mirror of
https://git.openldap.org/openldap/openldap.git
synced 2024-12-21 03:10:25 +08:00
1b15fa9c6e
- Move problematic mutex_unlock()-mutex_lock() into the unused #ifdef LDAP_PVT_THREAD_POOL_SEM_LOAD_CONTROL and add a FIXME comment inside. - Delay ltp_starting--; until pool_wrapper(). Nonzero value could otherwise no longer be exposed when !defined LDAP_PVT_THREAD_POOL_SEM_LOAD_CONTROL.
977 lines
24 KiB
C
977 lines
24 KiB
C
/* $OpenLDAP$ */
|
|
/* This work is part of OpenLDAP Software <http://www.openldap.org/>.
|
|
*
|
|
* Copyright 1998-2007 The OpenLDAP Foundation.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted only as authorized by the OpenLDAP
|
|
* Public License.
|
|
*
|
|
* A copy of this license is available in file LICENSE in the
|
|
* top-level directory of the distribution or, alternatively, at
|
|
* <http://www.OpenLDAP.org/license.html>.
|
|
*/
|
|
|
|
#include "portable.h"
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <ac/stdarg.h>
|
|
#include <ac/stdlib.h>
|
|
#include <ac/string.h>
|
|
#include <ac/time.h>
|
|
#include <ac/errno.h>
|
|
|
|
#include "ldap-int.h"
|
|
#include "ldap_pvt_thread.h" /* Get the thread interface */
|
|
#include "ldap_queue.h"
|
|
#define LDAP_THREAD_POOL_IMPLEMENTATION
|
|
#include "ldap_thr_debug.h" /* May rename symbols defined below */
|
|
|
|
#ifndef LDAP_THREAD_HAVE_TPOOL
|
|
|
|
typedef enum ldap_int_thread_pool_state_e {
|
|
LDAP_INT_THREAD_POOL_RUNNING,
|
|
LDAP_INT_THREAD_POOL_FINISHING,
|
|
LDAP_INT_THREAD_POOL_STOPPING
|
|
} ldap_int_thread_pool_state_t;
|
|
|
|
typedef struct ldap_int_thread_key_s {
|
|
void *ltk_key;
|
|
void *ltk_data;
|
|
ldap_pvt_thread_pool_keyfree_t *ltk_free;
|
|
} ldap_int_thread_key_t;
|
|
|
|
/* Max number of thread-specific keys we store per thread.
|
|
* We don't expect to use many...
|
|
*/
|
|
#define MAXKEYS 32
|
|
#define LDAP_MAXTHR 1024 /* must be a power of 2 */
|
|
|
|
typedef struct ldap_int_thread_userctx_s {
|
|
ldap_pvt_thread_t ltu_id;
|
|
ldap_int_thread_key_t ltu_key[MAXKEYS];
|
|
} ldap_int_thread_userctx_t;
|
|
|
|
static ldap_pvt_thread_t tid_zero;
|
|
|
|
/* Thread ID -> context mapping (poor open-addressed hash table).
|
|
* Protected by ldap_pvt_thread_pool_mutex except during pauses,
|
|
* when it is read-only (used by pool_purgekey and pool_context).
|
|
*/
|
|
static struct {
|
|
ldap_pvt_thread_t id;
|
|
ldap_int_thread_userctx_t *ctx; /* set when id != tid_zero */
|
|
# define DELETED_THREAD_CTX (&ldap_int_main_thrctx + 1) /* dummy addr */
|
|
} thread_keys[LDAP_MAXTHR];
|
|
|
|
#define TID_HASH(tid, hash) do { \
|
|
unsigned const char *ptr_ = (unsigned const char *)&(tid); \
|
|
unsigned i_; \
|
|
for (i_ = 0, (hash) = ptr_[0]; ++i_ < sizeof(tid);) \
|
|
(hash) += ((hash) << 5) ^ ptr_[i_]; \
|
|
} while(0)
|
|
|
|
|
|
typedef struct ldap_int_thread_ctx_s {
|
|
union {
|
|
LDAP_STAILQ_ENTRY(ldap_int_thread_ctx_s) q;
|
|
LDAP_SLIST_ENTRY(ldap_int_thread_ctx_s) l;
|
|
LDAP_SLIST_ENTRY(ldap_int_thread_ctx_s) al;
|
|
} ltc_next;
|
|
ldap_pvt_thread_start_t *ltc_start_routine;
|
|
void *ltc_arg;
|
|
} ldap_int_thread_ctx_t;
|
|
|
|
struct ldap_int_thread_pool_s {
|
|
LDAP_STAILQ_ENTRY(ldap_int_thread_pool_s) ltp_next;
|
|
ldap_pvt_thread_mutex_t ltp_mutex;
|
|
ldap_pvt_thread_cond_t ltp_cond;
|
|
ldap_pvt_thread_cond_t ltp_pcond;
|
|
LDAP_STAILQ_HEAD(tcq, ldap_int_thread_ctx_s) ltp_pending_list;
|
|
LDAP_SLIST_HEAD(tcl, ldap_int_thread_ctx_s) ltp_free_list;
|
|
LDAP_SLIST_HEAD(tclq, ldap_int_thread_ctx_s) ltp_active_list;
|
|
ldap_int_thread_pool_state_t ltp_state;
|
|
int ltp_pause;
|
|
long ltp_max_count;
|
|
long ltp_max_pending;
|
|
long ltp_pending_count;
|
|
long ltp_active_count;
|
|
long ltp_open_count;
|
|
long ltp_starting;
|
|
};
|
|
|
|
static LDAP_STAILQ_HEAD(tpq, ldap_int_thread_pool_s)
|
|
ldap_int_thread_pool_list =
|
|
LDAP_STAILQ_HEAD_INITIALIZER(ldap_int_thread_pool_list);
|
|
|
|
static ldap_pvt_thread_mutex_t ldap_pvt_thread_pool_mutex;
|
|
|
|
static void *ldap_int_thread_pool_wrapper( void *pool );
|
|
|
|
static ldap_pvt_thread_t ldap_int_main_tid;
|
|
|
|
static ldap_int_thread_userctx_t ldap_int_main_thrctx;
|
|
|
|
int
|
|
ldap_int_thread_pool_startup ( void )
|
|
{
|
|
ldap_int_main_tid = ldap_pvt_thread_self();
|
|
ldap_int_main_thrctx.ltu_id = ldap_int_main_tid;
|
|
|
|
return ldap_pvt_thread_mutex_init(&ldap_pvt_thread_pool_mutex);
|
|
}
|
|
|
|
int
|
|
ldap_int_thread_pool_shutdown ( void )
|
|
{
|
|
struct ldap_int_thread_pool_s *pool;
|
|
|
|
while ((pool = LDAP_STAILQ_FIRST(&ldap_int_thread_pool_list)) != NULL) {
|
|
(ldap_pvt_thread_pool_destroy)(&pool, 0); /* ignore thr_debug macro */
|
|
}
|
|
ldap_pvt_thread_mutex_destroy(&ldap_pvt_thread_pool_mutex);
|
|
return(0);
|
|
}
|
|
|
|
typedef struct ldap_lazy_sem_t {
|
|
ldap_pvt_thread_mutex_t ls_mutex;
|
|
ldap_pvt_thread_cond_t ls_cond;
|
|
int ls_sem_value;
|
|
/*
|
|
* when more than ls_lazy_count number of resources
|
|
* becmoes available, the thread wating for the resources will
|
|
* be waken up in order to prevent frequent blocking/waking-up
|
|
*/
|
|
unsigned int ls_lazy_count;
|
|
/*
|
|
* only one thread(listener) will wait on this semaphore
|
|
* using a flag instead of a list
|
|
*/
|
|
int ls_wait;
|
|
} ldap_lazy_sem_t;
|
|
|
|
ldap_lazy_sem_t* thread_pool_sem = NULL;
|
|
|
|
int
|
|
ldap_lazy_sem_init( unsigned int value, unsigned int lazyness )
|
|
{
|
|
thread_pool_sem = (ldap_lazy_sem_t*) LDAP_CALLOC(1,
|
|
sizeof( ldap_lazy_sem_t ));
|
|
|
|
if( thread_pool_sem == NULL ) return -1;
|
|
|
|
ldap_pvt_thread_mutex_init( &thread_pool_sem->ls_mutex );
|
|
ldap_pvt_thread_cond_init( &thread_pool_sem->ls_cond );
|
|
thread_pool_sem->ls_sem_value = value;
|
|
thread_pool_sem->ls_lazy_count = lazyness;
|
|
thread_pool_sem->ls_wait = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* FIXME: move to some approprite header */
|
|
int ldap_lazy_sem_dec( ldap_lazy_sem_t* ls );
|
|
int ldap_lazy_sem_wait ( ldap_lazy_sem_t* ls );
|
|
|
|
/*
|
|
* ldap_lazy_sem_wait is used if a caller is blockable(listener).
|
|
* Otherwise use ldap_lazy_sem_dec (worker)
|
|
*/
|
|
int
|
|
ldap_lazy_sem_op_submit( ldap_lazy_sem_t* ls )
|
|
{
|
|
if ( ls == NULL ) return -1;
|
|
|
|
/* only worker thread has its thread ctx */
|
|
if ( ldap_pvt_thread_pool_context() ) {
|
|
/* worker thread */
|
|
return ldap_lazy_sem_dec( ls );
|
|
} else {
|
|
/* listener */
|
|
return ldap_lazy_sem_wait( ls );
|
|
}
|
|
}
|
|
|
|
/*
|
|
* test if given semaphore's count is zero.
|
|
* If 0, the caller is blocked
|
|
* If not, the count is decremented.
|
|
*/
|
|
int
|
|
ldap_lazy_sem_wait ( ldap_lazy_sem_t* ls )
|
|
{
|
|
ldap_pvt_thread_mutex_lock( &ls->ls_mutex );
|
|
|
|
lazy_sem_retry:
|
|
if ( ls->ls_sem_value <= 0 ) {
|
|
/* no more avaliable resources */
|
|
ls->ls_wait = 1;
|
|
ldap_pvt_thread_cond_wait( &ls->ls_cond, &ls->ls_mutex );
|
|
goto lazy_sem_retry;
|
|
} else {
|
|
/* avaliable resources */
|
|
ls->ls_sem_value--;
|
|
}
|
|
|
|
ldap_pvt_thread_mutex_unlock( &ls->ls_mutex );
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* decrement the count without blocking
|
|
* even when the count becomes less than or equal to 0
|
|
*/
|
|
int
|
|
ldap_lazy_sem_dec( ldap_lazy_sem_t* ls )
|
|
{
|
|
ldap_pvt_thread_mutex_lock( &ls->ls_mutex );
|
|
|
|
ls->ls_sem_value--;
|
|
|
|
ldap_pvt_thread_mutex_unlock( &ls->ls_mutex );
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Increment the count by one and test if it is greater or
|
|
* equal to lazyness. If it is, wake up a blocked thread.
|
|
*/
|
|
int
|
|
ldap_lazy_sem_post( ldap_lazy_sem_t* ls )
|
|
{
|
|
if( ls == NULL ) return (-1);
|
|
|
|
ldap_pvt_thread_mutex_lock( &ls->ls_mutex );
|
|
|
|
ls->ls_sem_value++;
|
|
if ( ls->ls_wait ) {
|
|
if ( ls->ls_sem_value >= ls->ls_lazy_count ) {
|
|
ls->ls_wait = 0;
|
|
ldap_pvt_thread_cond_signal( &ls->ls_cond );
|
|
}
|
|
}
|
|
|
|
ldap_pvt_thread_mutex_unlock( &ls->ls_mutex );
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
ldap_pvt_thread_pool_init (
|
|
ldap_pvt_thread_pool_t *tpool,
|
|
int max_threads,
|
|
int max_pending )
|
|
{
|
|
ldap_pvt_thread_pool_t pool;
|
|
int rc;
|
|
|
|
if (! (0 <= max_threads && max_threads <= LDAP_MAXTHR))
|
|
max_threads = 0;
|
|
|
|
*tpool = NULL;
|
|
pool = (ldap_pvt_thread_pool_t) LDAP_CALLOC(1,
|
|
sizeof(struct ldap_int_thread_pool_s));
|
|
|
|
if (pool == NULL) return(-1);
|
|
|
|
rc = ldap_pvt_thread_mutex_init(&pool->ltp_mutex);
|
|
if (rc != 0)
|
|
return(rc);
|
|
rc = ldap_pvt_thread_cond_init(&pool->ltp_cond);
|
|
if (rc != 0)
|
|
return(rc);
|
|
rc = ldap_pvt_thread_cond_init(&pool->ltp_pcond);
|
|
if (rc != 0)
|
|
return(rc);
|
|
pool->ltp_state = LDAP_INT_THREAD_POOL_RUNNING;
|
|
pool->ltp_max_count = max_threads;
|
|
pool->ltp_max_pending = max_pending;
|
|
LDAP_STAILQ_INIT(&pool->ltp_pending_list);
|
|
LDAP_SLIST_INIT(&pool->ltp_free_list);
|
|
LDAP_SLIST_INIT(&pool->ltp_active_list);
|
|
ldap_pvt_thread_mutex_lock(&ldap_pvt_thread_pool_mutex);
|
|
LDAP_STAILQ_INSERT_TAIL(&ldap_int_thread_pool_list, pool, ltp_next);
|
|
ldap_pvt_thread_mutex_unlock(&ldap_pvt_thread_pool_mutex);
|
|
|
|
#if 0
|
|
/* THIS WILL NOT WORK on some systems. If the process
|
|
* forks after starting a thread, there is no guarantee
|
|
* that the thread will survive the fork. For example,
|
|
* slapd forks in order to daemonize, and does so after
|
|
* calling ldap_pvt_thread_pool_init. On some systems,
|
|
* this initial thread does not run in the child process,
|
|
* but ltp_open_count == 1, so two things happen:
|
|
* 1) the first client connection fails, and 2) when
|
|
* slapd is kill'ed, it never terminates since it waits
|
|
* for all worker threads to exit. */
|
|
|
|
/* start up one thread, just so there is one. no need to
|
|
* lock the mutex right now, since no threads are running.
|
|
*/
|
|
pool->ltp_open_count++;
|
|
|
|
ldap_pvt_thread_t thr;
|
|
rc = ldap_pvt_thread_create( &thr, 1, ldap_int_thread_pool_wrapper, pool );
|
|
|
|
if( rc != 0) {
|
|
/* couldn't start one? then don't start any */
|
|
ldap_pvt_thread_mutex_lock(&ldap_pvt_thread_pool_mutex);
|
|
LDAP_STAILQ_REMOVE(ldap_int_thread_pool_list, pool,
|
|
ldap_int_thread_pool_s, ltp_next);
|
|
ldap_pvt_thread_mutex_unlock(&ldap_pvt_thread_pool_mutex);
|
|
ldap_pvt_thread_cond_destroy(&pool->ltp_pcond);
|
|
ldap_pvt_thread_cond_destroy(&pool->ltp_cond);
|
|
ldap_pvt_thread_mutex_destroy(&pool->ltp_mutex);
|
|
LDAP_FREE(pool);
|
|
return(-1);
|
|
}
|
|
#endif
|
|
|
|
*tpool = pool;
|
|
return(0);
|
|
}
|
|
|
|
|
|
int
|
|
ldap_pvt_thread_pool_submit (
|
|
ldap_pvt_thread_pool_t *tpool,
|
|
ldap_pvt_thread_start_t *start_routine, void *arg )
|
|
{
|
|
struct ldap_int_thread_pool_s *pool;
|
|
ldap_int_thread_ctx_t *ctx;
|
|
int need_thread = 0;
|
|
ldap_pvt_thread_t thr;
|
|
|
|
if (tpool == NULL)
|
|
return(-1);
|
|
|
|
pool = *tpool;
|
|
|
|
if (pool == NULL)
|
|
return(-1);
|
|
|
|
ldap_pvt_thread_mutex_lock(&pool->ltp_mutex);
|
|
if (pool->ltp_state != LDAP_INT_THREAD_POOL_RUNNING
|
|
|| (pool->ltp_max_pending > 0
|
|
&& pool->ltp_pending_count >= pool->ltp_max_pending))
|
|
{
|
|
ldap_pvt_thread_mutex_unlock(&pool->ltp_mutex);
|
|
return(-1);
|
|
}
|
|
|
|
ctx = LDAP_SLIST_FIRST(&pool->ltp_free_list);
|
|
if (ctx) {
|
|
LDAP_SLIST_REMOVE_HEAD(&pool->ltp_free_list, ltc_next.l);
|
|
} else {
|
|
ctx = (ldap_int_thread_ctx_t *) LDAP_MALLOC(
|
|
sizeof(ldap_int_thread_ctx_t));
|
|
if (ctx == NULL) {
|
|
ldap_pvt_thread_mutex_unlock(&pool->ltp_mutex);
|
|
return(-1);
|
|
}
|
|
}
|
|
|
|
ctx->ltc_start_routine = start_routine;
|
|
ctx->ltc_arg = arg;
|
|
|
|
pool->ltp_pending_count++;
|
|
LDAP_STAILQ_INSERT_TAIL(&pool->ltp_pending_list, ctx, ltc_next.q);
|
|
if (pool->ltp_pause) {
|
|
ldap_pvt_thread_mutex_unlock(&pool->ltp_mutex);
|
|
return(0);
|
|
}
|
|
ldap_pvt_thread_cond_signal(&pool->ltp_cond);
|
|
if (pool->ltp_open_count < pool->ltp_active_count + pool->ltp_pending_count
|
|
&& (pool->ltp_open_count <
|
|
(pool->ltp_max_count ? pool->ltp_max_count : LDAP_MAXTHR)))
|
|
{
|
|
pool->ltp_open_count++;
|
|
pool->ltp_starting++;
|
|
need_thread = 1;
|
|
}
|
|
|
|
#ifdef LDAP_PVT_THREAD_POOL_SEM_LOAD_CONTROL
|
|
ldap_pvt_thread_mutex_unlock(&pool->ltp_mutex);
|
|
ldap_lazy_sem_op_submit( thread_pool_sem );
|
|
/* FIXME: Another thread can now handle and release ctx, after
|
|
* which a newly submitted op can reuse ctx. Then it is wrong for
|
|
* the "if (pool->ltp_open_count == 0)" code below to release ctx.
|
|
*/
|
|
#endif
|
|
|
|
if (need_thread) {
|
|
if (0 != ldap_pvt_thread_create(
|
|
&thr, 1, ldap_int_thread_pool_wrapper, pool))
|
|
{
|
|
/* couldn't create thread. back out of
|
|
* ltp_open_count and check for even worse things.
|
|
*/
|
|
#ifdef LDAP_PVT_THREAD_POOL_SEM_LOAD_CONTROL
|
|
ldap_pvt_thread_mutex_lock(&pool->ltp_mutex);
|
|
#endif
|
|
pool->ltp_starting--;
|
|
pool->ltp_open_count--;
|
|
if (pool->ltp_open_count == 0) {
|
|
/* no open threads at all?!?
|
|
*/
|
|
ldap_int_thread_ctx_t *ptr;
|
|
|
|
/* let pool_destroy know there are no more threads */
|
|
ldap_pvt_thread_cond_signal(&pool->ltp_cond);
|
|
|
|
LDAP_STAILQ_FOREACH(ptr, &pool->ltp_pending_list, ltc_next.q)
|
|
if (ptr == ctx) break;
|
|
if (ptr == ctx) {
|
|
/* no open threads, context not handled, so
|
|
* back out of ltp_pending_count, free the context,
|
|
* report the error.
|
|
*/
|
|
LDAP_STAILQ_REMOVE(&pool->ltp_pending_list, ctx,
|
|
ldap_int_thread_ctx_s, ltc_next.q);
|
|
pool->ltp_pending_count--;
|
|
ldap_pvt_thread_mutex_unlock(&pool->ltp_mutex);
|
|
LDAP_FREE(ctx);
|
|
return(-1);
|
|
}
|
|
}
|
|
#ifdef LDAP_PVT_THREAD_POOL_SEM_LOAD_CONTROL
|
|
ldap_pvt_thread_mutex_unlock(&pool->ltp_mutex);
|
|
#endif
|
|
/* there is another open thread, so this
|
|
* context will be handled eventually.
|
|
* continue on, we have signalled that
|
|
* the context is waiting.
|
|
*/
|
|
}
|
|
}
|
|
|
|
#ifndef LDAP_PVT_THREAD_POOL_SEM_LOAD_CONTROL
|
|
ldap_pvt_thread_mutex_unlock(&pool->ltp_mutex);
|
|
#endif
|
|
|
|
return(0);
|
|
}
|
|
|
|
int
|
|
ldap_pvt_thread_pool_maxthreads ( ldap_pvt_thread_pool_t *tpool, int max_threads )
|
|
{
|
|
struct ldap_int_thread_pool_s *pool;
|
|
|
|
if (! (0 <= max_threads && max_threads <= LDAP_MAXTHR))
|
|
max_threads = 0;
|
|
|
|
if (tpool == NULL)
|
|
return(-1);
|
|
|
|
pool = *tpool;
|
|
|
|
if (pool == NULL)
|
|
return(-1);
|
|
|
|
ldap_pvt_thread_mutex_lock(&pool->ltp_mutex);
|
|
pool->ltp_max_count = max_threads;
|
|
ldap_pvt_thread_mutex_unlock(&pool->ltp_mutex);
|
|
return(0);
|
|
}
|
|
|
|
int
|
|
ldap_pvt_thread_pool_query ( ldap_pvt_thread_pool_t *tpool, ldap_pvt_thread_pool_param_t param, void *value )
|
|
{
|
|
struct ldap_int_thread_pool_s *pool;
|
|
int count = -1;
|
|
|
|
if ( tpool == NULL || value == NULL ) {
|
|
return -1;
|
|
}
|
|
|
|
pool = *tpool;
|
|
|
|
if ( pool == NULL ) {
|
|
return 0;
|
|
}
|
|
|
|
ldap_pvt_thread_mutex_lock(&pool->ltp_mutex);
|
|
switch ( param ) {
|
|
case LDAP_PVT_THREAD_POOL_PARAM_MAX:
|
|
count = pool->ltp_max_count;
|
|
break;
|
|
|
|
case LDAP_PVT_THREAD_POOL_PARAM_MAX_PENDING:
|
|
count = pool->ltp_max_pending;
|
|
break;
|
|
|
|
case LDAP_PVT_THREAD_POOL_PARAM_OPEN:
|
|
count = pool->ltp_open_count;
|
|
break;
|
|
|
|
case LDAP_PVT_THREAD_POOL_PARAM_STARTING:
|
|
count = pool->ltp_starting;
|
|
break;
|
|
|
|
case LDAP_PVT_THREAD_POOL_PARAM_ACTIVE:
|
|
count = pool->ltp_active_count;
|
|
break;
|
|
|
|
case LDAP_PVT_THREAD_POOL_PARAM_PENDING:
|
|
count = pool->ltp_pending_count;
|
|
break;
|
|
|
|
case LDAP_PVT_THREAD_POOL_PARAM_BACKLOAD:
|
|
count = pool->ltp_pending_count + pool->ltp_active_count;
|
|
break;
|
|
|
|
case LDAP_PVT_THREAD_POOL_PARAM_ACTIVE_MAX:
|
|
break;
|
|
|
|
case LDAP_PVT_THREAD_POOL_PARAM_PENDING_MAX:
|
|
break;
|
|
|
|
case LDAP_PVT_THREAD_POOL_PARAM_BACKLOAD_MAX:
|
|
break;
|
|
|
|
case LDAP_PVT_THREAD_POOL_PARAM_STATE: {
|
|
static struct {
|
|
char *name;
|
|
ldap_int_thread_pool_state_t state;
|
|
} str2state[] = {
|
|
{ "running", LDAP_INT_THREAD_POOL_RUNNING },
|
|
{ "finishing", LDAP_INT_THREAD_POOL_FINISHING },
|
|
{ "stopping", LDAP_INT_THREAD_POOL_STOPPING },
|
|
{ NULL }
|
|
};
|
|
int i;
|
|
|
|
if ( pool->ltp_pause ) {
|
|
*((char **)value) = "pausing";
|
|
} else {
|
|
for ( i = 0; str2state[ i ].name != NULL; i++ ) {
|
|
if ( str2state[ i ].state == pool->ltp_state ) {
|
|
break;
|
|
}
|
|
}
|
|
*((char **)value) = str2state[ i ].name;
|
|
}
|
|
if ( *((char **)value) != NULL ) {
|
|
count = -2;
|
|
}
|
|
} break;
|
|
}
|
|
ldap_pvt_thread_mutex_unlock( &pool->ltp_mutex );
|
|
|
|
if ( count > -1 ) {
|
|
*((int *)value) = count;
|
|
}
|
|
|
|
return ( count == -1 ? -1 : 0 );
|
|
}
|
|
|
|
/*
|
|
* wrapper for ldap_pvt_thread_pool_query(), left around
|
|
* for backwards compatibility
|
|
*/
|
|
int
|
|
ldap_pvt_thread_pool_backload ( ldap_pvt_thread_pool_t *tpool )
|
|
{
|
|
int rc, count;
|
|
|
|
rc = ldap_pvt_thread_pool_query( tpool,
|
|
LDAP_PVT_THREAD_POOL_PARAM_BACKLOAD, (void *)&count );
|
|
|
|
if ( rc == 0 ) {
|
|
return count;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
int
|
|
ldap_pvt_thread_pool_destroy ( ldap_pvt_thread_pool_t *tpool, int run_pending )
|
|
{
|
|
struct ldap_int_thread_pool_s *pool, *pptr;
|
|
ldap_int_thread_ctx_t *ctx;
|
|
|
|
if (tpool == NULL)
|
|
return(-1);
|
|
|
|
pool = *tpool;
|
|
|
|
if (pool == NULL) return(-1);
|
|
|
|
ldap_pvt_thread_mutex_lock(&ldap_pvt_thread_pool_mutex);
|
|
LDAP_STAILQ_FOREACH(pptr, &ldap_int_thread_pool_list, ltp_next)
|
|
if (pptr == pool) break;
|
|
if (pptr == pool)
|
|
LDAP_STAILQ_REMOVE(&ldap_int_thread_pool_list, pool,
|
|
ldap_int_thread_pool_s, ltp_next);
|
|
ldap_pvt_thread_mutex_unlock(&ldap_pvt_thread_pool_mutex);
|
|
|
|
if (pool != pptr) return(-1);
|
|
|
|
ldap_pvt_thread_mutex_lock(&pool->ltp_mutex);
|
|
pool->ltp_state = run_pending
|
|
? LDAP_INT_THREAD_POOL_FINISHING
|
|
: LDAP_INT_THREAD_POOL_STOPPING;
|
|
|
|
while (pool->ltp_open_count) {
|
|
if (!pool->ltp_pause)
|
|
ldap_pvt_thread_cond_broadcast(&pool->ltp_cond);
|
|
ldap_pvt_thread_cond_wait(&pool->ltp_cond, &pool->ltp_mutex);
|
|
}
|
|
ldap_pvt_thread_mutex_unlock(&pool->ltp_mutex);
|
|
|
|
while ((ctx = LDAP_STAILQ_FIRST(&pool->ltp_pending_list)) != NULL)
|
|
{
|
|
LDAP_STAILQ_REMOVE_HEAD(&pool->ltp_pending_list, ltc_next.q);
|
|
LDAP_FREE(ctx);
|
|
}
|
|
|
|
while ((ctx = LDAP_SLIST_FIRST(&pool->ltp_free_list)) != NULL)
|
|
{
|
|
LDAP_SLIST_REMOVE_HEAD(&pool->ltp_free_list, ltc_next.l);
|
|
LDAP_FREE(ctx);
|
|
}
|
|
|
|
ldap_pvt_thread_cond_destroy(&pool->ltp_pcond);
|
|
ldap_pvt_thread_cond_destroy(&pool->ltp_cond);
|
|
ldap_pvt_thread_mutex_destroy(&pool->ltp_mutex);
|
|
LDAP_FREE(pool);
|
|
#ifdef LDAP_PVT_THREAD_POOL_SEM_LOAD_CONTROL
|
|
if ( thread_pool_sem ) {
|
|
LDAP_FREE( thread_pool_sem );
|
|
}
|
|
#endif
|
|
return(0);
|
|
}
|
|
|
|
static void *
|
|
ldap_int_thread_pool_wrapper (
|
|
void *xpool )
|
|
{
|
|
struct ldap_int_thread_pool_s *pool = xpool;
|
|
ldap_int_thread_ctx_t *ctx;
|
|
ldap_int_thread_userctx_t uctx;
|
|
unsigned i, keyslot, hash;
|
|
|
|
if (pool == NULL)
|
|
return NULL;
|
|
|
|
for ( i=0; i<MAXKEYS; i++ ) {
|
|
uctx.ltu_key[i].ltk_key = NULL;
|
|
}
|
|
|
|
uctx.ltu_id = ldap_pvt_thread_self();
|
|
TID_HASH(uctx.ltu_id, hash);
|
|
|
|
ldap_pvt_thread_mutex_lock(&pool->ltp_mutex);
|
|
|
|
/* thread_keys[] is read-only when paused */
|
|
while (pool->ltp_pause)
|
|
ldap_pvt_thread_cond_wait(&pool->ltp_cond, &pool->ltp_mutex);
|
|
|
|
/* find a key slot to give this thread ID and store a
|
|
* pointer to our keys there; start at the thread ID
|
|
* itself (mod LDAP_MAXTHR) and look for an empty slot.
|
|
*/
|
|
ldap_pvt_thread_mutex_lock(&ldap_pvt_thread_pool_mutex);
|
|
for (keyslot = hash & (LDAP_MAXTHR-1);
|
|
!ldap_pvt_thread_equal(thread_keys[keyslot].id, tid_zero);
|
|
keyslot = (keyslot+1) & (LDAP_MAXTHR-1));
|
|
thread_keys[keyslot].id = uctx.ltu_id;
|
|
thread_keys[keyslot].ctx = &uctx;
|
|
ldap_pvt_thread_mutex_unlock(&ldap_pvt_thread_pool_mutex);
|
|
|
|
pool->ltp_starting--;
|
|
|
|
for (;;) {
|
|
while (pool->ltp_pause)
|
|
ldap_pvt_thread_cond_wait(&pool->ltp_cond, &pool->ltp_mutex);
|
|
|
|
if (pool->ltp_state == LDAP_INT_THREAD_POOL_STOPPING)
|
|
break;
|
|
|
|
ctx = LDAP_STAILQ_FIRST(&pool->ltp_pending_list);
|
|
if (ctx == NULL) {
|
|
if (pool->ltp_state == LDAP_INT_THREAD_POOL_FINISHING)
|
|
break;
|
|
|
|
if (pool->ltp_open_count >
|
|
(pool->ltp_max_count ? pool->ltp_max_count : LDAP_MAXTHR))
|
|
{
|
|
/* too many threads running (can happen if the
|
|
* maximum threads value is set during ongoing
|
|
* operation using ldap_pvt_thread_pool_maxthreads)
|
|
* so let this thread die.
|
|
*/
|
|
break;
|
|
}
|
|
|
|
/* we could check an idle timer here, and let the
|
|
* thread die if it has been inactive for a while.
|
|
* only die if there are other open threads (i.e.,
|
|
* always have at least one thread open). the check
|
|
* should be like this:
|
|
* if (pool->ltp_open_count > 1 && pool->ltp_starting == 0)
|
|
* check timer, wait if ltp_pause, leave thread (break;)
|
|
*
|
|
* Just use pthread_cond_timedwait if we want to
|
|
* check idle time.
|
|
*/
|
|
|
|
assert(pool->ltp_state == LDAP_INT_THREAD_POOL_RUNNING);
|
|
ldap_pvt_thread_cond_wait(&pool->ltp_cond, &pool->ltp_mutex);
|
|
continue;
|
|
}
|
|
|
|
LDAP_STAILQ_REMOVE_HEAD(&pool->ltp_pending_list, ltc_next.q);
|
|
pool->ltp_pending_count--;
|
|
|
|
LDAP_SLIST_INSERT_HEAD(&pool->ltp_active_list, ctx, ltc_next.al);
|
|
pool->ltp_active_count++;
|
|
ldap_pvt_thread_mutex_unlock(&pool->ltp_mutex);
|
|
|
|
ctx->ltc_start_routine(&uctx, ctx->ltc_arg);
|
|
|
|
#ifdef LDAP_PVT_THREAD_POOL_SEM_LOAD_CONTROL
|
|
ldap_lazy_sem_post( thread_pool_sem );
|
|
#endif
|
|
ldap_pvt_thread_mutex_lock(&pool->ltp_mutex);
|
|
LDAP_SLIST_REMOVE(&pool->ltp_active_list, ctx,
|
|
ldap_int_thread_ctx_s, ltc_next.al);
|
|
LDAP_SLIST_INSERT_HEAD(&pool->ltp_free_list, ctx, ltc_next.l);
|
|
pool->ltp_active_count--;
|
|
|
|
/* let pool_pause know when it is the sole active thread */
|
|
if (pool->ltp_active_count < 2)
|
|
ldap_pvt_thread_cond_signal(&pool->ltp_pcond);
|
|
}
|
|
|
|
ldap_pvt_thread_pool_context_reset(&uctx);
|
|
|
|
/* Needed if context_reset can let another thread request a pause */
|
|
while (pool->ltp_pause)
|
|
ldap_pvt_thread_cond_wait(&pool->ltp_cond, &pool->ltp_mutex);
|
|
|
|
ldap_pvt_thread_mutex_lock(&ldap_pvt_thread_pool_mutex);
|
|
thread_keys[keyslot].ctx = DELETED_THREAD_CTX;
|
|
thread_keys[keyslot].id = tid_zero;
|
|
ldap_pvt_thread_mutex_unlock(&ldap_pvt_thread_pool_mutex);
|
|
|
|
pool->ltp_open_count--;
|
|
|
|
/* let pool_destroy know we're all done */
|
|
if (pool->ltp_open_count < 1)
|
|
ldap_pvt_thread_cond_signal(&pool->ltp_cond);
|
|
|
|
ldap_pvt_thread_mutex_unlock(&pool->ltp_mutex);
|
|
|
|
ldap_pvt_thread_exit(NULL);
|
|
return(NULL);
|
|
}
|
|
|
|
int
|
|
ldap_pvt_thread_pool_pause (
|
|
ldap_pvt_thread_pool_t *tpool )
|
|
{
|
|
struct ldap_int_thread_pool_s *pool;
|
|
|
|
if (tpool == NULL)
|
|
return(-1);
|
|
|
|
pool = *tpool;
|
|
|
|
if (pool == NULL)
|
|
return(0);
|
|
|
|
ldap_pvt_thread_mutex_lock(&pool->ltp_mutex);
|
|
|
|
/* If someone else has already requested a pause, we have to wait */
|
|
while (pool->ltp_pause) {
|
|
pool->ltp_pending_count++;
|
|
pool->ltp_active_count--;
|
|
/* let the other pool_pause() know when it can proceed */
|
|
if (pool->ltp_active_count < 2)
|
|
ldap_pvt_thread_cond_signal(&pool->ltp_pcond);
|
|
ldap_pvt_thread_cond_wait(&pool->ltp_cond, &pool->ltp_mutex);
|
|
pool->ltp_pending_count--;
|
|
pool->ltp_active_count++;
|
|
}
|
|
|
|
/* Wait for everyone else to pause or finish */
|
|
pool->ltp_pause = 1;
|
|
while (pool->ltp_active_count > 1) {
|
|
ldap_pvt_thread_cond_wait(&pool->ltp_pcond, &pool->ltp_mutex);
|
|
}
|
|
|
|
ldap_pvt_thread_mutex_unlock(&pool->ltp_mutex);
|
|
return(0);
|
|
}
|
|
|
|
int
|
|
ldap_pvt_thread_pool_resume (
|
|
ldap_pvt_thread_pool_t *tpool )
|
|
{
|
|
struct ldap_int_thread_pool_s *pool;
|
|
|
|
if (tpool == NULL)
|
|
return(-1);
|
|
|
|
pool = *tpool;
|
|
|
|
if (pool == NULL)
|
|
return(0);
|
|
|
|
ldap_pvt_thread_mutex_lock(&pool->ltp_mutex);
|
|
pool->ltp_pause = 0;
|
|
ldap_pvt_thread_cond_broadcast(&pool->ltp_cond);
|
|
ldap_pvt_thread_mutex_unlock(&pool->ltp_mutex);
|
|
return(0);
|
|
}
|
|
|
|
int ldap_pvt_thread_pool_getkey(
|
|
void *xctx,
|
|
void *key,
|
|
void **data,
|
|
ldap_pvt_thread_pool_keyfree_t **kfree )
|
|
{
|
|
ldap_int_thread_userctx_t *ctx = xctx;
|
|
int i;
|
|
|
|
if ( !ctx || !key || !data ) return EINVAL;
|
|
|
|
for ( i=0; i<MAXKEYS && ctx->ltu_key[i].ltk_key; i++ ) {
|
|
if ( ctx->ltu_key[i].ltk_key == key ) {
|
|
*data = ctx->ltu_key[i].ltk_data;
|
|
if ( kfree ) *kfree = ctx->ltu_key[i].ltk_free;
|
|
return 0;
|
|
}
|
|
}
|
|
return ENOENT;
|
|
}
|
|
|
|
static void
|
|
clear_key_idx( ldap_int_thread_userctx_t *ctx, int i )
|
|
{
|
|
for ( ; i < MAXKEYS-1 && ctx->ltu_key[i+1].ltk_key; i++ )
|
|
ctx->ltu_key[i] = ctx->ltu_key[i+1];
|
|
ctx->ltu_key[i].ltk_key = NULL;
|
|
}
|
|
|
|
int ldap_pvt_thread_pool_setkey(
|
|
void *xctx,
|
|
void *key,
|
|
void *data,
|
|
ldap_pvt_thread_pool_keyfree_t *kfree )
|
|
{
|
|
ldap_int_thread_userctx_t *ctx = xctx;
|
|
int i, found;
|
|
|
|
if ( !ctx || !key ) return EINVAL;
|
|
|
|
for ( i=found=0; i<MAXKEYS; i++ ) {
|
|
if ( ctx->ltu_key[i].ltk_key == key ) {
|
|
found = 1;
|
|
break;
|
|
} else if ( !ctx->ltu_key[i].ltk_key ) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if ( data || kfree ) {
|
|
if ( i>=MAXKEYS )
|
|
return ENOMEM;
|
|
ctx->ltu_key[i].ltk_key = key;
|
|
ctx->ltu_key[i].ltk_data = data;
|
|
ctx->ltu_key[i].ltk_free = kfree;
|
|
} else if ( found ) {
|
|
clear_key_idx( ctx, i );
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Free all elements with this key, no matter which thread they're in.
|
|
* May only be called while the pool is paused.
|
|
*/
|
|
void ldap_pvt_thread_pool_purgekey( void *key )
|
|
{
|
|
int i, j;
|
|
ldap_int_thread_userctx_t *ctx;
|
|
|
|
assert ( key != NULL );
|
|
|
|
for ( i=0; i<LDAP_MAXTHR; i++ ) {
|
|
ctx = thread_keys[i].ctx;
|
|
if ( ctx && ctx != DELETED_THREAD_CTX ) {
|
|
for ( j=0; j<MAXKEYS && ctx->ltu_key[j].ltk_key; j++ ) {
|
|
if ( ctx->ltu_key[j].ltk_key == key ) {
|
|
if (ctx->ltu_key[j].ltk_free)
|
|
ctx->ltu_key[j].ltk_free( ctx->ltu_key[j].ltk_key,
|
|
ctx->ltu_key[j].ltk_data );
|
|
clear_key_idx( ctx, j );
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This is necessary if the caller does not have access to the
|
|
* thread context handle (for example, a slapd plugin calling
|
|
* slapi_search_internal()). No doubt it is more efficient
|
|
* for the application to keep track of the thread context
|
|
* handles itself.
|
|
*/
|
|
void *ldap_pvt_thread_pool_context( )
|
|
{
|
|
ldap_pvt_thread_t tid;
|
|
unsigned i, hash;
|
|
ldap_int_thread_userctx_t *ctx;
|
|
|
|
tid = ldap_pvt_thread_self();
|
|
if ( ldap_pvt_thread_equal( tid, ldap_int_main_tid ))
|
|
return &ldap_int_main_thrctx;
|
|
|
|
TID_HASH( tid, hash );
|
|
i = hash &= (LDAP_MAXTHR-1);
|
|
ldap_pvt_thread_mutex_lock(&ldap_pvt_thread_pool_mutex);
|
|
do {
|
|
ctx = thread_keys[i].ctx;
|
|
if ( ctx != DELETED_THREAD_CTX )
|
|
if ( ldap_pvt_thread_equal(thread_keys[i].id, tid) || !ctx )
|
|
goto done;
|
|
} while ( (i = (i+1) & (LDAP_MAXTHR-1)) != hash );
|
|
ctx = NULL;
|
|
done:
|
|
ldap_pvt_thread_mutex_unlock(&ldap_pvt_thread_pool_mutex);
|
|
|
|
return ctx;
|
|
}
|
|
|
|
void ldap_pvt_thread_pool_context_reset( void *vctx )
|
|
{
|
|
ldap_int_thread_userctx_t *ctx = vctx;
|
|
int i;
|
|
|
|
for ( i=MAXKEYS-1; i>=0; i--) {
|
|
if ( !ctx->ltu_key[i].ltk_key )
|
|
continue;
|
|
if ( ctx->ltu_key[i].ltk_free )
|
|
ctx->ltu_key[i].ltk_free( ctx->ltu_key[i].ltk_key,
|
|
ctx->ltu_key[i].ltk_data );
|
|
ctx->ltu_key[i].ltk_key = NULL;
|
|
}
|
|
}
|
|
|
|
ldap_pvt_thread_t ldap_pvt_thread_pool_tid( void *vctx )
|
|
{
|
|
ldap_int_thread_userctx_t *ctx = vctx;
|
|
|
|
return ctx->ltu_id;
|
|
}
|
|
#endif /* LDAP_THREAD_HAVE_TPOOL */
|