb );
}
}
/* b is copied back to a in sorted order */
a[0] = cursorc;
cursora = 1;
cursorb = 1;
cursorc = b[0]+1;
while (cursorb <= b[0] || cursorc <= a[0]) {
if (cursorc > a[0])
idb = NOID;
else
idb = b[cursorc];
if (cursorb <= b[0] && b[cursorb] < idb)
a[cursora++] = b[cursorb++];
else {
a[cursora++] = idb;
cursorc++;
}
}
return 0;
}
#if 0
/*
* bdb_idl_notin - return a intersection ~b (or a minus b)
*/
int
bdb_idl_notin(
ID *a,
ID *b,
ID *ids )
{
ID ida, idb;
ID cursora = 0, cursorb = 0;
if( BDB_IDL_IS_ZERO( a ) ||
BDB_IDL_IS_ZERO( b ) ||
BDB_IDL_IS_RANGE( b ) )
{
BDB_IDL_CPY( ids, a );
return 0;
}
if( BDB_IDL_IS_RANGE( a ) ) {
BDB_IDL_CPY( ids, a );
return 0;
}
ida = bdb_idl_first( a, &cursora ),
idb = bdb_idl_first( b, &cursorb );
ids[0] = 0;
while( ida != NOID ) {
if ( idb == NOID ) {
/* we could shortcut this */
ids[++ids[0]] = ida;
ida = bdb_idl_next( a, &cursora );
} else if ( ida < idb ) {
ids[++ids[0]] = ida;
ida = bdb_idl_next( a, &cursora );
} else if ( ida > idb ) {
idb = bdb_idl_next( b, &cursorb );
} else {
ida = bdb_idl_next( a, &cursora );
idb = bdb_idl_next( b, &cursorb );
}
}
return 0;
}
#endif
ID bdb_idl_first( ID *ids, ID *cursor )
{
ID pos;
if ( ids[0] == 0 ) {
*cursor = NOID;
return NOID;
}
if ( BDB_IDL_IS_RANGE( ids ) ) {
if( *cursor < ids[1] ) {
*cursor = ids[1];
}
return *cursor;
}
if ( *cursor == 0 )
pos = 1;
else
pos = bdb_idl_search( ids, *cursor );
if( pos > ids[0] ) {
return NOID;
}
*cursor = pos;
return ids[pos];
}
ID bdb_idl_next( ID *ids, ID *cursor )
{
if ( BDB_IDL_IS_RANGE( ids ) ) {
if( ids[2] < ++(*cursor) ) {
return NOID;
}
return *cursor;
}
if ( ++(*cursor) <= ids[0] ) {
return ids[*cursor];
}
return NOID;
}
#ifdef BDB_HIER
/* Add one ID to an unsorted list. We ensure that the first element is the
* minimum and the last element is the maximum, for fast range compaction.
* this means IDLs up to length 3 are always sorted...
*/
int bdb_idl_append_one( ID *ids, ID id )
{
if (BDB_IDL_IS_RANGE( ids )) {
/* if already in range, treat as a dup */
if (id >= BDB_IDL_RANGE_FIRST(ids) && id <= BDB_IDL_RANGE_LAST(ids))
return -1;
if (id < BDB_IDL_RANGE_FIRST(ids))
ids[1] = id;
else if (id > BDB_IDL_RANGE_LAST(ids))
ids[2] = id;
return 0;
}
if ( ids[0] ) {
ID tmp;
if (id < ids[1]) {
tmp = ids[1];
ids[1] = id;
id = tmp;
}
if ( ids[0] > 1 && id < ids[ids[0]] ) {
tmp = ids[ids[0]];
ids[ids[0]] = id;
id = tmp;
}
}
ids[0]++;
if ( ids[0] >= BDB_IDL_UM_MAX ) {
ids[0] = NOID;
ids[2] = id;
} else {
ids[ids[0]] = id;
}
return 0;
}
/* Append sorted list b to sorted list a. The result is unsorted but
* a[1] is the min of the result and a[a[0]] is the max.
*/
int bdb_idl_append( ID *a, ID *b )
{
ID ida, idb, tmp, swap = 0;
if ( BDB_IDL_IS_ZERO( b ) ) {
return 0;
}
if ( BDB_IDL_IS_ZERO( a ) ) {
BDB_IDL_CPY( a, b );
return 0;
}
if ( b[0] == 1 ) {
return bdb_idl_append_one( a, BDB_IDL_FIRST( b ));
}
ida = BDB_IDL_LAST( a );
idb = BDB_IDL_LAST( b );
if ( BDB_IDL_IS_RANGE( a ) || BDB_IDL_IS_RANGE(b) ||
a[0] + b[0] >= BDB_IDL_UM_MAX ) {
a[2] = IDL_MAX( ida, idb );
a[1] = IDL_MIN( a[1], b[1] );
a[0] = NOID;
return 0;
}
if ( ida > idb ) {
swap = idb;
a[a[0]] = idb;
b[b[0]] = ida;
}
if ( b[1] < a[1] ) {
tmp = a[1];
a[1] = b[1];
} else {
tmp = b[1];
}
a[0]++;
a[a[0]] = tmp;
{
int i = b[0] - 1;
AC_MEMCPY(a+a[0]+1, b+2, i * sizeof(ID));
a[0] += i;
}
if ( swap ) {
b[b[0]] = swap;
}
return 0;
}
#if 1
/* Quicksort + Insertion sort for small arrays */
#define SMALL 8
#define SWAP(a,b) itmp=(a);(a)=(b);(b)=itmp
void
bdb_idl_sort( ID *ids, ID *tmp )
{
int *istack = (int *)tmp;
int i,j,k,l,ir,jstack;
ID a, itmp;
if ( BDB_IDL_IS_RANGE( ids ))
return;
ir = ids[0];
l = 1;
jstack = 0;
for(;;) {
if (ir - l < SMALL) { /* Insertion sort */
for (j=l+1;j<=ir;j++) {
a = ids[j];
for (i=j-1;i>=1;i--) {
if (ids[i] <= a) break;
ids[i+1] = ids[i];
}
ids[i+1] = a;
}
if (jstack == 0) break;
ir = istack[jstack--];
l = istack[jstack--];
} else {
k = (l + ir) >> 1; /* Choose median of left, center, right */
SWAP(ids[k], ids[l+1]);
if (ids[l] > ids[ir]) {
SWAP(ids[l], ids[ir]);
}
if (ids[l+1] > ids[ir]) {
SWAP(ids[l+1], ids[ir]);
}
if (ids[l] > ids[l+1]) {
SWAP(ids[l], ids[l+1]);
}
i = l+1;
j = ir;
a = ids[l+1];
for(;;) {
do i++; while(ids[i] < a);
do j--; while(ids[j] > a);
if (j < i) break;
SWAP(ids[i],ids[j]);
}
ids[l+1] = ids[j];
ids[j] = a;
jstack += 2;
if (ir-i+1 >= j-l) {
istack[jstack] = ir;
istack[jstack-1] = i;
ir = j-1;
} else {
istack[jstack] = j-1;
istack[jstack-1] = l;
l = i;
}
}
}
}
#else
/* 8 bit Radix sort + insertion sort
*
* based on code from http://www.cubic.org/docs/radix.htm
* with improvements by ebackes@symas.com and hyc@symas.com
*
* This code is O(n) but has a relatively high constant factor. For lists
* up to ~50 Quicksort is slightly faster; up to ~100 they are even.
* Much faster than quicksort for lists longer than ~100. Insertion
* sort is actually superior for lists <50.
*/
#define BUCKETS (1<<8)
#define SMALL 50
void
bdb_idl_sort( ID *ids, ID *tmp )
{
int count, soft_limit, phase = 0, size = ids[0];
ID *idls[2];
unsigned char *maxv = (unsigned char *)&ids[size];
if ( BDB_IDL_IS_RANGE( ids ))
return;
/* Use insertion sort for small lists */
if ( size <= SMALL ) {
int i,j;
ID a;
for (j=1;j<=size;j++) {
a = ids[j];
for (i=j-1;i>=1;i--) {
if (ids[i] <= a) break;
ids[i+1] = ids[i];
}
ids[i+1] = a;
}
return;
}
tmp[0] = size;
idls[0] = ids;
idls[1] = tmp;
#if BYTE_ORDER == BIG_ENDIAN
for (soft_limit = 0; !maxv[soft_limit]; soft_limit++);
#else
for (soft_limit = sizeof(ID)-1; !maxv[soft_limit]; soft_limit--);
#endif
for (
#if BYTE_ORDER == BIG_ENDIAN
count = sizeof(ID)-1; count >= soft_limit; --count
#else
count = 0; count <= soft_limit; ++count
#endif
) {
unsigned int num[BUCKETS], * np, n, sum;
int i;
ID *sp, *source, *dest;
unsigned char *bp, *source_start;
source = idls[phase]+1;
dest = idls[phase^1]+1;
source_start = ((unsigned char *) source) + count;
np = num;
for ( i = BUCKETS; i > 0; --i ) *np++ = 0;
/* count occurences of every byte value */
bp = source_start;
for ( i = size; i > 0; --i, bp += sizeof(ID) )
num[*bp]++;
/* transform count into index by summing elements and storing
* into same array
*/
sum = 0;
np = num;
for ( i = BUCKETS; i > 0; --i ) {
n = *np;
*np++ = sum;
sum += n;
}
/* fill dest with the right values in the right place */
bp = source_start;
sp = source;
for ( i = size; i > 0; --i, bp += sizeof(ID) ) {
np = num + *bp;
dest[*np] = *sp++;
++(*np);
}
phase ^= 1;
}
/* copy back from temp if needed */
if ( phase ) {
ids++; tmp++;
for ( count = 0; count < size; ++count )
*ids++ = *tmp++;
}
}
#endif /* Quick vs Radix */
#endif /* BDB_HIER */