mirror of
https://git.openldap.org/openldap/openldap.git
synced 2025-01-24 13:24:56 +08:00
a500feb4a6
================ Written by Hallvard B. Furuseth and placed into the public domain. This software is not subject to any license of the University of Oslo. ================ lutil_progname() and lutil_strcopy() are not declared, which can be fatal since they do not return int. Hallvard B. Furuseth <h.b.furuseth@usit.uio.no>, Aug 2002.
1659 lines
42 KiB
C
1659 lines
42 KiB
C
/* $OpenLDAP$ */
|
|
/*
|
|
* Copyright 2000-2002 The OpenLDAP Foundation, All Rights Reserved.
|
|
* COPYING RESTRICTIONS APPLY, see COPYRIGHT file
|
|
*/
|
|
/*
|
|
* Copyright 2001 Computing Research Labs, New Mexico State University
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COMPUTING RESEARCH LAB OR NEW MEXICO STATE UNIVERSITY BE LIABLE FOR ANY
|
|
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT
|
|
* OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
|
|
* THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
/* $Id: ucgendat.c,v 1.4 2001/01/02 18:46:20 mleisher Exp $" */
|
|
|
|
#include "portable.h"
|
|
#include "ldap_config.h"
|
|
|
|
#include <stdio.h>
|
|
#include <ac/bytes.h>
|
|
#include <ac/stdlib.h>
|
|
#include <ac/string.h>
|
|
#include <ac/unistd.h>
|
|
|
|
#include <lutil.h>
|
|
|
|
#undef ishdigit
|
|
#define ishdigit(cc) (((cc) >= '0' && (cc) <= '9') ||\
|
|
((cc) >= 'A' && (cc) <= 'F') ||\
|
|
((cc) >= 'a' && (cc) <= 'f'))
|
|
|
|
/*
|
|
* A header written to the output file with the byte-order-mark and the number
|
|
* of property nodes.
|
|
*/
|
|
static unsigned short hdr[2] = {0xfeff, 0};
|
|
|
|
#define NUMPROPS 50
|
|
#define NEEDPROPS (NUMPROPS + (4 - (NUMPROPS & 3)))
|
|
|
|
typedef struct {
|
|
char *name;
|
|
int len;
|
|
} _prop_t;
|
|
|
|
/*
|
|
* List of properties expected to be found in the Unicode Character Database
|
|
* including some implementation specific properties.
|
|
*
|
|
* The implementation specific properties are:
|
|
* Cm = Composed (can be decomposed)
|
|
* Nb = Non-breaking
|
|
* Sy = Symmetric (has left and right forms)
|
|
* Hd = Hex digit
|
|
* Qm = Quote marks
|
|
* Mr = Mirroring
|
|
* Ss = Space, other
|
|
* Cp = Defined character
|
|
*/
|
|
static _prop_t props[NUMPROPS] = {
|
|
{"Mn", 2}, {"Mc", 2}, {"Me", 2}, {"Nd", 2}, {"Nl", 2}, {"No", 2},
|
|
{"Zs", 2}, {"Zl", 2}, {"Zp", 2}, {"Cc", 2}, {"Cf", 2}, {"Cs", 2},
|
|
{"Co", 2}, {"Cn", 2}, {"Lu", 2}, {"Ll", 2}, {"Lt", 2}, {"Lm", 2},
|
|
{"Lo", 2}, {"Pc", 2}, {"Pd", 2}, {"Ps", 2}, {"Pe", 2}, {"Po", 2},
|
|
{"Sm", 2}, {"Sc", 2}, {"Sk", 2}, {"So", 2}, {"L", 1}, {"R", 1},
|
|
{"EN", 2}, {"ES", 2}, {"ET", 2}, {"AN", 2}, {"CS", 2}, {"B", 1},
|
|
{"S", 1}, {"WS", 2}, {"ON", 2},
|
|
{"Cm", 2}, {"Nb", 2}, {"Sy", 2}, {"Hd", 2}, {"Qm", 2}, {"Mr", 2},
|
|
{"Ss", 2}, {"Cp", 2}, {"Pi", 2}, {"Pf", 2}, {"AL", 2}
|
|
};
|
|
|
|
typedef struct {
|
|
unsigned long *ranges;
|
|
unsigned short used;
|
|
unsigned short size;
|
|
} _ranges_t;
|
|
|
|
static _ranges_t proptbl[NUMPROPS];
|
|
|
|
/*
|
|
* Make sure this array is sized to be on a 4-byte boundary at compile time.
|
|
*/
|
|
static unsigned short propcnt[NEEDPROPS];
|
|
|
|
/*
|
|
* Array used to collect a decomposition before adding it to the decomposition
|
|
* table.
|
|
*/
|
|
static unsigned long dectmp[64];
|
|
static unsigned long dectmp_size;
|
|
|
|
typedef struct {
|
|
unsigned long code;
|
|
unsigned short size;
|
|
unsigned short used;
|
|
unsigned long *decomp;
|
|
} _decomp_t;
|
|
|
|
/*
|
|
* List of decomposition. Created and expanded in order as the characters are
|
|
* encountered. First list contains canonical mappings, second also includes
|
|
* compatibility mappings.
|
|
*/
|
|
static _decomp_t *decomps;
|
|
static unsigned long decomps_used;
|
|
static unsigned long decomps_size;
|
|
|
|
static _decomp_t *kdecomps;
|
|
static unsigned long kdecomps_used;
|
|
static unsigned long kdecomps_size;
|
|
|
|
/*
|
|
* Composition exclusion table stuff.
|
|
*/
|
|
#define COMPEX_SET(c) (compexs[(c) >> 5] |= (1 << ((c) & 31)))
|
|
#define COMPEX_TEST(c) (compexs[(c) >> 5] & (1 << ((c) & 31)))
|
|
static unsigned long compexs[2048];
|
|
|
|
/*
|
|
* Struct for holding a composition pair, and array of composition pairs
|
|
*/
|
|
typedef struct {
|
|
unsigned long comp;
|
|
unsigned long count;
|
|
unsigned long code1;
|
|
unsigned long code2;
|
|
} _comp_t;
|
|
|
|
static _comp_t *comps;
|
|
static unsigned long comps_used;
|
|
|
|
/*
|
|
* Types and lists for handling lists of case mappings.
|
|
*/
|
|
typedef struct {
|
|
unsigned long key;
|
|
unsigned long other1;
|
|
unsigned long other2;
|
|
} _case_t;
|
|
|
|
static _case_t *upper;
|
|
static _case_t *lower;
|
|
static _case_t *title;
|
|
static unsigned long upper_used;
|
|
static unsigned long upper_size;
|
|
static unsigned long lower_used;
|
|
static unsigned long lower_size;
|
|
static unsigned long title_used;
|
|
static unsigned long title_size;
|
|
|
|
/*
|
|
* Array used to collect case mappings before adding them to a list.
|
|
*/
|
|
static unsigned long cases[3];
|
|
|
|
/*
|
|
* An array to hold ranges for combining classes.
|
|
*/
|
|
static unsigned long *ccl;
|
|
static unsigned long ccl_used;
|
|
static unsigned long ccl_size;
|
|
|
|
/*
|
|
* Structures for handling numbers.
|
|
*/
|
|
typedef struct {
|
|
unsigned long code;
|
|
unsigned long idx;
|
|
} _codeidx_t;
|
|
|
|
typedef struct {
|
|
short numerator;
|
|
short denominator;
|
|
} _num_t;
|
|
|
|
/*
|
|
* Arrays to hold the mapping of codes to numbers.
|
|
*/
|
|
static _codeidx_t *ncodes;
|
|
static unsigned long ncodes_used;
|
|
static unsigned long ncodes_size;
|
|
|
|
static _num_t *nums;
|
|
static unsigned long nums_used;
|
|
static unsigned long nums_size;
|
|
|
|
/*
|
|
* Array for holding numbers.
|
|
*/
|
|
static _num_t *nums;
|
|
static unsigned long nums_used;
|
|
static unsigned long nums_size;
|
|
|
|
static void
|
|
add_range(unsigned long start, unsigned long end, char *p1, char *p2)
|
|
{
|
|
int i, j, k, len;
|
|
_ranges_t *rlp;
|
|
char *name;
|
|
|
|
for (k = 0; k < 2; k++) {
|
|
if (k == 0) {
|
|
name = p1;
|
|
len = 2;
|
|
} else {
|
|
if (p2 == 0)
|
|
break;
|
|
|
|
name = p2;
|
|
len = 1;
|
|
}
|
|
|
|
for (i = 0; i < NUMPROPS; i++) {
|
|
if (props[i].len == len && memcmp(props[i].name, name, len) == 0)
|
|
break;
|
|
}
|
|
|
|
if (i == NUMPROPS)
|
|
continue;
|
|
|
|
rlp = &proptbl[i];
|
|
|
|
/*
|
|
* Resize the range list if necessary.
|
|
*/
|
|
if (rlp->used == rlp->size) {
|
|
if (rlp->size == 0)
|
|
rlp->ranges = (unsigned long *)
|
|
malloc(sizeof(unsigned long) << 3);
|
|
else
|
|
rlp->ranges = (unsigned long *)
|
|
realloc((char *) rlp->ranges,
|
|
sizeof(unsigned long) * (rlp->size + 8));
|
|
rlp->size += 8;
|
|
}
|
|
|
|
/*
|
|
* If this is the first code for this property list, just add it
|
|
* and return.
|
|
*/
|
|
if (rlp->used == 0) {
|
|
rlp->ranges[0] = start;
|
|
rlp->ranges[1] = end;
|
|
rlp->used += 2;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Optimize the case of adding the range to the end.
|
|
*/
|
|
j = rlp->used - 1;
|
|
if (start > rlp->ranges[j]) {
|
|
j = rlp->used;
|
|
rlp->ranges[j++] = start;
|
|
rlp->ranges[j++] = end;
|
|
rlp->used = j;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Need to locate the insertion point.
|
|
*/
|
|
for (i = 0;
|
|
i < rlp->used && start > rlp->ranges[i + 1] + 1; i += 2) ;
|
|
|
|
/*
|
|
* If the start value lies in the current range, then simply set the
|
|
* new end point of the range to the end value passed as a parameter.
|
|
*/
|
|
if (rlp->ranges[i] <= start && start <= rlp->ranges[i + 1] + 1) {
|
|
rlp->ranges[i + 1] = end;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Shift following values up by two.
|
|
*/
|
|
for (j = rlp->used; j > i; j -= 2) {
|
|
rlp->ranges[j] = rlp->ranges[j - 2];
|
|
rlp->ranges[j + 1] = rlp->ranges[j - 1];
|
|
}
|
|
|
|
/*
|
|
* Add the new range at the insertion point.
|
|
*/
|
|
rlp->ranges[i] = start;
|
|
rlp->ranges[i + 1] = end;
|
|
rlp->used += 2;
|
|
}
|
|
}
|
|
|
|
static void
|
|
ordered_range_insert(unsigned long c, char *name, int len)
|
|
{
|
|
int i, j;
|
|
unsigned long s, e;
|
|
_ranges_t *rlp;
|
|
|
|
if (len == 0)
|
|
return;
|
|
|
|
/*
|
|
* Deal with directionality codes introduced in Unicode 3.0.
|
|
*/
|
|
if ((len == 2 && memcmp(name, "BN", 2) == 0) ||
|
|
(len == 3 &&
|
|
(memcmp(name, "NSM", 3) == 0 || memcmp(name, "PDF", 3) == 0 ||
|
|
memcmp(name, "LRE", 3) == 0 || memcmp(name, "LRO", 3) == 0 ||
|
|
memcmp(name, "RLE", 3) == 0 || memcmp(name, "RLO", 3) == 0))) {
|
|
/*
|
|
* Mark all of these as Other Neutral to preserve compatibility with
|
|
* older versions.
|
|
*/
|
|
len = 2;
|
|
name = "ON";
|
|
}
|
|
|
|
for (i = 0; i < NUMPROPS; i++) {
|
|
if (props[i].len == len && memcmp(props[i].name, name, len) == 0)
|
|
break;
|
|
}
|
|
|
|
if (i == NUMPROPS)
|
|
return;
|
|
|
|
/*
|
|
* Have a match, so insert the code in order.
|
|
*/
|
|
rlp = &proptbl[i];
|
|
|
|
/*
|
|
* Resize the range list if necessary.
|
|
*/
|
|
if (rlp->used == rlp->size) {
|
|
if (rlp->size == 0)
|
|
rlp->ranges = (unsigned long *)
|
|
malloc(sizeof(unsigned long) << 3);
|
|
else
|
|
rlp->ranges = (unsigned long *)
|
|
realloc((char *) rlp->ranges,
|
|
sizeof(unsigned long) * (rlp->size + 8));
|
|
rlp->size += 8;
|
|
}
|
|
|
|
/*
|
|
* If this is the first code for this property list, just add it
|
|
* and return.
|
|
*/
|
|
if (rlp->used == 0) {
|
|
rlp->ranges[0] = rlp->ranges[1] = c;
|
|
rlp->used += 2;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Optimize the cases of extending the last range and adding new ranges to
|
|
* the end.
|
|
*/
|
|
j = rlp->used - 1;
|
|
e = rlp->ranges[j];
|
|
s = rlp->ranges[j - 1];
|
|
|
|
if (c == e + 1) {
|
|
/*
|
|
* Extend the last range.
|
|
*/
|
|
rlp->ranges[j] = c;
|
|
return;
|
|
}
|
|
|
|
if (c > e + 1) {
|
|
/*
|
|
* Start another range on the end.
|
|
*/
|
|
j = rlp->used;
|
|
rlp->ranges[j] = rlp->ranges[j + 1] = c;
|
|
rlp->used += 2;
|
|
return;
|
|
}
|
|
|
|
if (c >= s)
|
|
/*
|
|
* The code is a duplicate of a code in the last range, so just return.
|
|
*/
|
|
return;
|
|
|
|
/*
|
|
* The code should be inserted somewhere before the last range in the
|
|
* list. Locate the insertion point.
|
|
*/
|
|
for (i = 0;
|
|
i < rlp->used && c > rlp->ranges[i + 1] + 1; i += 2) ;
|
|
|
|
s = rlp->ranges[i];
|
|
e = rlp->ranges[i + 1];
|
|
|
|
if (c == e + 1)
|
|
/*
|
|
* Simply extend the current range.
|
|
*/
|
|
rlp->ranges[i + 1] = c;
|
|
else if (c < s) {
|
|
/*
|
|
* Add a new entry before the current location. Shift all entries
|
|
* before the current one up by one to make room.
|
|
*/
|
|
for (j = rlp->used; j > i; j -= 2) {
|
|
rlp->ranges[j] = rlp->ranges[j - 2];
|
|
rlp->ranges[j + 1] = rlp->ranges[j - 1];
|
|
}
|
|
rlp->ranges[i] = rlp->ranges[i + 1] = c;
|
|
|
|
rlp->used += 2;
|
|
}
|
|
}
|
|
|
|
static void
|
|
add_decomp(unsigned long code, short compat)
|
|
{
|
|
unsigned long i, j, size;
|
|
_decomp_t **pdecomps;
|
|
unsigned long *pdecomps_used;
|
|
unsigned long *pdecomps_size;
|
|
|
|
if (compat) {
|
|
pdecomps = &kdecomps;
|
|
pdecomps_used = &kdecomps_used;
|
|
pdecomps_size = &kdecomps_size;
|
|
} else {
|
|
pdecomps = &decomps;
|
|
pdecomps_used = &decomps_used;
|
|
pdecomps_size = &decomps_size;
|
|
}
|
|
|
|
/*
|
|
* Add the code to the composite property.
|
|
*/
|
|
if (!compat) {
|
|
ordered_range_insert(code, "Cm", 2);
|
|
}
|
|
|
|
/*
|
|
* Locate the insertion point for the code.
|
|
*/
|
|
for (i = 0; i < *pdecomps_used && code > (*pdecomps)[i].code; i++) ;
|
|
|
|
/*
|
|
* Allocate space for a new decomposition.
|
|
*/
|
|
if (*pdecomps_used == *pdecomps_size) {
|
|
if (*pdecomps_size == 0)
|
|
*pdecomps = (_decomp_t *) malloc(sizeof(_decomp_t) << 3);
|
|
else
|
|
*pdecomps = (_decomp_t *)
|
|
realloc((char *) *pdecomps,
|
|
sizeof(_decomp_t) * (*pdecomps_size + 8));
|
|
(void) memset((char *) (*pdecomps + *pdecomps_size), '\0',
|
|
sizeof(_decomp_t) << 3);
|
|
*pdecomps_size += 8;
|
|
}
|
|
|
|
if (i < *pdecomps_used && code != (*pdecomps)[i].code) {
|
|
/*
|
|
* Shift the decomps up by one if the codes don't match.
|
|
*/
|
|
for (j = *pdecomps_used; j > i; j--)
|
|
(void) AC_MEMCPY((char *) &(*pdecomps)[j], (char *) &(*pdecomps)[j - 1],
|
|
sizeof(_decomp_t));
|
|
}
|
|
|
|
/*
|
|
* Insert or replace a decomposition.
|
|
*/
|
|
size = dectmp_size + (4 - (dectmp_size & 3));
|
|
if ((*pdecomps)[i].size < size) {
|
|
if ((*pdecomps)[i].size == 0)
|
|
(*pdecomps)[i].decomp = (unsigned long *)
|
|
malloc(sizeof(unsigned long) * size);
|
|
else
|
|
(*pdecomps)[i].decomp = (unsigned long *)
|
|
realloc((char *) (*pdecomps)[i].decomp,
|
|
sizeof(unsigned long) * size);
|
|
(*pdecomps)[i].size = size;
|
|
}
|
|
|
|
if ((*pdecomps)[i].code != code)
|
|
(*pdecomps_used)++;
|
|
|
|
(*pdecomps)[i].code = code;
|
|
(*pdecomps)[i].used = dectmp_size;
|
|
(void) AC_MEMCPY((char *) (*pdecomps)[i].decomp, (char *) dectmp,
|
|
sizeof(unsigned long) * dectmp_size);
|
|
|
|
/*
|
|
* NOTICE: This needs changing later so it is more general than simply
|
|
* pairs. This calculation is done here to simplify allocation elsewhere.
|
|
*/
|
|
if (!compat && dectmp_size == 2)
|
|
comps_used++;
|
|
}
|
|
|
|
static void
|
|
add_title(unsigned long code)
|
|
{
|
|
unsigned long i, j;
|
|
|
|
/*
|
|
* Always map the code to itself.
|
|
*/
|
|
cases[2] = code;
|
|
|
|
if (title_used == title_size) {
|
|
if (title_size == 0)
|
|
title = (_case_t *) malloc(sizeof(_case_t) << 3);
|
|
else
|
|
title = (_case_t *) realloc((char *) title,
|
|
sizeof(_case_t) * (title_size + 8));
|
|
title_size += 8;
|
|
}
|
|
|
|
/*
|
|
* Locate the insertion point.
|
|
*/
|
|
for (i = 0; i < title_used && code > title[i].key; i++) ;
|
|
|
|
if (i < title_used) {
|
|
/*
|
|
* Shift the array up by one.
|
|
*/
|
|
for (j = title_used; j > i; j--)
|
|
(void) AC_MEMCPY((char *) &title[j], (char *) &title[j - 1],
|
|
sizeof(_case_t));
|
|
}
|
|
|
|
title[i].key = cases[2]; /* Title */
|
|
title[i].other1 = cases[0]; /* Upper */
|
|
title[i].other2 = cases[1]; /* Lower */
|
|
|
|
title_used++;
|
|
}
|
|
|
|
static void
|
|
add_upper(unsigned long code)
|
|
{
|
|
unsigned long i, j;
|
|
|
|
/*
|
|
* Always map the code to itself.
|
|
*/
|
|
cases[0] = code;
|
|
|
|
/*
|
|
* If the title case character is not present, then make it the same as
|
|
* the upper case.
|
|
*/
|
|
if (cases[2] == 0)
|
|
cases[2] = code;
|
|
|
|
if (upper_used == upper_size) {
|
|
if (upper_size == 0)
|
|
upper = (_case_t *) malloc(sizeof(_case_t) << 3);
|
|
else
|
|
upper = (_case_t *) realloc((char *) upper,
|
|
sizeof(_case_t) * (upper_size + 8));
|
|
upper_size += 8;
|
|
}
|
|
|
|
/*
|
|
* Locate the insertion point.
|
|
*/
|
|
for (i = 0; i < upper_used && code > upper[i].key; i++) ;
|
|
|
|
if (i < upper_used) {
|
|
/*
|
|
* Shift the array up by one.
|
|
*/
|
|
for (j = upper_used; j > i; j--)
|
|
(void) AC_MEMCPY((char *) &upper[j], (char *) &upper[j - 1],
|
|
sizeof(_case_t));
|
|
}
|
|
|
|
upper[i].key = cases[0]; /* Upper */
|
|
upper[i].other1 = cases[1]; /* Lower */
|
|
upper[i].other2 = cases[2]; /* Title */
|
|
|
|
upper_used++;
|
|
}
|
|
|
|
static void
|
|
add_lower(unsigned long code)
|
|
{
|
|
unsigned long i, j;
|
|
|
|
/*
|
|
* Always map the code to itself.
|
|
*/
|
|
cases[1] = code;
|
|
|
|
/*
|
|
* If the title case character is empty, then make it the same as the
|
|
* upper case.
|
|
*/
|
|
if (cases[2] == 0)
|
|
cases[2] = cases[0];
|
|
|
|
if (lower_used == lower_size) {
|
|
if (lower_size == 0)
|
|
lower = (_case_t *) malloc(sizeof(_case_t) << 3);
|
|
else
|
|
lower = (_case_t *) realloc((char *) lower,
|
|
sizeof(_case_t) * (lower_size + 8));
|
|
lower_size += 8;
|
|
}
|
|
|
|
/*
|
|
* Locate the insertion point.
|
|
*/
|
|
for (i = 0; i < lower_used && code > lower[i].key; i++) ;
|
|
|
|
if (i < lower_used) {
|
|
/*
|
|
* Shift the array up by one.
|
|
*/
|
|
for (j = lower_used; j > i; j--)
|
|
(void) AC_MEMCPY((char *) &lower[j], (char *) &lower[j - 1],
|
|
sizeof(_case_t));
|
|
}
|
|
|
|
lower[i].key = cases[1]; /* Lower */
|
|
lower[i].other1 = cases[0]; /* Upper */
|
|
lower[i].other2 = cases[2]; /* Title */
|
|
|
|
lower_used++;
|
|
}
|
|
|
|
static void
|
|
ordered_ccl_insert(unsigned long c, unsigned long ccl_code)
|
|
{
|
|
unsigned long i, j;
|
|
|
|
if (ccl_used == ccl_size) {
|
|
if (ccl_size == 0)
|
|
ccl = (unsigned long *) malloc(sizeof(unsigned long) * 24);
|
|
else
|
|
ccl = (unsigned long *)
|
|
realloc((char *) ccl, sizeof(unsigned long) * (ccl_size + 24));
|
|
ccl_size += 24;
|
|
}
|
|
|
|
/*
|
|
* Optimize adding the first item.
|
|
*/
|
|
if (ccl_used == 0) {
|
|
ccl[0] = ccl[1] = c;
|
|
ccl[2] = ccl_code;
|
|
ccl_used += 3;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Handle the special case of extending the range on the end. This
|
|
* requires that the combining class codes are the same.
|
|
*/
|
|
if (ccl_code == ccl[ccl_used - 1] && c == ccl[ccl_used - 2] + 1) {
|
|
ccl[ccl_used - 2] = c;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Handle the special case of adding another range on the end.
|
|
*/
|
|
if (c > ccl[ccl_used - 2] + 1 ||
|
|
(c == ccl[ccl_used - 2] + 1 && ccl_code != ccl[ccl_used - 1])) {
|
|
ccl[ccl_used++] = c;
|
|
ccl[ccl_used++] = c;
|
|
ccl[ccl_used++] = ccl_code;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Locate either the insertion point or range for the code.
|
|
*/
|
|
for (i = 0; i < ccl_used && c > ccl[i + 1] + 1; i += 3) ;
|
|
|
|
if (ccl_code == ccl[i + 2] && c == ccl[i + 1] + 1) {
|
|
/*
|
|
* Extend an existing range.
|
|
*/
|
|
ccl[i + 1] = c;
|
|
return;
|
|
} else if (c < ccl[i]) {
|
|
/*
|
|
* Start a new range before the current location.
|
|
*/
|
|
for (j = ccl_used; j > i; j -= 3) {
|
|
ccl[j] = ccl[j - 3];
|
|
ccl[j - 1] = ccl[j - 4];
|
|
ccl[j - 2] = ccl[j - 5];
|
|
}
|
|
ccl[i] = ccl[i + 1] = c;
|
|
ccl[i + 2] = ccl_code;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Adds a number if it does not already exist and returns an index value
|
|
* multiplied by 2.
|
|
*/
|
|
static unsigned long
|
|
make_number(short num, short denom)
|
|
{
|
|
unsigned long n;
|
|
|
|
/*
|
|
* Determine if the number already exists.
|
|
*/
|
|
for (n = 0; n < nums_used; n++) {
|
|
if (nums[n].numerator == num && nums[n].denominator == denom)
|
|
return n << 1;
|
|
}
|
|
|
|
if (nums_used == nums_size) {
|
|
if (nums_size == 0)
|
|
nums = (_num_t *) malloc(sizeof(_num_t) << 3);
|
|
else
|
|
nums = (_num_t *) realloc((char *) nums,
|
|
sizeof(_num_t) * (nums_size + 8));
|
|
nums_size += 8;
|
|
}
|
|
|
|
n = nums_used++;
|
|
nums[n].numerator = num;
|
|
nums[n].denominator = denom;
|
|
|
|
return n << 1;
|
|
}
|
|
|
|
static void
|
|
add_number(unsigned long code, short num, short denom)
|
|
{
|
|
unsigned long i, j;
|
|
|
|
/*
|
|
* Insert the code in order.
|
|
*/
|
|
for (i = 0; i < ncodes_used && code > ncodes[i].code; i++) ;
|
|
|
|
/*
|
|
* Handle the case of the codes matching and simply replace the number
|
|
* that was there before.
|
|
*/
|
|
if (i < ncodes_used && code == ncodes[i].code) {
|
|
ncodes[i].idx = make_number(num, denom);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Resize the array if necessary.
|
|
*/
|
|
if (ncodes_used == ncodes_size) {
|
|
if (ncodes_size == 0)
|
|
ncodes = (_codeidx_t *) malloc(sizeof(_codeidx_t) << 3);
|
|
else
|
|
ncodes = (_codeidx_t *)
|
|
realloc((char *) ncodes, sizeof(_codeidx_t) * (ncodes_size + 8));
|
|
|
|
ncodes_size += 8;
|
|
}
|
|
|
|
/*
|
|
* Shift things around to insert the code if necessary.
|
|
*/
|
|
if (i < ncodes_used) {
|
|
for (j = ncodes_used; j > i; j--) {
|
|
ncodes[j].code = ncodes[j - 1].code;
|
|
ncodes[j].idx = ncodes[j - 1].idx;
|
|
}
|
|
}
|
|
ncodes[i].code = code;
|
|
ncodes[i].idx = make_number(num, denom);
|
|
|
|
ncodes_used++;
|
|
}
|
|
|
|
/*
|
|
* This routine assumes that the line is a valid Unicode Character Database
|
|
* entry.
|
|
*/
|
|
static void
|
|
read_cdata(FILE *in)
|
|
{
|
|
unsigned long i, lineno, skip, code, ccl_code;
|
|
short wnum, neg, number[2], compat;
|
|
char line[512], *s, *e;
|
|
|
|
lineno = skip = 0;
|
|
while (fgets(line, sizeof(line), in)) {
|
|
if( (s=strchr(line, '\n')) ) *s = '\0';
|
|
lineno++;
|
|
|
|
/*
|
|
* Skip blank lines and lines that start with a '#'.
|
|
*/
|
|
if (line[0] == 0 || line[0] == '#')
|
|
continue;
|
|
|
|
/*
|
|
* If lines need to be skipped, do it here.
|
|
*/
|
|
if (skip) {
|
|
skip--;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Collect the code. The code can be up to 6 hex digits in length to
|
|
* allow surrogates to be specified.
|
|
*/
|
|
for (s = line, i = code = 0; *s != ';' && i < 6; i++, s++) {
|
|
code <<= 4;
|
|
if (*s >= '0' && *s <= '9')
|
|
code += *s - '0';
|
|
else if (*s >= 'A' && *s <= 'F')
|
|
code += (*s - 'A') + 10;
|
|
else if (*s >= 'a' && *s <= 'f')
|
|
code += (*s - 'a') + 10;
|
|
}
|
|
|
|
/*
|
|
* Handle the following special cases:
|
|
* 1. 4E00-9FA5 CJK Ideographs.
|
|
* 2. AC00-D7A3 Hangul Syllables.
|
|
* 3. D800-DFFF Surrogates.
|
|
* 4. E000-F8FF Private Use Area.
|
|
* 5. F900-FA2D Han compatibility.
|
|
*/
|
|
switch (code) {
|
|
case 0x4e00:
|
|
/*
|
|
* The Han ideographs.
|
|
*/
|
|
add_range(0x4e00, 0x9fff, "Lo", "L");
|
|
|
|
/*
|
|
* Add the characters to the defined category.
|
|
*/
|
|
add_range(0x4e00, 0x9fa5, "Cp", 0);
|
|
|
|
skip = 1;
|
|
break;
|
|
case 0xac00:
|
|
/*
|
|
* The Hangul syllables.
|
|
*/
|
|
add_range(0xac00, 0xd7a3, "Lo", "L");
|
|
|
|
/*
|
|
* Add the characters to the defined category.
|
|
*/
|
|
add_range(0xac00, 0xd7a3, "Cp", 0);
|
|
|
|
skip = 1;
|
|
break;
|
|
case 0xd800:
|
|
/*
|
|
* Make a range of all surrogates and assume some default
|
|
* properties.
|
|
*/
|
|
add_range(0x010000, 0x10ffff, "Cs", "L");
|
|
skip = 5;
|
|
break;
|
|
case 0xe000:
|
|
/*
|
|
* The Private Use area. Add with a default set of properties.
|
|
*/
|
|
add_range(0xe000, 0xf8ff, "Co", "L");
|
|
skip = 1;
|
|
break;
|
|
case 0xf900:
|
|
/*
|
|
* The CJK compatibility area.
|
|
*/
|
|
add_range(0xf900, 0xfaff, "Lo", "L");
|
|
|
|
/*
|
|
* Add the characters to the defined category.
|
|
*/
|
|
add_range(0xf900, 0xfaff, "Cp", 0);
|
|
|
|
skip = 1;
|
|
}
|
|
|
|
if (skip)
|
|
continue;
|
|
|
|
/*
|
|
* Add the code to the defined category.
|
|
*/
|
|
ordered_range_insert(code, "Cp", 2);
|
|
|
|
/*
|
|
* Locate the first character property field.
|
|
*/
|
|
for (i = 0; *s != 0 && i < 2; s++) {
|
|
if (*s == ';')
|
|
i++;
|
|
}
|
|
for (e = s; *e && *e != ';'; e++) ;
|
|
|
|
ordered_range_insert(code, s, e - s);
|
|
|
|
/*
|
|
* Locate the combining class code.
|
|
*/
|
|
for (s = e; *s != 0 && i < 3; s++) {
|
|
if (*s == ';')
|
|
i++;
|
|
}
|
|
|
|
/*
|
|
* Convert the combining class code from decimal.
|
|
*/
|
|
for (ccl_code = 0, e = s; *e && *e != ';'; e++)
|
|
ccl_code = (ccl_code * 10) + (*e - '0');
|
|
|
|
/*
|
|
* Add the code if it not 0.
|
|
*/
|
|
if (ccl_code != 0)
|
|
ordered_ccl_insert(code, ccl_code);
|
|
|
|
/*
|
|
* Locate the second character property field.
|
|
*/
|
|
for (s = e; *s != 0 && i < 4; s++) {
|
|
if (*s == ';')
|
|
i++;
|
|
}
|
|
for (e = s; *e && *e != ';'; e++) ;
|
|
|
|
ordered_range_insert(code, s, e - s);
|
|
|
|
/*
|
|
* Check for a decomposition.
|
|
*/
|
|
s = ++e;
|
|
if (*s != ';') {
|
|
compat = *s == '<';
|
|
if (compat) {
|
|
/*
|
|
* Skip compatibility formatting tag.
|
|
*/
|
|
while (*s++ != '>');
|
|
}
|
|
/*
|
|
* Collect the codes of the decomposition.
|
|
*/
|
|
for (dectmp_size = 0; *s != ';'; ) {
|
|
/*
|
|
* Skip all leading non-hex digits.
|
|
*/
|
|
while (!ishdigit(*s))
|
|
s++;
|
|
|
|
for (dectmp[dectmp_size] = 0; ishdigit(*s); s++) {
|
|
dectmp[dectmp_size] <<= 4;
|
|
if (*s >= '0' && *s <= '9')
|
|
dectmp[dectmp_size] += *s - '0';
|
|
else if (*s >= 'A' && *s <= 'F')
|
|
dectmp[dectmp_size] += (*s - 'A') + 10;
|
|
else if (*s >= 'a' && *s <= 'f')
|
|
dectmp[dectmp_size] += (*s - 'a') + 10;
|
|
}
|
|
dectmp_size++;
|
|
}
|
|
|
|
/*
|
|
* If there are any codes in the temporary decomposition array,
|
|
* then add the character with its decomposition.
|
|
*/
|
|
if (dectmp_size > 0) {
|
|
if (!compat) {
|
|
add_decomp(code, 0);
|
|
}
|
|
add_decomp(code, 1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Skip to the number field.
|
|
*/
|
|
for (i = 0; i < 3 && *s; s++) {
|
|
if (*s == ';')
|
|
i++;
|
|
}
|
|
|
|
/*
|
|
* Scan the number in.
|
|
*/
|
|
number[0] = number[1] = 0;
|
|
for (e = s, neg = wnum = 0; *e && *e != ';'; e++) {
|
|
if (*e == '-') {
|
|
neg = 1;
|
|
continue;
|
|
}
|
|
|
|
if (*e == '/') {
|
|
/*
|
|
* Move the the denominator of the fraction.
|
|
*/
|
|
if (neg)
|
|
number[wnum] *= -1;
|
|
neg = 0;
|
|
e++;
|
|
wnum++;
|
|
}
|
|
number[wnum] = (number[wnum] * 10) + (*e - '0');
|
|
}
|
|
|
|
if (e > s) {
|
|
/*
|
|
* Adjust the denominator in case of integers and add the number.
|
|
*/
|
|
if (wnum == 0)
|
|
number[1] = number[0];
|
|
|
|
add_number(code, number[0], number[1]);
|
|
}
|
|
|
|
/*
|
|
* Skip to the start of the possible case mappings.
|
|
*/
|
|
for (s = e, i = 0; i < 4 && *s; s++) {
|
|
if (*s == ';')
|
|
i++;
|
|
}
|
|
|
|
/*
|
|
* Collect the case mappings.
|
|
*/
|
|
cases[0] = cases[1] = cases[2] = 0;
|
|
for (i = 0; i < 3; i++) {
|
|
while (ishdigit(*s)) {
|
|
cases[i] <<= 4;
|
|
if (*s >= '0' && *s <= '9')
|
|
cases[i] += *s - '0';
|
|
else if (*s >= 'A' && *s <= 'F')
|
|
cases[i] += (*s - 'A') + 10;
|
|
else if (*s >= 'a' && *s <= 'f')
|
|
cases[i] += (*s - 'a') + 10;
|
|
s++;
|
|
}
|
|
if (*s == ';')
|
|
s++;
|
|
}
|
|
if (cases[0] && cases[1])
|
|
/*
|
|
* Add the upper and lower mappings for a title case character.
|
|
*/
|
|
add_title(code);
|
|
else if (cases[1])
|
|
/*
|
|
* Add the lower and title case mappings for the upper case
|
|
* character.
|
|
*/
|
|
add_upper(code);
|
|
else if (cases[0])
|
|
/*
|
|
* Add the upper and title case mappings for the lower case
|
|
* character.
|
|
*/
|
|
add_lower(code);
|
|
}
|
|
}
|
|
|
|
static _decomp_t *
|
|
find_decomp(unsigned long code, short compat)
|
|
{
|
|
long l, r, m;
|
|
_decomp_t *decs;
|
|
|
|
l = 0;
|
|
r = (compat ? kdecomps_used : decomps_used) - 1;
|
|
decs = compat ? kdecomps : decomps;
|
|
while (l <= r) {
|
|
m = (l + r) >> 1;
|
|
if (code > decs[m].code)
|
|
l = m + 1;
|
|
else if (code < decs[m].code)
|
|
r = m - 1;
|
|
else
|
|
return &decs[m];
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
decomp_it(_decomp_t *d, short compat)
|
|
{
|
|
unsigned long i;
|
|
_decomp_t *dp;
|
|
|
|
for (i = 0; i < d->used; i++) {
|
|
if ((dp = find_decomp(d->decomp[i], compat)) != 0)
|
|
decomp_it(dp, compat);
|
|
else
|
|
dectmp[dectmp_size++] = d->decomp[i];
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Expand all decompositions by recursively decomposing each character
|
|
* in the decomposition.
|
|
*/
|
|
static void
|
|
expand_decomp(void)
|
|
{
|
|
unsigned long i;
|
|
|
|
for (i = 0; i < decomps_used; i++) {
|
|
dectmp_size = 0;
|
|
decomp_it(&decomps[i], 0);
|
|
if (dectmp_size > 0)
|
|
add_decomp(decomps[i].code, 0);
|
|
}
|
|
|
|
for (i = 0; i < kdecomps_used; i++) {
|
|
dectmp_size = 0;
|
|
decomp_it(&kdecomps[i], 1);
|
|
if (dectmp_size > 0)
|
|
add_decomp(kdecomps[i].code, 1);
|
|
}
|
|
}
|
|
|
|
static int
|
|
cmpcomps(_comp_t *comp1, _comp_t *comp2)
|
|
{
|
|
long diff = comp1->code1 - comp2->code1;
|
|
|
|
if (!diff)
|
|
diff = comp1->code2 - comp2->code2;
|
|
return (int) diff;
|
|
}
|
|
|
|
/*
|
|
* Load composition exclusion data
|
|
*/
|
|
static void
|
|
read_compexdata(FILE *in)
|
|
{
|
|
unsigned short i, code;
|
|
char line[512], *s;
|
|
|
|
(void) memset((char *) compexs, 0, sizeof(unsigned long) << 11);
|
|
|
|
while (fgets(line, sizeof(line), in)) {
|
|
if( (s=strchr(line, '\n')) ) *s = '\0';
|
|
/*
|
|
* Skip blank lines and lines that start with a '#'.
|
|
*/
|
|
if (line[0] == 0 || line[0] == '#')
|
|
continue;
|
|
|
|
/*
|
|
* Collect the code. Assume max 4 digits
|
|
*/
|
|
|
|
for (s = line, i = code = 0; *s != '#' && i < 4; i++, s++) {
|
|
code <<= 4;
|
|
if (*s >= '0' && *s <= '9')
|
|
code += *s - '0';
|
|
else if (*s >= 'A' && *s <= 'F')
|
|
code += (*s - 'A') + 10;
|
|
else if (*s >= 'a' && *s <= 'f')
|
|
code += (*s - 'a') + 10;
|
|
}
|
|
COMPEX_SET(code);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Creates array of compositions from decomposition array
|
|
*/
|
|
static void
|
|
create_comps(void)
|
|
{
|
|
unsigned long i, cu;
|
|
|
|
comps = (_comp_t *) malloc(comps_used * sizeof(_comp_t));
|
|
|
|
for (i = cu = 0; i < decomps_used; i++) {
|
|
if (decomps[i].used != 2 || COMPEX_TEST(decomps[i].code))
|
|
continue;
|
|
comps[cu].comp = decomps[i].code;
|
|
comps[cu].count = 2;
|
|
comps[cu].code1 = decomps[i].decomp[0];
|
|
comps[cu].code2 = decomps[i].decomp[1];
|
|
cu++;
|
|
}
|
|
comps_used = cu;
|
|
qsort(comps, comps_used, sizeof(_comp_t),
|
|
(int (*)(const void *, const void *)) cmpcomps);
|
|
}
|
|
|
|
static void
|
|
write_cdata(char *opath)
|
|
{
|
|
FILE *out;
|
|
ac_uint4 bytes;
|
|
unsigned long i, idx, nprops;
|
|
unsigned short casecnt[2];
|
|
char path[BUFSIZ];
|
|
|
|
/*****************************************************************
|
|
*
|
|
* Generate the ctype data.
|
|
*
|
|
*****************************************************************/
|
|
|
|
/*
|
|
* Open the ctype.dat file.
|
|
*/
|
|
snprintf(path, sizeof path, "%s" LDAP_DIRSEP "ctype.dat", opath);
|
|
if ((out = fopen(path, "wb")) == 0)
|
|
return;
|
|
|
|
/*
|
|
* Collect the offsets for the properties. The offsets array is
|
|
* on a 4-byte boundary to keep things efficient for architectures
|
|
* that need such a thing.
|
|
*/
|
|
for (i = idx = 0; i < NUMPROPS; i++) {
|
|
propcnt[i] = (proptbl[i].used != 0) ? idx : 0xffff;
|
|
idx += proptbl[i].used;
|
|
}
|
|
|
|
/*
|
|
* Add the sentinel index which is used by the binary search as the upper
|
|
* bound for a search.
|
|
*/
|
|
propcnt[i] = idx;
|
|
|
|
/*
|
|
* Record the actual number of property lists. This may be different than
|
|
* the number of offsets actually written because of aligning on a 4-byte
|
|
* boundary.
|
|
*/
|
|
hdr[1] = NUMPROPS;
|
|
|
|
/*
|
|
* Calculate the byte count needed and pad the property counts array to a
|
|
* 4-byte boundary.
|
|
*/
|
|
if ((bytes = sizeof(unsigned short) * (NUMPROPS + 1)) & 3)
|
|
bytes += 4 - (bytes & 3);
|
|
nprops = bytes / sizeof(unsigned short);
|
|
bytes += sizeof(unsigned long) * idx;
|
|
|
|
/*
|
|
* Write the header.
|
|
*/
|
|
fwrite((char *) hdr, sizeof(ac_uint2), 2, out);
|
|
|
|
/*
|
|
* Write the byte count.
|
|
*/
|
|
fwrite((char *) &bytes, sizeof(unsigned long), 1, out);
|
|
|
|
/*
|
|
* Write the property list counts.
|
|
*/
|
|
fwrite((char *) propcnt, sizeof(unsigned short), nprops, out);
|
|
|
|
/*
|
|
* Write the property lists.
|
|
*/
|
|
for (i = 0; i < NUMPROPS; i++) {
|
|
if (proptbl[i].used > 0)
|
|
fwrite((char *) proptbl[i].ranges, sizeof(unsigned long),
|
|
proptbl[i].used, out);
|
|
}
|
|
|
|
fclose(out);
|
|
|
|
/*****************************************************************
|
|
*
|
|
* Generate the case mapping data.
|
|
*
|
|
*****************************************************************/
|
|
|
|
/*
|
|
* Open the case.dat file.
|
|
*/
|
|
snprintf(path, sizeof path, "%s" LDAP_DIRSEP "case.dat", opath);
|
|
if ((out = fopen(path, "wb")) == 0)
|
|
return;
|
|
|
|
/*
|
|
* Write the case mapping tables.
|
|
*/
|
|
hdr[1] = upper_used + lower_used + title_used;
|
|
casecnt[0] = upper_used;
|
|
casecnt[1] = lower_used;
|
|
|
|
/*
|
|
* Write the header.
|
|
*/
|
|
fwrite((char *) hdr, sizeof(unsigned short), 2, out);
|
|
|
|
/*
|
|
* Write the upper and lower case table sizes.
|
|
*/
|
|
fwrite((char *) casecnt, sizeof(unsigned short), 2, out);
|
|
|
|
if (upper_used > 0)
|
|
/*
|
|
* Write the upper case table.
|
|
*/
|
|
fwrite((char *) upper, sizeof(_case_t), upper_used, out);
|
|
|
|
if (lower_used > 0)
|
|
/*
|
|
* Write the lower case table.
|
|
*/
|
|
fwrite((char *) lower, sizeof(_case_t), lower_used, out);
|
|
|
|
if (title_used > 0)
|
|
/*
|
|
* Write the title case table.
|
|
*/
|
|
fwrite((char *) title, sizeof(_case_t), title_used, out);
|
|
|
|
fclose(out);
|
|
|
|
/*****************************************************************
|
|
*
|
|
* Generate the composition data.
|
|
*
|
|
*****************************************************************/
|
|
|
|
/*
|
|
* Create compositions from decomposition data
|
|
*/
|
|
create_comps();
|
|
|
|
/*
|
|
* Open the comp.dat file.
|
|
*/
|
|
snprintf(path, sizeof path, "%s" LDAP_DIRSEP "comp.dat", opath);
|
|
if ((out = fopen(path, "wb")) == 0)
|
|
return;
|
|
|
|
/*
|
|
* Write the header.
|
|
*/
|
|
hdr[1] = (unsigned short) comps_used * 4;
|
|
fwrite((char *) hdr, sizeof(unsigned short), 2, out);
|
|
|
|
/*
|
|
* Write out the byte count to maintain header size.
|
|
*/
|
|
bytes = comps_used * sizeof(_comp_t);
|
|
fwrite((char *) &bytes, sizeof(unsigned long), 1, out);
|
|
|
|
/*
|
|
* Now, if comps exist, write them out.
|
|
*/
|
|
if (comps_used > 0)
|
|
fwrite((char *) comps, sizeof(_comp_t), comps_used, out);
|
|
|
|
fclose(out);
|
|
|
|
/*****************************************************************
|
|
*
|
|
* Generate the decomposition data.
|
|
*
|
|
*****************************************************************/
|
|
|
|
/*
|
|
* Fully expand all decompositions before generating the output file.
|
|
*/
|
|
expand_decomp();
|
|
|
|
/*
|
|
* Open the decomp.dat file.
|
|
*/
|
|
snprintf(path, sizeof path, "%s" LDAP_DIRSEP "decomp.dat", opath);
|
|
if ((out = fopen(path, "wb")) == 0)
|
|
return;
|
|
|
|
hdr[1] = decomps_used;
|
|
|
|
/*
|
|
* Write the header.
|
|
*/
|
|
fwrite((char *) hdr, sizeof(unsigned short), 2, out);
|
|
|
|
/*
|
|
* Write a temporary byte count which will be calculated as the
|
|
* decompositions are written out.
|
|
*/
|
|
bytes = 0;
|
|
fwrite((char *) &bytes, sizeof(unsigned long), 1, out);
|
|
|
|
if (decomps_used) {
|
|
/*
|
|
* Write the list of decomp nodes.
|
|
*/
|
|
for (i = idx = 0; i < decomps_used; i++) {
|
|
fwrite((char *) &decomps[i].code, sizeof(unsigned long), 1, out);
|
|
fwrite((char *) &idx, sizeof(unsigned long), 1, out);
|
|
idx += decomps[i].used;
|
|
}
|
|
|
|
/*
|
|
* Write the sentinel index as the last decomp node.
|
|
*/
|
|
fwrite((char *) &idx, sizeof(unsigned long), 1, out);
|
|
|
|
/*
|
|
* Write the decompositions themselves.
|
|
*/
|
|
for (i = 0; i < decomps_used; i++)
|
|
fwrite((char *) decomps[i].decomp, sizeof(unsigned long),
|
|
decomps[i].used, out);
|
|
|
|
/*
|
|
* Seek back to the beginning and write the byte count.
|
|
*/
|
|
bytes = (sizeof(unsigned long) * idx) +
|
|
(sizeof(unsigned long) * ((hdr[1] << 1) + 1));
|
|
fseek(out, sizeof(unsigned short) << 1, 0L);
|
|
fwrite((char *) &bytes, sizeof(unsigned long), 1, out);
|
|
|
|
fclose(out);
|
|
}
|
|
|
|
/*
|
|
* Open the kdecomp.dat file.
|
|
*/
|
|
snprintf(path, sizeof path, "%s" LDAP_DIRSEP "kdecomp.dat", opath);
|
|
if ((out = fopen(path, "wb")) == 0)
|
|
return;
|
|
|
|
hdr[1] = kdecomps_used;
|
|
|
|
/*
|
|
* Write the header.
|
|
*/
|
|
fwrite((char *) hdr, sizeof(unsigned short), 2, out);
|
|
|
|
/*
|
|
* Write a temporary byte count which will be calculated as the
|
|
* decompositions are written out.
|
|
*/
|
|
bytes = 0;
|
|
fwrite((char *) &bytes, sizeof(unsigned long), 1, out);
|
|
|
|
if (kdecomps_used) {
|
|
/*
|
|
* Write the list of kdecomp nodes.
|
|
*/
|
|
for (i = idx = 0; i < kdecomps_used; i++) {
|
|
fwrite((char *) &kdecomps[i].code, sizeof(unsigned long), 1, out);
|
|
fwrite((char *) &idx, sizeof(unsigned long), 1, out);
|
|
idx += kdecomps[i].used;
|
|
}
|
|
|
|
/*
|
|
* Write the sentinel index as the last decomp node.
|
|
*/
|
|
fwrite((char *) &idx, sizeof(unsigned long), 1, out);
|
|
|
|
/*
|
|
* Write the decompositions themselves.
|
|
*/
|
|
for (i = 0; i < kdecomps_used; i++)
|
|
fwrite((char *) kdecomps[i].decomp, sizeof(unsigned long),
|
|
kdecomps[i].used, out);
|
|
|
|
/*
|
|
* Seek back to the beginning and write the byte count.
|
|
*/
|
|
bytes = (sizeof(unsigned long) * idx) +
|
|
(sizeof(unsigned long) * ((hdr[1] << 1) + 1));
|
|
fseek(out, sizeof(unsigned short) << 1, 0L);
|
|
fwrite((char *) &bytes, sizeof(unsigned long), 1, out);
|
|
|
|
fclose(out);
|
|
}
|
|
|
|
/*****************************************************************
|
|
*
|
|
* Generate the combining class data.
|
|
*
|
|
*****************************************************************/
|
|
|
|
/*
|
|
* Open the cmbcl.dat file.
|
|
*/
|
|
snprintf(path, sizeof path, "%s" LDAP_DIRSEP "cmbcl.dat", opath);
|
|
if ((out = fopen(path, "wb")) == 0)
|
|
return;
|
|
|
|
/*
|
|
* Set the number of ranges used. Each range has a combining class which
|
|
* means each entry is a 3-tuple.
|
|
*/
|
|
hdr[1] = ccl_used / 3;
|
|
|
|
/*
|
|
* Write the header.
|
|
*/
|
|
fwrite((char *) hdr, sizeof(unsigned short), 2, out);
|
|
|
|
/*
|
|
* Write out the byte count to maintain header size.
|
|
*/
|
|
bytes = ccl_used * sizeof(unsigned long);
|
|
fwrite((char *) &bytes, sizeof(unsigned long), 1, out);
|
|
|
|
if (ccl_used > 0)
|
|
/*
|
|
* Write the combining class ranges out.
|
|
*/
|
|
fwrite((char *) ccl, sizeof(unsigned long), ccl_used, out);
|
|
|
|
fclose(out);
|
|
|
|
/*****************************************************************
|
|
*
|
|
* Generate the number data.
|
|
*
|
|
*****************************************************************/
|
|
|
|
/*
|
|
* Open the num.dat file.
|
|
*/
|
|
snprintf(path, sizeof path, "%s" LDAP_DIRSEP "num.dat", opath);
|
|
if ((out = fopen(path, "wb")) == 0)
|
|
return;
|
|
|
|
/*
|
|
* The count part of the header will be the total number of codes that
|
|
* have numbers.
|
|
*/
|
|
hdr[1] = (unsigned short) (ncodes_used << 1);
|
|
bytes = (ncodes_used * sizeof(_codeidx_t)) + (nums_used * sizeof(_num_t));
|
|
|
|
/*
|
|
* Write the header.
|
|
*/
|
|
fwrite((char *) hdr, sizeof(unsigned short), 2, out);
|
|
|
|
/*
|
|
* Write out the byte count to maintain header size.
|
|
*/
|
|
fwrite((char *) &bytes, sizeof(unsigned long), 1, out);
|
|
|
|
/*
|
|
* Now, if number mappings exist, write them out.
|
|
*/
|
|
if (ncodes_used > 0) {
|
|
fwrite((char *) ncodes, sizeof(_codeidx_t), ncodes_used, out);
|
|
fwrite((char *) nums, sizeof(_num_t), nums_used, out);
|
|
}
|
|
|
|
fclose(out);
|
|
}
|
|
|
|
static void
|
|
usage(char *prog)
|
|
{
|
|
fprintf(stderr,
|
|
"Usage: %s [-o output-directory|-x composition-exclusions]", prog);
|
|
fprintf(stderr, " datafile1 datafile2 ...\n\n");
|
|
fprintf(stderr,
|
|
"-o output-directory\n\t\tWrite the output files to a different");
|
|
fprintf(stderr, " directory (default: .).\n");
|
|
fprintf(stderr,
|
|
"-x composition-exclusion\n\t\tFile of composition codes");
|
|
fprintf(stderr, " that should be excluded.\n");
|
|
exit(1);
|
|
}
|
|
|
|
int
|
|
main(int argc, char *argv[])
|
|
{
|
|
FILE *in;
|
|
char *prog, *opath;
|
|
|
|
prog = lutil_progname( "ucgendat", argc, argv );
|
|
|
|
opath = 0;
|
|
in = stdin;
|
|
|
|
argc--;
|
|
argv++;
|
|
|
|
while (argc > 0) {
|
|
if (argv[0][0] == '-') {
|
|
switch (argv[0][1]) {
|
|
case 'o':
|
|
argc--;
|
|
argv++;
|
|
opath = argv[0];
|
|
break;
|
|
case 'x':
|
|
argc--;
|
|
argv++;
|
|
if ((in = fopen(argv[0], "rb")) == 0)
|
|
fprintf(stderr,
|
|
"%s: unable to open composition exclusion file %s\n",
|
|
prog, argv[0]);
|
|
else {
|
|
read_compexdata(in);
|
|
fclose(in);
|
|
in = 0;
|
|
}
|
|
break;
|
|
default:
|
|
usage(prog);
|
|
}
|
|
} else {
|
|
if (in != stdin && in != NULL)
|
|
fclose(in);
|
|
if ((in = fopen(argv[0], "rb")) == 0)
|
|
fprintf(stderr, "%s: unable to open ctype file %s\n",
|
|
prog, argv[0]);
|
|
else {
|
|
read_cdata(in);
|
|
fclose(in);
|
|
in = 0;
|
|
}
|
|
}
|
|
argc--;
|
|
argv++;
|
|
}
|
|
|
|
if (opath == 0)
|
|
opath = ".";
|
|
write_cdata(opath);
|
|
|
|
return 0;
|
|
}
|