openldap/doc/drafts/draft-legg-ldapext-component-matching-xx.txt
Kurt Zeilenga 044b39f4ec Add Steven's I-Ds on LDAP/X.500 admin models
Correct naming of older drafts
2002-09-23 04:35:05 +00:00

2300 lines
95 KiB
Plaintext
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

INTERNET-DRAFT S. Legg
draft-legg-ldapext-component-matching-08.txt Adacel Technologies
Intended Category: Standard Track April 19, 2002
LDAP & X.500 Component Matching Rules
Copyright (C) The Internet Society (2002). All Rights Reserved.
Status of this Memo
This document is an Internet-Draft and is in full conformance with
all provisions of Section 10 of RFC2026.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as
Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress".
The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt
The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.
Distribution of this document is unlimited. Comments should be sent
to the LDAPEXT working group mailing list <ietf-ldapext@netscape.com>
or to the author.
This Internet-Draft expires on 19 October 2002.
1. Abstract
The syntaxes of attributes in a Lightweight Directory Access Protocol
or X.500 directory range from simple data types, such as text string,
integer, or boolean, to complex structured data types, such as the
syntaxes of the directory schema operational attributes. The
matching rules defined for the complex syntaxes, if any, usually only
provide the most immediately useful matching capability. This
document defines generic matching rules that can match any user
selected component parts in an attribute value of any arbitrarily
Legg Expires 19 October 2002 [Page 1]
INTERNET-DRAFT LDAP & X.500 Component Matching Rules April 19, 2002
complex attribute syntax.
2. Table of Contents
1. Abstract ...................................................... 1
2. Table of Contents ............................................. 2
3. Introduction .................................................. 2
4. Conventions ................................................... 4
5. ComponentAssertion ............................................ 5
5.1 Component Reference ....................................... 5
5.1.1 Component Type Substitutions ......................... 7
5.1.2 Referencing SET, SEQUENCE and CHOICE Components ...... 8
5.1.3 Referencing SET OF and SEQUENCE OF Components ........ 9
5.1.4 Referencing Components of Parameterized Types ........ 10
5.1.5 Component Referencing Example ........................ 10
5.1.6 Referencing Components of Open Types ................. 11
5.1.6.1 Open Type Referencing Example ................... 12
5.1.7 Referencing Contained Types .......................... 13
5.1.7.1 Contained Type Referencing Example .............. 14
5.2 Matching of Components .................................... 15
5.2.1 Applicability of Existing Matching Rules ............. 16
5.2.1.1 String Matching ................................. 16
5.2.1.2 Telephone Number Matching ....................... 17
5.2.1.3 Distinguished Name Matching ..................... 17
5.2.2 Additional Useful Matching Rules ..................... 17
5.2.2.1 The rdnMatch Matching Rule ...................... 18
5.2.2.2 The presentMatch Matching Rule .................. 18
5.2.3 Summary of Useful Matching Rules ..................... 19
6. ComponentFilter ............................................... 21
7. The componentFilterMatch Matching Rule ........................ 22
8. Equality Matching of Complex Components ....................... 23
8.1 The OpenAssertionType Syntax .............................. 24
8.2 The allComponentsMatch Matching Rule ...................... 25
8.3 Deriving Component Equality Matching Rules ................ 27
8.4 The directoryComponentsMatch Matching Rule ................ 28
9. Component Matching Examples ................................... 29
10. Security Considerations ...................................... 36
11. Acknowledgements ............................................. 36
12. Normative References ......................................... 36
13. Informative References ....................................... 37
14. Intellectual Property Notice ................................. 38
15. Copyright Notice ............................................. 38
16. Author's Address ............................................. 39
3. Introduction
Legg Expires 19 October 2002 [Page 2]
INTERNET-DRAFT LDAP & X.500 Component Matching Rules April 19, 2002
The structure or data type of data held in an attribute of an LDAP
[3] or X.500 [18] directory is described by the attribute's syntax.
Attribute syntaxes range from simple data types, such as text string,
integer, or boolean, to complex data types, for example, the syntaxes
of the directory schema operational attributes.
In X.500, the attribute syntaxes are explicitly described by ASN.1
[11] type definitions. ASN.1 type notation has a number of simple
data types (e.g. PrintableString, INTEGER, BOOLEAN), and combining
types (i.e. SET, SEQUENCE, SET OF, SEQUENCE OF, and CHOICE) for
constructing arbitrarily complex data types from simpler component
types. In LDAP, the attribute syntaxes are usually described by ABNF
[2] though there is an implied association between the LDAP attribute
syntaxes and the X.500 ASN.1 types. To a large extent, the data
types of attribute values in either an LDAP or X.500 directory are
described by ASN.1 types. This formal description can be exploited
to identify component parts of an attribute value for a variety of
purposes. This document addresses attribute value matching.
With any complex attribute syntax there is normally a requirement to
partially match an attribute value of that syntax by matching only
selected components of the value. Typically, matching rules specific
to the attribute syntax are defined to fill this need. These highly
specific matching rules usually only provide the most immediately
useful matching capability. Some complex attribute syntaxes don't
even have an equality matching rule let alone any additional matching
rules for partial matching. This document defines a generic way of
matching user selected components in an attribute value of any
arbitrarily complex attribute syntax, where that syntax is described
using ASN.1 type notation. All of the type notations defined in [11]
are supported.
Section 5 describes the ComponentAssertion, a testable assertion
about the value of a component of an attribute value of any complex
syntax.
Section 6 introduces the ComponentFilter assertion, which is an
expression of ComponentAssertions. The ComponentFilter enables more
powerful filter matching of components in an attribute value.
Section 7 defines the componentFilterMatch matching rule, which
enables a ComponentFilter to be evaluated against attribute values.
Section 8 defines matching rules for component-wise equality matching
of attribute values of any syntax described by an ASN.1 type
definition.
Examples showing the usage of componentFilterMatch are in Section 9.
Legg Expires 19 October 2002 [Page 3]
INTERNET-DRAFT LDAP & X.500 Component Matching Rules April 19, 2002
For a new attribute syntax, the Generic String Encoding Rules [7] and
the specifications in sections 5 to 8 of this document make it
possible to fully and precisely define, the LDAP-specific encoding,
the LDAP and X.500 binary encoding (and possibly other encodings in
the future, e.g. XML via XER), a suitable equality matching rule, and
a comprehensive collection of component matching capabilities, by
simply writing down an ASN.1 type definition for the syntax. These
implicit definitions are also automatically extended if the ASN.1
type is later extended. The algorithmic relationship between the
ASN.1 type definition, the various encodings and the component
matching behaviour makes directory server implementation support for
the component matching rules amenable to automatic code generation
from ASN.1 type definitions.
Schema designers have the choice of storing related items of data as
a single attribute value of a complex syntax in some entry, or as a
subordinate entry where the related data items are stored as separate
attribute values of simpler syntaxes. The inability to search
component parts of a complex syntax has been used as an argument for
favouring the subordinate entries approach. The component matching
rules provide the analogous matching capability on an attribute value
of a complex syntax that a search filter has on a subordinate entry.
Most LDAP syntaxes have corresponding ASN.1 type definitions, though
they are usually not reproduced or referenced alongside the formal
definition of the LDAP syntax. Syntaxes defined with only a
character string encoding, i.e. without an explicit or implied
corresponding ASN.1 type definition, cannot use the component
matching capabilities described in this document unless and until a
semantically equivalent ASN.1 type definition is defined for them.
4. Conventions
Throughout this document "type" shall be taken to mean an ASN.1 type
unless explicitly qualified as an attribute type, and "value" shall
be taken to mean an ASN.1 value unless explicitly qualified as an
attribute value.
Note that "ASN.1 value" does not mean a BER [19] encoded value. The
ASN.1 value is an abstract concept that is independent of any
particular encoding. BER is just one possible encoding of an ASN.1
value. The component matching rules operate at the abstract level
without regard for the possible encodings of a value.
Attribute type and matching rule definitions in this document are
provided in both the X.500 [8] and LDAP [4] description formats. Note
that the LDAP descriptions have been rendered with additional
Legg Expires 19 October 2002 [Page 4]
INTERNET-DRAFT LDAP & X.500 Component Matching Rules April 19, 2002
white-space and line breaks for the sake of readability.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [1].
5. ComponentAssertion
A ComponentAssertion is an assertion about the presence, or values
of, components within an ASN.1 value, i.e. an instance of an ASN.1
type. The ASN.1 value is typically an attribute value, where the
ASN.1 type is the syntax of the attribute. However a
ComponentAssertion may also be applied to a component part of an
attribute value. The assertion evaluates to either TRUE, FALSE or
undefined for each tested ASN.1 value.
A ComponentAssertion is described by the following ASN.1 type
(assumed to be defined with "EXPLICIT TAGS" in force):
ComponentAssertion ::= SEQUENCE {
component ComponentReference,
useDefaultValues BOOLEAN DEFAULT TRUE,
rule MATCHING-RULE.&id,
value MATCHING-RULE.&AssertionType }
ComponentReference ::= UTF8String
MATCHING-RULE.&id equates to the OBJECT IDENTIFIER of a matching
rule. MATCHING-RULE.&AssertionType is an open type (formally known
as the ANY type).
The "component" field of a ComponentAssertion identifies which
component part of a value of some ASN.1 type is to be tested, the
"useDefaultValues" field indicates whether DEFAULT values are to be
substituted for absent component values, the "rule" field indicates
how the component is to be tested, and the "value" field is an
asserted ASN.1 value against which the component is tested. The
ASN.1 type of the asserted value is determined by the chosen rule.
The fields of a ComponentAssertion are described in detail in the
following sections.
5.1 Component Reference
The component field in a ComponentAssertion is a UTF8 character
string [6] whose textual content is a component reference,
Legg Expires 19 October 2002 [Page 5]
INTERNET-DRAFT LDAP & X.500 Component Matching Rules April 19, 2002
identifying a component part of some ASN.1 type or value. A
component reference conforms to the following ABNF [2], which extends
the notation defined in Clause 14 of [11]:
component-reference = ComponentId *( "." ComponentId )
ComponentId = identifier /
from-beginning /
count /
from-end / ; extends Clause 14
content / ; extends Clause 14
select / ; extends Clause 14
all
identifier = lowercase *alphanumeric
*(hyphen 1*alphanumeric)
alphanumeric = uppercase / lowercase / decimal-digit
uppercase = %x41-5A ; "A" to "Z"
lowercase = %x61-7A ; "a" to "z"
hyphen = "-"
from-beginning = positive-number
count = "0"
from-end = "-" positive-number
content = %x63.6F.6E.74.65.6E.74 ; "content"
select = "(" Value *( "," Value ) ")"
all = "*"
positive-number = non-zero-digit *decimal-digit
decimal-digit = %x30-39 ; "0" to "9"
non-zero-digit = %x31-39 ; "1" to "9"
An <identifier> conforms to the definition of an identifier in ASN.1
notation (Clause 11.3 of [11]). It begins with a lowercase letter
and is followed by zero or more letters, digits, and hyphens. A
hyphen is not permitted to be the last character and a hyphen is not
permitted to be followed by another hyphen.
The <Value> rule is described in [7].
A component reference is a sequence of one or more ComponentIds where
each successive ComponentId identifies either an inner component at
the next level of nesting of an ASN.1 combining type, i.e. SET,
SEQUENCE, SET OF, SEQUENCE OF, or CHOICE, or a specific type within
an ASN.1 open type.
A component reference is always considered in the context of a
Legg Expires 19 October 2002 [Page 6]
INTERNET-DRAFT LDAP & X.500 Component Matching Rules April 19, 2002
particular complex ASN.1 type. When applied to the ASN.1 type the
component reference identifies a specific component type. When
applied to a value of the ASN.1 type a component reference identifies
zero, one or more component values of that component type. The
component values are potentially in a DEFAULT value if
useDefaultValues is TRUE. The specific component type identified by
the component reference determines what matching rules are capable of
being used to match the component values.
An empty string for a component reference, which would identify the
whole ASN.1 value, is NOT supported since assertions about a whole
value are already possible by the direct application of a matching
rule to an attribute value.
A valid component reference for a particular complex ASN.1 type is
constructed by starting with the outermost combining type and
repeatedly selecting one of the permissible forms of ComponentId to
identify successively deeper nested components. A component
reference MAY identify a component with a complex ASN.1 type, i.e. it
is NOT required that the component type identified by a component
reference be a simple ASN.1 type.
5.1.1 Component Type Substitutions
ASN.1 type notation has a number of constructs for referencing other
defined types, and constructs that are irrelevant for matching
purposes. These constructs are not represented in a component
reference in any way and substitutions of the component type are
performed to eliminate them from further consideration. These
substitutions automatically occur prior to each ComponentId, whether
constructing or interpreting a component reference, but do not occur
after the last ComponentId, except as allowed by Section 5.2.
If the ASN.1 type is an ASN.1 type reference then the component type
is taken to be the actual definition on the right hand side of the
type assignment for the referenced type.
If the ASN.1 type is a tagged type then the component type is taken
to be the type without the tag.
If the ASN.1 type is a constrained type (see [11] and [14] for the
details of ASN.1 constraint notation) then the component type is
taken to be the type without the constraint.
If the ASN.1 type is an ObjectClassFieldType (Clause 14 of [13]) that
denotes a specific ASN.1 type (e.g. MATCHING-RULE.&id denotes the
OBJECT IDENTIFIER type) then the component type is taken to be the
Legg Expires 19 October 2002 [Page 7]
INTERNET-DRAFT LDAP & X.500 Component Matching Rules April 19, 2002
denoted type. Section 5.1.6 describes the case where the
ObjectClassFieldType denotes an open type.
If the ASN.1 type is a selection type other than one used in the list
of components for a SET or SEQUENCE type then the component type is
taken to be the selected alternative type from the named CHOICE.
If the ASN.1 type is a TypeFromObject (Clause 15 of [13]) then the
component type is taken to be the denoted type.
If the ASN.1 type is a ValueSetFromObjects (Clause 15 of [13]) then
the component type is taken to be the governing type of the denoted
values.
5.1.2 Referencing SET, SEQUENCE and CHOICE Components
If the ASN.1 type is a SET or SEQUENCE type then the <identifier>
form of ComponentId MAY be used to identify the component type within
that SET or SEQUENCE having that identifier. If <identifier>
references an OPTIONAL component type and that component is not
present in a particular value then there are no corresponding
component values. If <identifier> references a DEFAULT component
type and useDefaultValues is TRUE (the default setting for
useDefaultValues) and that component is not present in a particular
value then the component value is taken to be the default value. If
<identifier> references a DEFAULT component type and useDefaultValues
is FALSE and that component is not present in a particular value then
there are no corresponding component values.
If the ASN.1 type is a CHOICE type then the <identifier> form of
ComponentId MAY be used to identify the alternative type within that
CHOICE having that identifier. If <identifier> references an
alternative other than the one used in a particular value then there
are no corresponding component values.
The COMPONENTS OF notation in Clause 24 of [11] augments the defined
list of components in a SET or SEQUENCE type by including all the
components of another defined SET or SEQUENCE type respectively.
These included components are referenced directly by identifier as
though they were defined in-line in the SET or SEQUENCE type
containing the COMPONENTS OF notation.
The SelectionType (Clause 29 of [11]), when used in the list of
components for a SET or SEQUENCE type, includes a single component
from a defined CHOICE type. This included component is referenced
directly by identifier as though it was defined in-line in the SET or
SEQUENCE type.
Legg Expires 19 October 2002 [Page 8]
INTERNET-DRAFT LDAP & X.500 Component Matching Rules April 19, 2002
The REAL type is treated as though it is the SEQUENCE type defined in
Clause 20.5 of [11].
The EMBEDDED PDV type is treated as though it is the SEQUENCE type
defined in Clause 32.5 of [11].
The EXTERNAL type is treated as though it is the SEQUENCE type
defined in Clause 33.5 of [11].
The unrestricted CHARACTER STRING type is treated as though it is the
SEQUENCE type defined in Clause 39.5 of [11].
The INSTANCE OF type is treated as though it is the SEQUENCE type
defined in Annex C of [13].
The <identifier> form MUST NOT be used on any other ASN.1 type.
5.1.3 Referencing SET OF and SEQUENCE OF Components
If the ASN.1 type is a SET OF or SEQUENCE OF type then the
<from-beginning>, <from-end>, <count> and <all> forms of ComponentId
can be used.
The <from-beginning> form of ComponentId MAY be used to identify one
instance (i.e. value) of the component type of the SET OF or SEQUENCE
OF type (e.g. if Foo ::= SET OF Bar, then Bar is the component type),
where the instances are numbered from one upwards. If
<from-beginning> references a higher numbered instance than the last
instance in a particular value of the SET OF or SEQUENCE OF type then
there is no corresponding component value.
The <from-end> form of ComponentId MAY be used to identify one
instance of the component type of the SET OF or SEQUENCE OF type,
where "-1" is the last instance, "-2" is the second last instance,
and so on. If <from-end> references a lower numbered instance than
the first instance in a particular value of the SET OF or SEQUENCE OF
type then there is no corresponding component value.
The <count> form of ComponentId identifies a notional count of the
number of instances of the component type in a value of the SET OF or
SEQUENCE OF type. This count is not explicitly represented but for
matching purposes it has an assumed ASN.1 type of INTEGER (0..MAX).
A ComponentId of the <count> form MUST be the last ComponentId in a
component reference.
The <all> form of ComponentId MAY be used to simultaneously identify
all instances of the component type of the SET OF or SEQUENCE OF
Legg Expires 19 October 2002 [Page 9]
INTERNET-DRAFT LDAP & X.500 Component Matching Rules April 19, 2002
type. It is through the <all> form that a component reference can
identify more than one component value. However, if a particular
value of the SET OF or SEQUENCE OF type is an empty list there are no
corresponding component values.
Where multiple component values are identified, the remaining
ComponentIds in the component reference, if any, can identify zero,
one or more subcomponent values for each of the higher level
component values.
The corresponding ASN.1 type for the <from-beginning>, <from-end>,
and <all> forms of ComponentId is the component type of the SET OF or
SEQUENCE OF type.
The <from-beginning>, <count>, <from-end> and <all> forms MUST NOT be
used on ASN.1 types other than SET OF or SEQUENCE OF.
5.1.4 Referencing Components of Parameterized Types
A component reference cannot be formed for a parameterized type
unless the type has been used with actual parameters, in which case
the type is treated as though the DummyReferences [15] have been
substituted with the actual parameters.
5.1.5 Component Referencing Example
Consider the following ASN.1 type definitions.
ExampleType ::= SEQUENCE {
part1 [0] INTEGER,
part2 [1] ExampleSet,
part3 [2] SET OF OBJECT IDENTIFIER,
part4 [3] ExampleChoice }
ExampleSet ::= SET {
option PrintableString,
setting BOOLEAN }
ExampleChoice ::= CHOICE {
eeny-meeny BIT STRING,
miney-mo OCTET STRING }
Following are component references constructed with respect to the
type ExampleType.
The component reference "part1" identifies a component of a value of
Legg Expires 19 October 2002 [Page 10]
INTERNET-DRAFT LDAP & X.500 Component Matching Rules April 19, 2002
ExampleType having the ASN.1 tagged type [0] INTEGER.
The component reference "part2" identifies a component of a value of
ExampleType having the ASN.1 type of [1] ExampleSet
The component reference "part2.option" identifies a component of a
value of ExampleType having the ASN.1 type of PrintableString. A
ComponentAssertion could also be applied to a value of ASN.1 type
ExampleSet, in which case the component reference "option" would
identify the same kind of information.
The component reference "part3" identifies a component of a value of
ExampleType having the ASN.1 type of [2] SET OF OBJECT IDENTIFIER.
The component reference "part3.2" identifies the second instance of
the part3 SET OF. The instance has the ASN.1 type of OBJECT
IDENTIFIER.
The component reference "part3.0" identifies the count of the number
of instances in the part3 SET OF. The count has the corresponding
ASN.1 type of INTEGER (0..MAX).
The component reference "part3.*" identifies all the instances in the
part3 SET OF. Each instance has the ASN.1 type of OBJECT IDENTIFIER.
The component reference "part4" identifies a component of a value of
ExampleType having the ASN.1 type of [3] ExampleChoice.
The component reference "part4.miney-mo" identifies a component of a
value of ExampleType having the ASN.1 type of OCTET STRING.
5.1.6 Referencing Components of Open Types
If a sequence of ComponentIds identifies an ObjectClassFieldType
denoting an open type (e.g. ATTRIBUTE.&Type denotes an open type)
then the ASN.1 type of the component varies. An open type is
typically constrained by some other component(s) in an outer
enclosing type, either formally through the use of a component
relation constraint [14], or informally in the accompanying text, so
the actual ASN.1 type of a value of the open type will generally be
known. The constraint will also limit the range of permissible
types. The <select> form of ComponentId MAY be used to identify one
of these permissible types in an open type. Subcomponents of that
type can then be identified with further ComponentIds.
The other components constraining the open type are termed the
referenced components (using the terminology in [14]). The <select>
Legg Expires 19 October 2002 [Page 11]
INTERNET-DRAFT LDAP & X.500 Component Matching Rules April 19, 2002
form contains a list of one or more values which take the place of
the value(s) of the referenced component(s) to uniquely identify one
of the permissable types of the open type.
Where the open type is constrained by a component relation
constraint, there is a <Value> in the <select> form for each of the
referenced components in the component relation constraint, appearing
in the same order. The ASN.1 type of each of these values is the
same as the ASN.1 type of the corresponding referenced component.
The type of a referenced component is potentially any ASN.1 type
however it is typically an OBJECT IDENTIFIER or INTEGER, which means
that the <Value> in the <select> form of ComponentId will nearly
always be an <ObjectIdentifierValue> or <IntegerValue> (see [7]).
Furthermore, component relation constraints typically have only one
referenced component.
Where the open type is not constrained by a component relation
constraint, the specification introducing the syntax containing the
open type SHOULD explicitly nominate the referenced components and
their order, so that the <select> form can be used.
If an instance of <select> contains a value other than the value of
the referenced component used in a particular value of the outer
enclosing type then there are no corresponding component values for
the open type.
5.1.6.1 Open Type Referencing Example
The ASN.1 type AttributeTypeAndValue from [8] describes a single
attribute value of a nominated attribute type.
AttributeTypeAndValue ::= SEQUENCE {
type ATTRIBUTE.&id ({SupportedAttributes}),
value ATTRIBUTE.&Type ({SupportedAttributes}{@type}) }
ATTRIBUTE.&id denotes an OBJECT IDENTIFIER and
({SupportedAttributes}) constrains the OBJECT IDENTIFIER to be a
supported attribute type.
ATTRIBUTE.&Type denotes an open type, in this case an attribute
value, and ({SupportedAttributes}{@type}) is a component relation
constraint that constrains the open type to be of the attribute
syntax for the attribute type. The component relation constraint
references only the "type" component, which has the ASN.1 type of
OBJECT IDENTIFIER, thus if the <select> form of ComponentId is used
to identify attribute values of specific attribute types it will
contain a single OBJECT IDENTIFIER value.
Legg Expires 19 October 2002 [Page 12]
INTERNET-DRAFT LDAP & X.500 Component Matching Rules April 19, 2002
The component reference "value" on AttributeTypeAndValue refers to
the open type.
One of the X.500 standard attributes is facsimileTelephoneNumber
[10], which is identified with the OBJECT IDENTIFIER 2.5.4.23, and is
defined to have the following syntax.
FacsimileTelephoneNumber ::= SEQUENCE {
telephoneNumber PrintableString(SIZE(1..ub-telephone-number)),
parameters G3FacsimileNonBasicParameters OPTIONAL }
The component reference "value.(2.5.4.23)" on AttributeTypeAndValue
specifies an attribute value with the FacsimileTelephoneNumber
syntax.
The component reference "value.(2.5.4.23).telephoneNumber" on
AttributeTypeAndValue identifies the telephoneNumber component of a
facsimileTelephoneNumber attribute value. The component reference
"value.(facsimileTelephoneNumber)" is equivalent to
"value.(2.5.4.23)".
If the AttributeTypeAndValue ASN.1 value contains an attribute type
other than facsimileTelephoneNumber then there are no corresponding
component values for the component references "value.(2.5.4.23)" and
"value.(2.5.4.23).telephoneNumber".
5.1.7 Referencing Contained Types
Sometimes the contents of a BIT STRING or OCTET STRING value are
required to be the encodings of other ASN.1 values of specific ASN.1
types. For example, the extnValue component of the Extension type
component in the Certificate type [9] is an OCTET STRING that is
required to contain a DER encoding of a certificate extension value.
It is useful to be able to refer to the embedded encoded value and
its components. An embedded encoded value is here referred to as a
contained value and its associated type as the contained type.
If the ASN.1 type is a BIT STRING or OCTET STRING type containing
encodings of other ASN.1 values then the <content> form of
ComponentId MAY be used to identify the contained type.
Subcomponents of that type can then be identified with further
ComponentIds.
The contained type may be (effectively) an open type, constrained by
some other component in an outer enclosing type (e.g. in a
certificate Extension, extnValue is constrained by the chosen
extnId). In these cases the next ComponentId, if any, MUST be of the
Legg Expires 19 October 2002 [Page 13]
INTERNET-DRAFT LDAP & X.500 Component Matching Rules April 19, 2002
<select> form.
For the purpose of building component references, the content of the
extnValue OCTET STRING in the Extension type is assumed to be an open
type having a notional component relation constraint with the extnId
component as the single referenced component, i.e.
EXTENSION.&ExtnType ({ExtensionSet}{@extnId})
The data-value component of the associated types for the EXTERNAL,
EMBEDDED PDV and CHARACTER STRING types is an OCTET STRING containing
the encoding of a data value described by the identification
component. For the purpose of building component references, the
content of the data-value OCTET STRING in these types is assumed to
be an open type having a notional component relation constraint with
the identification component as the single referenced component.
5.1.7.1 Contained Type Referencing Example
The Extension ASN.1 type from [9] describes a single certificate
extension value of a nominated extension type.
Extension ::= SEQUENCE {
extnId EXTENSION.&id ({ExtensionSet}),
critical BOOLEAN DEFAULT FALSE,
extnValue OCTET STRING
-- contains a DER encoding of a value of type &ExtnType
-- for the extension object identified by extnId -- }
EXTENSION.&id denotes an OBJECT IDENTIFIER and ({ExtensionSet})
constrains the OBJECT IDENTIFIER to be the identifier of a supported
certificate extension.
The component reference "extnValue" on Extension refers to a
component type of OCTET STRING. The corresponding component values
will be OCTET STRING values. The component reference
"extnValue.content" on Extension refers to the type of the contained
type, which in this case is an open type.
One of the X.509 [X.509] standard extensions is basicConstraints,
which is identified with the OBJECT IDENTIFIER 2.5.29.19 and is
defined to have the following syntax.
BasicConstraintsSyntax ::= SEQUENCE {
cA BOOLEAN DEFAULT FALSE,
pathLenConstraint INTEGER (0..MAX) OPTIONAL }
Legg Expires 19 October 2002 [Page 14]
INTERNET-DRAFT LDAP & X.500 Component Matching Rules April 19, 2002
The component reference "extnValue.content.(2.5.29.19)" on Extension
specifies a BasicConstraintsSyntax extension value and the component
reference "extnValue.content.(2.5.29.19).cA" identifies the cA
component of a BasicConstraintsSyntax extension value.
5.2 Matching of Components
The rule in a ComponentAssertion specifies how the zero, one or more
component values identified by the component reference are tested by
the assertion. Attribute matching rules are used to specify the
semantics of the test.
Each matching rule has a notional set of attribute syntaxes
(typically one), defined as ASN.1 types, to which it may be applied.
When used in a ComponentAssertion these matching rules apply to the
same ASN.1 types, only in this context the corresponding ASN.1 values
are not complete attribute values.
Note that the referenced component type may be a tagged and/or
constrained version of the expected attribute syntax (e.g. [0]
INTEGER, whereas integerMatch would expect simply INTEGER), or an
open type. Additional type substitutions of the kind described in
Section 5.1.1 are performed as required to reduce the component type
to the same type as the attribute syntax expected by the matching
rule. If an open type is encountered the actual ASN.1 type of the
component value is substituted before continuing.
If a matching rule applies to more than one attribute syntax (e.g.
objectIdentifierFirstComponentMatch [10]) then the minimum number of
substitutions required to conform to any one of those syntaxes are
performed. If a matching rule can apply to any attribute syntax
(e.g. the allComponentsMatch rule defined in Section 8.2) then the
referenced component type is used as is, with no additional
substitutions.
The value in a ComponentAssertion will be of the assertion syntax
(i.e. ASN.1 type) required by the chosen matching rule. Note that
the assertion syntax of a matching rule is not necessarily the same
as the attribute syntax(es) to which the rule may be applied.
Some matching rules do not have a fixed assertion syntax (e.g.
allComponentsMatch). The required assertion syntax is determined in
each instance of use by the syntax of the attribute type to which the
matching rule is applied. For these rules the ASN.1 type of the
referenced component is used in place of an attribute syntax to
decide the required assertion syntax.
Legg Expires 19 October 2002 [Page 15]
INTERNET-DRAFT LDAP & X.500 Component Matching Rules April 19, 2002
The ComponentAssertion is undefined if:
a) the matching rule in the ComponentAssertion is not known to the
evaluating procedure,
b) if no part of the component reference identifies an open type and
the matching rule is not applicable to the referenced component
type, even with the additional type substitutions,
c) the value in the ComponentAssertion does not conform to the
assertion syntax defined for the matching rule,
d) an open type in the tested value cannot be decoded, or
e) the implementation does not support the particular combination of
component reference and matching rule.
If the ComponentAssertion is not undefined then the
ComponentAssertion evaluates to TRUE if there is at least one
component value for which the matching rule applied to that component
value returns TRUE, and evaluates to FALSE otherwise (which includes
the case where there are no component values).
If some part of the component reference identifies an open type and
the matching rule is not applicable to the referenced component type
the ComponentAssertion evaluates to FALSE.
5.2.1 Applicability of Existing Matching Rules
5.2.1.1 String Matching
ASN.1 has a number of built in restricted character string types with
different character sets and/or different character encodings. A
directory user generally has little interest in the particular
character set or encoding used to represent a character string
component value, and some directory server implementations make no
distinction between the different string types in their internal
representation of values. So rather than define string matching
rules for each of the restricted character string types, the existing
case ignore and case exact string matching rules are extended to
apply to component values of any of the restricted character string
types and any ChoiceOfStrings type [7], in addition to component
values of the DirectoryString type. This extension is only for the
purposes of component matching described in this document.
The relevant string matching rules are: caseIgnoreMatch,
caseIgnoreOrderingMatch, caseIgnoreSubstringsMatch, caseExactMatch,
Legg Expires 19 October 2002 [Page 16]
INTERNET-DRAFT LDAP & X.500 Component Matching Rules April 19, 2002
caseExactOrderingMatch and caseExactSubstringsMatch. The relevant
restricted character string types are: NumericString,
PrintableString, VisibleString, IA5String, UTF8String, BMPString,
UniversalString, TeletexString, VideotexString, GraphicString and
GeneralString. A ChoiceOfStrings type is a purely syntactic CHOICE
of these ASN.1 string types. Note that [7] declares each and every
use of the DirectoryString{} parameterized type to be a
ChoiceOfStrings type.
The assertion syntax of the string matching rules is still
DirectoryString regardless of the string syntax of the component
being matched. Thus an implementation will be called upon to compare
a DirectoryString value to a value of one of the restricted character
string types, or a ChoiceOfStrings type. As is the case when
comparing two DirectoryStrings where the chosen alternatives are of
different string types, the comparison proceeds so long as the
corresponding characters are representable in both character sets.
Otherwise matching returns FALSE.
5.2.1.2 Telephone Number Matching
Early editions of X.520 [10] gave the syntax of the telephoneNumber
attribute as a constrained PrintableString. The fourth edition of
X.520 equates the ASN.1 type name TelephoneNumber to the constrained
PrintableString and uses TelephoneNumber as the attribute and
assertion syntax. For the purposes of component matching,
telephoneNumberMatch and telephoneNumberSubstringsMatch are permitted
to be applied to any PrintableString value, as well as to
TelephoneNumber values.
5.2.1.3 Distinguished Name Matching
The DistinguishedName type is defined by assignment to be the same as
the RDNSequence type, however RDNSequence is sometimes directly used
in other type definitions. For the purposes of component matching,
distinguishedNameMatch is also permitted to be applied to values of
the RDNSequence type.
5.2.2 Additional Useful Matching Rules
This section defines additional matching rules that may prove useful
in ComponentAssertions. These rules MAY also be used in
extensibleMatch search filters [3].
Legg Expires 19 October 2002 [Page 17]
INTERNET-DRAFT LDAP & X.500 Component Matching Rules April 19, 2002
5.2.2.1 The rdnMatch Matching Rule
The distinguishedNameMatch matching rule can match whole
distinguished names but it is sometimes useful to be able to match
specific RDNs in a DN without regard for the other RDNs in the DN.
The rdnMatch matching rule allows component RDNs of a DN to be
tested.
The LDAP-style definitions for rdnMatch and its assertion syntax are:
( 1.2.36.79672281.1.13.3 NAME 'rdnMatch'
SYNTAX 1.2.36.79672281.1.5.0 )
( 1.2.36.79672281.1.5.0 DESC 'RDN' )
The LDAP-specific encoding for a value of the RDN syntax is given by
the <RelativeDistinguishedNameValue> rule in [7].
The X.500-style definition for rdnMatch is:
rdnMatch MATCHING-RULE ::= {
SYNTAX RelativeDistinguishedName
ID { 1 2 36 79672281 1 13 3 } }
The rdnMatch rule evaluates to true if the component value and
assertion value are the same RDN, using the same RDN comparison
method as distinguishedNameMatch.
When using rdnMatch to match components of DNs it is important to
note that the LDAP-specific encoding of a DN [5] reverses the order
of the RDNs. So for the DN represented in LDAP as "cn=Steven
Legg,o=Adacel,c=AU", the RDN "cn=Steven Legg" corresponds to the
component reference "3", or alternatively, "-1".
5.2.2.2 The presentMatch Matching Rule
At times it would be useful to test not if a specific value of a
particular component is present, but whether any value of a
particular component is present. The presentMatch matching rule
allows the presence of a particular component value to be tested.
The LDAP-style definitions for presentMatch and its assertion syntax
are:
( 1.2.36.79672281.1.13.5 NAME 'presentMatch'
SYNTAX 1.2.36.79672281.1.5.1 )
Legg Expires 19 October 2002 [Page 18]
INTERNET-DRAFT LDAP & X.500 Component Matching Rules April 19, 2002
( 1.2.36.79672281.1.5.1 DESC 'NULL' )
The LDAP-specific encoding for a value of the NULL syntax is given by
the <NullValue> rule in [7].
The X.500-style definition for presentMatch is:
presentMatch MATCHING-RULE ::= {
SYNTAX NULL
ID { 1 2 36 79672281 1 13 5 } }
When used in a extensible match filter item, presentMatch behaves
like the "present" case of a regular search filter. In a
ComponentAssertion, presentMatch evaluates to TRUE if and only if the
component reference identifies one or more component values,
regardless of the actual component value contents. Note that if
useDefaultValues is TRUE then the identified component values may be
(part of) a DEFAULT value.
The notional count referenced by the <count> form of ComponentId is
taken to be present if the SET OF value is present, and absent
otherwise. Note that in ASN.1 notation an absent SET OF value is
distinctly different from a SET OF value that is present but empty.
It is up to the specification using the ASN.1 notation to decide
whether the distinction matters. Often an empty SET OF component and
an absent SET OF component are treated as semantically equivalent.
If a SET OF value is present, but empty, a presentMatch on the SET OF
component SHALL return TRUE and the notional count SHALL be regarded
as present and equal to zero.
5.2.3 Summary of Useful Matching Rules
The following is a non-exhaustive list of useful matching rules and
the ASN.1 types to which they can be applied, taking account of all
the extensions described in Section 5.2.1, and the new matching rules
defined in Section 5.2.2.
Legg Expires 19 October 2002 [Page 19]
INTERNET-DRAFT LDAP & X.500 Component Matching Rules April 19, 2002
+================================+==============================+
| Matching Rule | ASN.1 Type |
+================================+==============================+
| bitStringMatch | BIT STRING |
+--------------------------------+------------------------------+
| booleanMatch | BOOLEAN |
+--------------------------------+------------------------------+
| caseIgnoreMatch | NumericString |
| caseIgnoreOrderingMatch | PrintableString |
| caseIgnoreSubstringsMatch | VisibleString (ISO646String) |
| caseExactMatch | IA5String |
| caseExactOrderingMatch | UTF8String |
| caseExactSubstringsMatch | BMPString (UCS-2, UNICODE) |
| | UniversalString (UCS-4) |
| | TeletexString (T61String) |
| | VideotexString |
| | GraphicString |
| | GeneralString |
| | any ChoiceOfStrings type |
+--------------------------------+------------------------------+
| caseIgnoreIA5Match | IA5String |
| caseExactIA5Match | |
+--------------------------------+------------------------------+
| distinguishedNameMatch | DistinguishedName |
| | RDNSequence |
+--------------------------------+------------------------------+
| generalizedTimeMatch | GeneralizedTime |
| generalizedTimeOrderingMatch | |
+--------------------------------+------------------------------+
| integerMatch | INTEGER |
| integerOrderingMatch | |
+--------------------------------+------------------------------+
| numericStringMatch | NumericString |
| numericStringOrderingMatch | |
| numericStringSubstringsMatch | |
+--------------------------------+------------------------------+
| objectIdentifierMatch | OBJECT IDENTIFIER |
+--------------------------------+------------------------------+
| octetStringMatch | OCTET STRING |
| octetStringOrderingMatch | |
| octetStringSubstringsMatch | |
+--------------------------------+------------------------------+
| presentMatch | any ASN.1 type |
+--------------------------------+------------------------------+
| rdnMatch | RelativeDistinguishedName |
+--------------------------------+------------------------------+
| telephoneNumberMatch | PrintableString |
| telephoneNumberSubstringsMatch | TelephoneNumber |
Legg Expires 19 October 2002 [Page 20]
INTERNET-DRAFT LDAP & X.500 Component Matching Rules April 19, 2002
+--------------------------------+------------------------------+
| uTCTimeMatch | UTCTime |
| uTCTimeOrderingMatch | |
+--------------------------------+------------------------------+
Note that the allComponentsMatch matching rule defined in Section 8.2
can be used for equality matching of values of the ENUMERATED, NULL,
REAL and RELATIVE-OID ASN.1 types, among other things.
6. ComponentFilter
The ComponentAssertion allows the value(s) of any one component type
in a complex ASN.1 type to be matched, but there is often a desire to
match the values of more than one component type. A ComponentFilter
is an assertion about the presence, or values of, multiple components
within an ASN.1 value.
The ComponentFilter assertion, an expression of ComponentAssertions,
evaluates to either TRUE, FALSE or undefined for each tested ASN.1
value.
A ComponentFilter is described by the following ASN.1 type (assumed
to be defined with "EXPLICIT TAGS" in force):
ComponentFilter ::= CHOICE {
item [0] ComponentAssertion,
and [1] SEQUENCE OF ComponentFilter,
or [2] SEQUENCE OF ComponentFilter,
not [3] ComponentFilter }
Note: despite the use of SEQUENCE OF instead of SET OF for the "and"
and "or" alternatives in ComponentFilter, the order of the component
filters is not significant.
A ComponentFilter that is a ComponentAssertion evaluates to TRUE if
the ComponentAssertion is TRUE, evaluates to FALSE if the
ComponentAssertion is FALSE, and evaluates to undefined otherwise.
The "and" of a sequence of component filters evaluates to TRUE if the
sequence is empty or if each component filter evaluates to TRUE,
evaluates to FALSE if at least one component filter is FALSE, and
evaluates to undefined otherwise.
The "or" of a sequence of component filters evaluates to FALSE if the
sequence is empty or if each component filter evaluates to FALSE,
evaluates to TRUE if at least one component filter is TRUE, and
evaluates to undefined otherwise.
Legg Expires 19 October 2002 [Page 21]
INTERNET-DRAFT LDAP & X.500 Component Matching Rules April 19, 2002
The "not" of a component filter evaluates to TRUE if the component
filter is FALSE, evaluates to FALSE if the component filter is TRUE,
and evaluates to undefined otherwise.
7. The componentFilterMatch Matching Rule
The componentFilterMatch matching rule allows a ComponentFilter to be
applied to an attribute value. The result of the matching rule is
the result of applying the ComponentFilter to the attribute value.
The LDAP-style definitions for componentFilterMatch and its assertion
syntax are:
( 1.2.36.79672281.1.13.2 NAME 'componentFilterMatch'
SYNTAX 1.2.36.79672281.1.5.2 )
( 1.2.36.79672281.1.5.2 DESC 'ComponentFilter' )
The LDAP-specific encoding for the ComponentFilter assertion syntax
is specified by the Generic String Encoding Rules in [7].
As a convenience to implementors, an equivalent ABNF description of
the GSER encoding for ComponentFilter is provided here. In the event
that there is a discrepancy between this ABNF and the encoding
determined by [7], [7] is to be taken as definitive. The GSER
encoding of a ComponentFilter is described by the following
equivalent ABNF:
ComponentFilter = filter-item /
and-filter /
or-filter /
not-filter
filter-item = item-chosen ComponentAssertion
and-filter = and-chosen SequenceOfComponentFilter
or-filter = or-chosen SequenceOfComponentFilter
not-filter = not-chosen ComponentFilter
item-chosen = %x69.74.65.6D.3A ; "item:"
and-chosen = %x61.6E.64.3A ; "and:"
or-chosen = %x6F.72.3A ; "or:"
not-chosen = %x6E.6F.74.3A ; "not:"
SequenceOfComponentFilter = "{" [ sp ComponentFilter
*( "," sp ComponentFilter) ] sp "}"
ComponentAssertion = "{" sp component ","
Legg Expires 19 October 2002 [Page 22]
INTERNET-DRAFT LDAP & X.500 Component Matching Rules April 19, 2002
[ sp useDefaultValues "," ]
sp rule ","
sp assertion-value sp "}"
component = component-label msp
dquote component-reference dquote
useDefaultValues = use-defaults-label msp BooleanValue
rule = rule-label msp ObjectIdentifierValue
assertion-value = value-label msp Value
component-label = %x63.6F.6D.70.6F.6E.65.6E.74 ; "component"
use-defaults-label = %x75.73.65.44.65.66.61.75.6C.74.56.61.6C.75
%x65.73 ; "useDefaultValues"
rule-label = %x72.75.6C.65 ; "rule"
value-label = %x76.61.6C.75.65 ; "value"
sp = *%x20 ; zero, one or more space characters
msp = 1*%x20 ; one or more space characters
dquote = %x22 ; " (double quote)
The ABNF for <Value>, <ObjectIdentifierValue> and <BooleanValue> is
defined in [7].
The ABNF descriptions of LDAP-specific encodings for attribute
syntaxes typically do not clearly or consistently delineate the
component parts of an attribute value. A regular and uniform
character string encoding for arbitrary component data types is
needed to encode the assertion value in a ComponentAssertion. The
<Value> rule from [7] provides a human readable text encoding for a
component value of any arbitrary ASN.1 type.
The X.500-style definition [8] for componentFilterMatch is:
componentFilterMatch MATCHING-RULE ::= {
SYNTAX ComponentFilter
ID { 1 2 36 79672281 1 13 2 } }
A ComponentAssertion can potentially use any matching rule, including
componentFilterMatch, so componentFilterMatch MAY be nested. The
component references in a nested componentFilterMatch are relative to
the component corresponding to the containing ComponentAssertion. In
Section 9, an example search on the seeAlso attribute shows this
usage.
8. Equality Matching of Complex Components
It is possible to test if an attribute value of a complex ASN.1
syntax is the same as some purported (i.e. assertion) value by using
Legg Expires 19 October 2002 [Page 23]
INTERNET-DRAFT LDAP & X.500 Component Matching Rules April 19, 2002
a complicated ComponentFilter that tests if corresponding components
are the same. However, it would be more convenient to be able to
present a whole assertion value to a matching rule that could do the
component-wise comparison of an attribute value with the assertion
value for any arbitrary attribute syntax. Similarly, the ability to
do a straightforward equality comparison of a component value that is
itself of a complex ASN.1 type would also be convenient.
It would be difficult to define a single matching rule that
simultaneously satisfies all notions of what the equality matching
semantics should be. For example, in some instances a case sensitive
comparison of string components may be preferable to a case
insensitive comparison. Therefore a basic equality matching rule,
allComponentsMatch, is defined in Section 8.2, and the means to
derive new matching rules from it with slightly different equality
matching semantics are described in Section 8.3.
The directoryComponentsMatch defined in Section 8.4 is a derivation
of allComponentsMatch that suits typical uses of the directory.
Other specifications are free to derive new rules from
allComponentsMatch or directoryComponentsMatch, that suit their usage
of the directory.
The allComponentsMatch rule, the directoryComponentsMatch rule and
any matching rules derived from them are collectively called
component equality matching rules.
8.1 The OpenAssertionType Syntax
The component equality matching rules have a variable assertion
syntax. In X.500 this is indicated by omitting the optional SYNTAX
field in the MATCHING-RULE information object. The assertion syntax
then defaults to the target attribute's syntax in actual usage,
unless the description of the matching rule says otherwise. The
SYNTAX field in the LDAP-specific encoding of a
MatchingRuleDescription is mandatory, so the OpenAssertionType syntax
is defined to fill the same role. That is, the OpenAssertionType
syntax is semantically equivalent to an omitted SYNTAX field in an
X.500 MATCHING-RULE information object. OpenAssertionType MUST NOT
be used as the attribute syntax in an attribute type definition.
Unless explicitly varied by the description of a particular matching
rule, if an OpenAssertionType assertion value appears in a
ComponentAssertion its LDAP-specific encoding is described by the
<Value> rule in [7], otherwise its LDAP-specific encoding is the
encoding defined for the syntax of the attribute type to which the
matching rule with the OpenAssertionType assertion syntax is applied.
Legg Expires 19 October 2002 [Page 24]
INTERNET-DRAFT LDAP & X.500 Component Matching Rules April 19, 2002
The LDAP definition for the OpenAssertionType syntax is:
( 1.2.36.79672281.1.5.3 DESC 'OpenAssertionType' )
8.2 The allComponentsMatch Matching Rule
The LDAP-style definition for allComponentsMatch is:
( 1.2.36.79672281.1.13.6 NAME 'allComponentsMatch'
SYNTAX 1.2.36.79672281.1.5.3 )
The X.500-style definition for allComponentsMatch is:
allComponentsMatch MATCHING-RULE ::= {
ID { 1 2 36 79672281 1 13 6 } }
When allComponentsMatch is used in a ComponentAssertion the assertion
syntax is the same as the ASN.1 type of the identified component.
Otherwise, the assertion syntax of allComponentsMatch is the same as
the attribute syntax of the attribute to which the matching rule is
applied.
Broadly speaking, this matching rule evaluates to true if and only if
corresponding components of the assertion value and the attribute or
component value are the same.
In detail, equality is determined by the following cases applied
recursively.
a) Two values of a SET or SEQUENCE type are the same if and only if,
for each component type, the corresponding component values are
either,
1) both absent,
2) both present and the same, or
3) absent or the same as the DEFAULT value for the component, if a
DEFAULT value is defined.
Values of an EMBEDDED PDV, EXTERNAL, unrestricted CHARACTER
STRING, or INSTANCE OF type are compared according to their
respective SEQUENCE type (see Section 5.1.2).
b) Two values of a SEQUENCE OF type are the same if and only if, the
values have the same number of (possibly duplicated) instances and
corresponding instances are the same.
Legg Expires 19 October 2002 [Page 25]
INTERNET-DRAFT LDAP & X.500 Component Matching Rules April 19, 2002
c) Two values of a SET OF type are the same if and only if, the
values have the same number of instances and each distinct
instance occurs in both values the same number of times, i.e. both
values have the same instances, including duplicates, but in any
order.
d) Two values of a CHOICE type are the same if and only if, both
values are of the same chosen alternative and the component values
are the same.
e) Two BIT STRING values are the same if and only if the values have
the same number of bits and corresponding bits are the same. If
the BIT STRING type is defined with a named bit list then trailing
zero bits in the values are treated as absent for the purposes of
this comparison.
f) Two BOOLEAN values are the same if and only if both are TRUE or
both are FALSE.
g) Two values of a string type are the same if and only if the values
have the same number of characters and corresponding characters
are the same. Letter case is significant. For the purposes of
allComponentsMatch, the string types are NumericString,
PrintableString, TeletexString (T61String), VideotexString,
IA5String, GraphicString, VisibleString (ISO646String),
GeneralString, UniversalString, BMPString, UTF8String,
GeneralizedTime, UTCTime and ObjectDescriptor.
h) Two INTEGER values are the same if and only if the integers are
equal.
i) Two ENUMERATED values are the same if and only if the enumeration
item identifiers are the same (equivalently, if the integer values
associated with the identifiers are equal).
j) Two NULL values are always the same, unconditionally.
k) Two OBJECT IDENTIFIER values are the same if and only if the
values have the same number of arcs and corresponding arcs are the
same.
l) Two OCTET STRING values are the same if and only if the values
have the same number of octets and corresponding octets are the
same.
m) Two REAL values are the same if and only if they are both the same
special value, or neither is a special value and they have the
same base and represent the same real number. The special values
Legg Expires 19 October 2002 [Page 26]
INTERNET-DRAFT LDAP & X.500 Component Matching Rules April 19, 2002
for REAL are zero, PLUS-INFINITY and MINUS-INFINITY.
n) Two RELATIVE-OID [12] values are the same if and only if the
values have the same number of arcs and corresponding arcs are the
same. The respective starting nodes for the RELATIVE-OID values
are disregarded in the comparison, i.e. they are assumed to be the
same.
o) Two values of an open type are the same if and only if both are of
the same ASN.1 type and are the same according to that type.
Tags and constraints, being part of the type definition and not part
of the abstract values, are ignored for matching purposes.
The allComponentsMatch rule MAY be used as the defined equality
matching rule for an attribute.
8.3 Deriving Component Equality Matching Rules
A new component equality matching rule with more refined matching
semantics MAY be derived from allComponentsMatch, or any other
component equality matching rule, using the convention described in
this section.
The matching behaviour of a derived component equality matching rule
is specified by nominating, for each of one or more identified
components, a commutative equality matching rule that will be used to
match values of that component. This overrides the matching that
would otherwise occur for values of that component using the base
rule for the derivation. These overrides can be conveniently
represented as rows in a table of the following form.
Component | Matching Rule
============+===============
|
|
Usually, all component values of a particular ASN.1 type are to be
matched the same way. An ASN.1 type reference (e.g.
DistinguishedName) or an ASN.1 built-in type name (e.g. INTEGER) in
the Component column of the table specifies that the nominated
equality matching rule is to be applied to all values of the named
type, regardless of context.
An ASN.1 type reference with a component reference appended
(separated by a ".") specifies that the nominated matching rule
applies only to the identified components of values of the named
Legg Expires 19 October 2002 [Page 27]
INTERNET-DRAFT LDAP & X.500 Component Matching Rules April 19, 2002
type. Other component values that happen to be of the same ASN.1
type are not selected.
Additional type substitutions as described in Section 5.2 are assumed
to be performed to align the component type with the matching rule
assertion syntax.
Conceptually, the rows in a table for the base rule are appended to
the rows in the table for a derived rule for the purpose of deciding
the matching semantics of the derived rule. Notionally,
allComponentsMatch has an empty table.
A row specifying values of an outer containing type (e.g.
DistinguishedName) takes precedence over a row specifying values of
an inner component type (e.g. RelativeDistinguishedName), regardless
of their order in the table. Specifying a row for component values
of an inner type is only useful if a value of the type can also
appear on its own, or as a component of values of a different outer
type. For example, if there is a row for DistinguishedName then a
row for RelativeDistinguishedName can only ever apply to
RelativeDistinguishedName component values that are not part of a
DistinguishedName. A row for values of an outer type in the table
for the base rule takes precedence over a row for values of an inner
type in the table for the derived rule.
Where more than one row applies to a particular component value the
earlier row takes precedence over the later row. Thus rows in the
table for the derived rule take precedence over any rows for the same
component in the table for the base rule.
8.4 The directoryComponentsMatch Matching Rule
The directoryComponentsMatch matching rule is derived from the
allComponentsMatch matching rule.
The LDAP-style definition for directoryComponentsMatch is:
( 1.2.36.79672281.1.13.7 NAME 'directoryComponentsMatch'
SYNTAX 1.2.36.79672281.1.5.3 )
The X.500-style definition for directoryComponentsMatch is:
directoryComponentsMatch MATCHING-RULE ::= {
ID { 1 2 36 79672281 1 13 7 } }
The matching semantics of directoryComponentsMatch are described by
the following table, using the convention described in Section 8.3.
Legg Expires 19 October 2002 [Page 28]
INTERNET-DRAFT LDAP & X.500 Component Matching Rules April 19, 2002
ASN.1 Type | Matching Rule
=========================================+========================
RDNSequence | distinguishedNameMatch
RelativeDistinguishedName | rdnMatch
TelephoneNumber | telephoneNumberMatch
FacsimileTelephoneNumber.telephoneNumber | telephoneNumberMatch
NumericString | numericStringMatch
GeneralizedTime | generalizedTimeMatch
UTCTime | uTCTimeMatch
DirectoryString{} | caseIgnoreMatch
BMPString | caseIgnoreMatch
GeneralString | caseIgnoreMatch
GraphicString | caseIgnoreMatch
IA5String | caseIgnoreMatch
PrintableString | caseIgnoreMatch
TeletexString | caseIgnoreMatch
UniversalString | caseIgnoreMatch
UTF8String | caseIgnoreMatch
VideotexString | caseIgnoreMatch
VisibleString | caseIgnoreMatch
Notes.
1) The DistinguishedName type is defined by assignment to be the same
as the RDNSequence type. Some types (e.g. Name and LocalName)
directly reference RDNSequence rather than DistinguishedName.
Specifying RDNSequence captures all these DN-like types.
2) A RelativeDistinguishedName value is only matched by rdnMatch if
it is not part of an RDNSequence value.
3) The telephone number component of the FacsimileTelephoneNumber
ASN.1 type [10] is defined as a constrained PrintableString.
PrintableString component values that are part of a
FacsimileTelephoneNumber value can be identified separately from
other components of PrintableString type by the specifier
FacsimileTelephoneNumber.telephoneNumber, so that
telephoneNumberMatch can be selectively applied. The fourth
edition of X.520 defines the telephoneNumber component of
FacsimileTelephoneNumber to be of the type TelephoneNumber, making
the row for FacsimileTelephoneNumber.telephoneNumber components
redundant.
The directoryComponentsMatch rule MAY be used as the defined equality
matching rule for an attribute.
9. Component Matching Examples
Legg Expires 19 October 2002 [Page 29]
INTERNET-DRAFT LDAP & X.500 Component Matching Rules April 19, 2002
This section contains examples of search filters using the
componentFilterMatch matching rule. The filters are described using
the string representation of LDAP search filters from [17]. Note
that [17] requires asterisks to be escaped in assertion values (in
these examples the assertion values are all <ComponentAssertion>
encodings). The asterisks have not been escaped in these examples
for the sake of clarity, and to avoid confusing the LDAP protocol
representation of search filter assertion values, where such escaping
does not apply. Line breaks and indenting have been added only as an
aid to readability.
The example search filters are all single extensible match filter
items, though there is no reason why componentFilterMatch can't be
used in more complicated search filters.
The first examples describe searches over the objectClasses schema
operational attribute, which has an attribute syntax described by the
ASN.1 type ObjectClassDescription [8], and holds the definitions of
the object classes known to a directory server. The definition of
ObjectClassDescription is as follows:
ObjectClassDescription ::= SEQUENCE {
identifier OBJECT-CLASS.&id,
name SET OF DirectoryString {ub-schema} OPTIONAL,
description DirectoryString {ub-schema} OPTIONAL,
obsolete BOOLEAN DEFAULT FALSE,
information [0] ObjectClassInformation }
ObjectClassInformation ::= SEQUENCE {
subclassOf SET OF OBJECT-CLASS.&id OPTIONAL,
kind ObjectClassKind DEFAULT structural,
mandatories [3] SET OF ATTRIBUTE.&id OPTIONAL,
optionals [4] SET OF ATTRIBUTE.&id OPTIONAL }
ObjectClassKind ::= ENUMERATED {
abstract (0),
structural (1),
auxiliary (2) }
OBJECT-CLASS.&id and ATTRIBUTE.&id are equivalent to the OBJECT
IDENTIFIER ASN.1 type. A value of OBJECT-CLASS.&id is an OBJECT
IDENTIFIER for an object class. A value of ATTRIBUTE.&id is an
OBJECT IDENTIFIER for an attribute type.
The following search filter finds the object class definition for the
object class identified by the OBJECT IDENTIFIER 2.5.6.18:
(objectClasses:componentFilterMatch:=
Legg Expires 19 October 2002 [Page 30]
INTERNET-DRAFT LDAP & X.500 Component Matching Rules April 19, 2002
item:{ component "identifier",
rule objectIdentifierMatch, value 2.5.6.18 })
A match on the "identifier" component of objectClasses values is
equivalent to the objectIdentifierFirstComponentMatch matching rule
applied to attribute values of the objectClasses attribute type. The
componentFilterMatch matching rule subsumes the functionality of the
objectIdentifierFirstComponentMatch, integerFirstComponentMatch and
directoryStringFirstComponentMatch matching rules.
The following search filter finds the object class definition for the
object class called foobar:
(objectClasses:componentFilterMatch:=
item:{ component "name.*",
rule caseIgnoreMatch, value "foobar" })
An object class definition can have multiple names and the above
filter will match an objectClasses value if any one of the names is
"foobar".
The component reference "name.0" identifies the notional count of the
number of names in an object class definition. The following search
filter finds object class definitions with exactly one name:
(objectClasses:componentFilterMatch:=
item:{ component "name.0", rule integerMatch, value 1 })
The "description" component of an ObjectClassDescription is defined
to be an OPTIONAL DirectoryString. The following search filter finds
object class definitions that have descriptions, regardless of the
contents of the description string:
(objectClasses:componentFilterMatch:=
item:{ component "description",
rule presentMatch, value NULL })
The presentMatch returns TRUE if the description component is present
and FALSE otherwise.
The following search filter finds object class definitions that don't
have descriptions:
(objectClasses:componentFilterMatch:=
not:item:{ component "description",
rule presentMatch, value NULL })
The following search filter finds object class definitions with the
Legg Expires 19 October 2002 [Page 31]
INTERNET-DRAFT LDAP & X.500 Component Matching Rules April 19, 2002
word "bogus" in the description:
(objectClasses:componentFilterMatch:=
item:{ component "description",
rule caseIgnoreSubstringsMatch,
value { any:"bogus" } })
The assertion value is of the SubstringAssertion syntax, i.e.
SubstringAssertion ::= SEQUENCE OF CHOICE {
initial [0] DirectoryString {ub-match},
any [1] DirectoryString {ub-match},
final [2] DirectoryString {ub-match} }
The "obsolete" component of an ObjectClassDescription is defined to
be DEFAULT FALSE. An object class is obsolete if the "obsolete"
component is present and set to TRUE. The following search filter
finds all obsolete object classes:
(objectClasses:componentFilterMatch:=
item:{ component "obsolete", rule booleanMatch, value TRUE })
An object class is not obsolete if the "obsolete" component is not
present, in which case it defaults to FALSE, or is present but is
explicitly set to FALSE. The following search filter finds all non-
obsolete object classes:
(objectClasses:componentFilterMatch:=
item:{ component "obsolete", rule booleanMatch, value FALSE })
The useDefaultValues flag in the ComponentAssertion defaults to TRUE
so the componentFilterMatch rule treats an absent "obsolete"
component as being present and set to FALSE. The following search
filter finds only object class definitions where the "obsolete"
component has been explicitly set to FALSE, rather than implicitly
defaulting to FALSE:
(objectClasses:componentFilterMatch:=
item:{ component "obsolete", useDefaultValues FALSE,
rule booleanMatch, value FALSE })
With the useDefaultValues flag set to FALSE, if the "obsolete"
component is absent the component reference identifies no component
value and the matching rule will return FALSE. The matching rule can
only return TRUE if the component is present and set to FALSE.
The "information.kind" component of the ObjectClassDescription is an
ENUMERATED type. The allComponentsMatch matching rule can be used to
Legg Expires 19 October 2002 [Page 32]
INTERNET-DRAFT LDAP & X.500 Component Matching Rules April 19, 2002
match values of an ENUMERATED type. The following search filter
finds object class definitions for auxiliary object classes:
(objectClasses:componentFilterMatch:=
item:{ component "information.kind",
rule allComponentsMatch, value auxiliary })
The following search filter finds auxiliary object classes with
commonName (cn or 2.5.4.3) as a mandatory attribute:
(objectClasses:componentFilterMatch:=and:{
item:{ component "information.kind",
rule allComponentsMatch, value auxiliary },
item:{ component "information.mandatories.*",
rule objectIdentifierMatch, value cn } })
The following search filter finds auxiliary object classes with
commonName as a mandatory or optional attribute:
(objectClasses:componentFilterMatch:=and:{
item:{ component "information.kind",
rule allComponentsMatch, value auxiliary },
or:{
item:{ component "information.mandatories.*",
rule objectIdentifierMatch, value cn },
item:{ component "information.optionals.*",
rule objectIdentifierMatch, value cn } } })
Extra care is required when matching optional SEQUENCE OF or SET OF
components because of the distinction between an absent list of
instances and a present, but empty, list of instances. The following
search filter finds object class definitions with less than three
names, including object class definitions with a present but empty
list of names, but does not find object class definitions with an
absent list of names:
(objectClasses:componentFilterMatch:=
item:{ component "name.0",
rule integerOrderingMatch, value 3 })
If the "name" component is absent the "name.0" component is also
considered to be absent and the ComponentAssertion evaluates to
FALSE. If the "name" component is present, but empty, the "name.0"
component is also present and equal to zero, so the
ComponentAssertion evaluates to TRUE. To also find the object class
definitions with an absent list of names the following search filter
would be used:
Legg Expires 19 October 2002 [Page 33]
INTERNET-DRAFT LDAP & X.500 Component Matching Rules April 19, 2002
(objectClasses:componentFilterMatch:=or:{
not:item:{ component "name", rule presentMatch, value NULL },
item:{ component "name.0",
rule integerOrderingMatch, value 3 } })
Distinguished names embedded in other syntaxes can be matched with a
componentFilterMatch. The uniqueMember attribute type has an
attribute syntax described by the ASN.1 type NameAndOptionalUID.
NameAndOptionalUID ::= SEQUENCE {
dn DistinguishedName,
uid UniqueIdentifier OPTIONAL }
The following search filter finds values of the uniqueMember
attribute containing the author's DN:
(uniqueMember:componentFilterMatch:=
item:{ component "dn",
rule distinguishedNameMatch,
value "cn=Steven Legg,o=Adacel,c=AU" })
The DistinguishedName and RelativeDistinguishedName ASN.1 types are
also complex ASN.1 types so the component matching rules can be
applied to their inner components.
DistinguishedName ::= RDNSequence
RDNSequence ::= SEQUENCE OF RelativeDistinguishedName
RelativeDistinguishedName ::= SET SIZE (1..MAX) OF
AttributeTypeAndValue
AttributeTypeAndValue ::= SEQUENCE {
type AttributeType ({SupportedAttributes}),
value AttributeValue ({SupportedAttributes}{@type}) }
AttributeType ::= ATTRIBUTE.&id
AttributeValue ::= ATTRIBUTE.&Type
ATTRIBUTE.&Type is an open type. A value of ATTRIBUTE.&Type is
constrained by the type component of AttributeTypeAndValue to be of
the attribute syntax of the nominated attribute type. Note: the
fourth edition of X.500 extends and renames the AttributeTypeAndValue
SEQUENCE type.
The seeAlso attribute has the DistinguishedName syntax. The
following search filter finds seeAlso attribute values containing the
Legg Expires 19 October 2002 [Page 34]
INTERNET-DRAFT LDAP & X.500 Component Matching Rules April 19, 2002
RDN, "o=Adacel", anywhere in the DN:
(seeAlso:componentFilterMatch:=
item:{ component "*", rule rdnMatch, value "o=Adacel" })
The following search filter finds all seeAlso attribute values with
"cn=Steven Legg" as the RDN of the named entry (i.e. the "first" RDN
in an LDAPDN or the "last" RDN in an X.500 DN):
(seeAlso:componentFilterMatch:=
item:{ component "-1",
rule rdnMatch, value "cn=Steven Legg" })
The following search filter finds all seeAlso attribute values naming
entries in the DIT subtree of "o=Adacel,c=AU":
(seeAlso:componentFilterMatch:=and:{
item:{ component "1", rule rdnMatch, value "c=AU" },
item:{ component "2", rule rdnMatch, value "o=Adacel" } })
The following search filter finds all seeAlso attribute values
containing the naming attribute types commonName (cn) and
telephoneNumber in the same RDN:
(seeAlso:componentFilterMatch:=
item:{ component "*", rule componentFilterMatch,
value and:{
item:{ component "*.type",
rule objectIdentifierMatch, value cn },
item:{ component "*.type",
rule objectIdentifierMatch,
value telephoneNumber } } })
The following search filter would find all seeAlso attribute values
containing the attribute types commonName and telephoneNumber, but
not necessarily in the same RDN:
(seeAlso:componentFilterMatch:=and:{
item:{ component "*.*.type",
rule objectIdentifierMatch, value cn },
item:{ component "*.*.type",
rule objectIdentifierMatch, value telephoneNumber } })
The following search filter finds all seeAlso attribute values
containing the word "Adacel" in any organizationalUnitName (ou)
attribute value in any AttributeTypeAndValue of any RDN:
(seeAlso:componentFilterMatch:=
Legg Expires 19 October 2002 [Page 35]
INTERNET-DRAFT LDAP & X.500 Component Matching Rules April 19, 2002
item:{ component "*.*.value.(2.5.4.11)",
rule caseIgnoreSubstringsMatch,
value { any:"Adacel" } })
The component reference "*.*.value" identifies an open type, in this
case an attribute value. In a particular AttributeTypeAndValue, if
the attribute type is not organizationalUnitName then the
ComponentAssertion evaluates to FALSE. Otherwise the substring
assertion is evaluated against the attribute value.
10. Security Considerations
The component matching rules described in this document allow for a
compact specification of matching capabilities that could otherwise
have been defined by a plethora of specific matching rules, i.e.
despite their expressiveness and flexibility the component matching
rules do not behave in a way uncharacteristic of other matching
rules, so the security issues for component matching rules are no
different than for any other matching rule. However, because the
component matching rules are applicable to any attribute syntax,
support for them in a directory server may allow searching of
attributes that were previously unsearchable by virtue of there not
being a suitable matching rule. Such attribute types ought to be
properly protected with appropriate access controls.
11. Acknowledgements
The author would like to thank Tom Gindin for private email
discussions that clarified and refined the ideas presented in this
document.
12. Normative References
[1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
Levels", BCP 14, RFC 2119, March 1997.
[2] Crocker, D. and P. Overell, "Augmented BNF for Syntax
Specifications: ABNF", RFC 2234, November 1997.
[3] Wahl, M., Howes, T. and S. Kille, "Lightweight Directory Access
Protocol (v3)", RFC 2251, December 1997.
[4] Wahl, M., Coulbeck, A., Howes, T. and S. Kille, "Lightweight
Directory Access Protocol (v3): Attribute Syntax Definitions",
RFC 2252, December 1997.
Legg Expires 19 October 2002 [Page 36]
INTERNET-DRAFT LDAP & X.500 Component Matching Rules April 19, 2002
[5] Wahl, M., Kille S. and T. Howes. "Lightweight Directory Access
Protocol (v3): UTF-8 String Representation of Distinguished
Names", RFC 2253, December 1997.
[6] Yergeau, F., "UTF-8, a transformation format of ISO 10646", RFC
2279, January 1998.
[7] Legg, S., "Generic String Encoding Rules for ASN.1 Types",
draft-legg-ldap-gser-xx.txt, a work in progress, March 2002.
[8] ITU-T Recommendation X.501 (1993) | ISO/IEC 9594-2:1994,
Information Technology - Open Systems Interconnection - The
Directory: Models
[9] ITU-T Recommendation X.509 (1997) | ISO/IEC 9594-8:1998,
Information Technology - Open Systems Interconnection - The
Directory: Authentication Framework
[10] ITU-T Recommendation X.520 (1993) | ISO/IEC 9594-6:1994,
Information Technology - Open Systems Interconnection - The
Directory: Selected attribute types
[11] ITU-T Recommendation X.680 (1997) | ISO/IEC 8824-1:1998
Information Technology - Abstract Syntax Notation One (ASN.1):
Specification of basic notation
[12] ITU-T Recommendation X.680 - Amendment 1 (06/99) | ISO/IEC
8824-1:1998/Amd 1:2000 Relative object identifiers
[13] ITU-T Recommendation X.681 (1997) | ISO/IEC 8824-2:1998
Information Technology - Abstract Syntax Notation One (ASN.1):
Information object specification
[14] ITU-T Recommendation X.682 (1997) | ISO/IEC 8824-3:1998
Information Technology - Abstract Syntax Notation One (ASN.1):
Constraint specification
[15] ITU-T Recommendation X.683 (1997) | ISO/IEC 8824-4:1998
Information Technology - Abstract Syntax Notation One (ASN.1):
Parameterization of ASN.1 specifications
13. Informative References
[16] Hovey, R. and S. Bradner, "The Organizations Involved in the
IETF Standards Process", BCP 11, RFC 2028, October 1996.
[17] Howes, T., "The String Representation of LDAP Search Filters",
Legg Expires 19 October 2002 [Page 37]
INTERNET-DRAFT LDAP & X.500 Component Matching Rules April 19, 2002
RFC 2254, December 1997.
[18] ITU-T Recommendation X.500 (1993) | ISO/IEC 9594-1:1994,
Information Technology - Open Systems Interconnection - The
Directory: Overview of concepts, models and services
[19] ITU-T Recommendation X.690 (1997) | ISO/IEC 8825-1:1998
Information Technology - ASN.1 encoding rules: Specification of
Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and
Distinguished Encoding Rules (DER)
14. Intellectual Property Notice
The IETF takes no position regarding the validity or scope of any
intellectual property or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; neither does it represent that it
has made any effort to identify any such rights. Information on the
IETF's procedures with respect to rights in standards-track and
standards-related documentation can be found in BCP-11. [16] Copies
of claims of rights made available for publication and any assurances
of licenses to be made available, or the result of an attempt made to
obtain a general license or permission for the use of such
proprietary rights by implementors or users of this specification can
be obtained from the IETF Secretariat.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights which may cover technology that may be required to practice
this standard. Please address the information to the IETF Executive
Director.
15. Copyright Notice
Copyright (C) The Internet Society (2002). All Rights Reserved.
This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
Legg Expires 19 October 2002 [Page 38]
INTERNET-DRAFT LDAP & X.500 Component Matching Rules April 19, 2002
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.
The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.
This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
16. Author's Address
Steven Legg
Adacel Technologies Ltd.
405-409 Ferntree Gully Road
Mount Waverley, Victoria 3149
AUSTRALIA
Phone: +61 3 9451 2107
Fax: +61 3 9541 2121
EMail: steven.legg@adacel.com.au
17. Appendix A - Changes From Previous Drafts
17.1 Changes in Draft 01
Section 4.1.7 (now 5.1.7) was added to enable component matching of
values embedded in encoded form into BIT STRINGs or OCTET STRINGs.
In particular, this is to allow component matching of values in
Certificate extensions. The <content> rule was added in Section 4.1
(now 5.1) to allow the OCTET STRING contents to be treated as either
raw octets or as an embedded value.
References to a companion document summarizing the ASN.1 types of
LDAP syntaxes were removed to avoid holding up this document.
The OpenType syntax was renamed to OpenAssertionType.
Object identifiers for the new syntax and matching rule definitions
have been allocated from an arc belonging to Adacel Technologies Ltd.
Legg Expires 19 October 2002 [Page 39]
INTERNET-DRAFT LDAP & X.500 Component Matching Rules April 19, 2002
17.2 Changes in Draft 02
The context specific tagging in the ComponentAssertion ASN.1 type was
unnecessary and has been removed.
The encoding of OpenAssertionType assertion values outside of
ComponentAssertions has been clarified, and the description of
OpenAssertionType has been promoted to its own section.
17.3 Changes in Draft 03
The default matching by allComponentsMatch of component values of BIT
STRING types with named bit lists has been changed to ignore trailing
zero bits.
Typographical errors in the <SafeUTF8Character> rule have been fixed.
17.4 Changes in Draft 04
When the matching rule in a ComponentAssertion has a variable
assertion syntax it is not possible to determine the syntax of the
value component from the ComponentAssertion alone when the associated
component reference has referenced through an open type. Deducing
what that syntax should be from inspection of the other
ComponentAssertions in a ComponentFilter is difficult to implement in
any comprehensive way. The <select> form of ComponentId has been
introduced so that the syntax can always be determined from the
contents of the ComponentAssertion alone. This not only simplifies
implementation but can lead to simpler ComponentFilters since there
is no longer a requirement to test that the components constraining
an open type have particular values. The open type referencing
example has been changed accordingly. The contained type referencing
example has also been changed because it is an example of a contained
open type.
The presentationAddressMatch rule is not commutative so it has been
removed from the table defining directoryComponentsMatch. The default
behaviour of allComponentsMatch is already a suitable commutative
substitute for matching PresentationAddress values.
The null character has been included in the range of legal characters
for <SafeUTF8Character>.
The ASN.1 type of the notional iteration count associated with SET OF
and SEQUENCE OF values has been refined to INTEGER (0..MAX).
The encoding rules in Section 8 (now draft-legg-ldap-gser-xx.txt)
have been formally named the Generic String Encoding Rules (GSER) and
Legg Expires 19 October 2002 [Page 40]
INTERNET-DRAFT LDAP & X.500 Component Matching Rules April 19, 2002
a transfer syntax object identifier has been assigned.
The term "LDAP string encoding" has been replaced by the term "native
LDAP-specific encoding" to align with terminology anticipated to be
used in the revision of RFC 2252.
17.5 Changes in Draft 05
Reformatted the draft to conform to recent and proposed RFC editorial
policy.
The use of the <oid> rule from RFC 2252 has been replaced by a local
definition to specifically outlaw leading zero characters in OBJECT
IDENTIFIER components.
Provisions for the RELATIVE-OID ASN.1 type defined in Amendment 1 to
X.680 have been added.
The comparison of REAL values has been clarified and the GSER
encoding of REAL values has been extended.
Removed extraneous spaces from example DNs.
17.6 Changes in Draft 06
An ABNF syntax error in the <exponent> rule was fixed.
17.7 Changes in Draft 07
The term "native LDAP encoding" has been replaced by the term "LDAP-
specific encoding" to align with terminology anticipated to be used
in the revision of RFC 2252.
Section 8 has been extracted to become a separate Internet draft,
draft-legg-ldap-gser-00.txt. The specifications for ChoiceOfStrings
types have also been moved to this new Internet draft. Various
editorial changes have been made to this draft to accommodate this
split.
17.8 Changes in Draft 08
The enumeratedMatch matching rule duplicates a subset of the
functionality of allComponentsMatch so it has been removed. The
enumeratedMatch rule has been replaced by allComponentsMatch in the
examples. The description of the OpenAssertionType syntax has been
moved into Section 8.
Legg Expires 19 October 2002 [Page 41]