openldap/servers/slapd/back-ldbm/idl.c
1998-08-09 00:43:13 +00:00

822 lines
17 KiB
C

/* idl.c - ldap id list handling routines */
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include "slap.h"
#include "ldapconfig.h"
#include "back-ldbm.h"
extern Datum ldbm_cache_fetch();
IDList *
idl_alloc( int nids )
{
IDList *new;
/* nmax + nids + space for the ids */
new = (IDList *) ch_calloc( (2 + nids), sizeof(ID) );
new->b_nmax = nids;
new->b_nids = 0;
return( new );
}
IDList *
idl_allids( Backend *be )
{
IDList *idl;
idl = idl_alloc( 0 );
idl->b_nmax = ALLIDSBLOCK;
idl->b_nids = next_id_get( be );
return( idl );
}
void
idl_free( IDList *idl )
{
if ( idl == NULL ) {
return;
}
free( (char *) idl );
}
static IDList *
idl_fetch_one(
Backend *be,
struct dbcache *db,
Datum key
)
{
Datum data, k2;
IDList *idl;
IDList **tmp;
char *kstr;
int i, nids;
/* Debug( LDAP_DEBUG_TRACE, "=> idl_fetch_one\n", 0, 0, 0 ); */
data = ldbm_cache_fetch( db, key );
idl = (IDList *) data.dptr;
return( idl );
}
IDList *
idl_fetch(
Backend *be,
struct dbcache *db,
Datum key
)
{
Datum data, k2;
IDList *idl;
IDList **tmp;
char *kstr;
int i, nids;
/* Debug( LDAP_DEBUG_TRACE, "=> idl_fetch\n", 0, 0, 0 ); */
data = ldbm_cache_fetch( db, key );
if ( (idl = (IDList *) data.dptr) == NULL ) {
return( NULL );
}
/* regular block */
if ( ! INDIRECT_BLOCK( idl ) ) {
/*
Debug( LDAP_DEBUG_TRACE, "<= idl_fetch %d ids (%d max)\n",
idl->b_nids, idl->b_nmax, 0 );
*/
/* make sure we have the current value of highest id */
if ( idl->b_nmax == ALLIDSBLOCK ) {
idl_free( idl );
idl = idl_allids( be );
}
return( idl );
}
/*
* this is an indirect block which points to other blocks.
* we need to read in all the blocks it points to and construct
* a big id list containing all the ids, which we will return.
*/
/* count the number of blocks & allocate space for pointers to them */
for ( i = 0; idl->b_ids[i] != NOID; i++ )
; /* NULL */
tmp = (IDList **) ch_malloc( (i + 1) * sizeof(IDList *) );
/* read in all the blocks */
kstr = (char *) ch_malloc( key.dsize + 20 );
nids = 0;
for ( i = 0; idl->b_ids[i] != NOID; i++ ) {
sprintf( kstr, "%c%s%d", CONT_PREFIX, key.dptr, idl->b_ids[i] );
k2.dptr = kstr;
k2.dsize = strlen( kstr ) + 1;
if ( (tmp[i] = idl_fetch_one( be, db, k2 )) == NULL ) {
Debug( LDAP_DEBUG_ANY,
"idl_fetch of (%s) returns NULL\n", k2.dptr, 0, 0 );
continue;
}
nids += tmp[i]->b_nids;
}
tmp[i] = NULL;
idl_free( idl );
/* allocate space for the big block */
idl = idl_alloc( nids );
idl->b_nids = nids;
nids = 0;
/* copy in all the ids from the component blocks */
for ( i = 0; tmp[i] != NULL; i++ ) {
if ( tmp[i] == NULL ) {
continue;
}
SAFEMEMCPY( (char *) &idl->b_ids[nids], (char *) tmp[i]->b_ids,
tmp[i]->b_nids * sizeof(ID) );
nids += tmp[i]->b_nids;
idl_free( tmp[i] );
}
free( (char *) tmp );
Debug( LDAP_DEBUG_TRACE, "<= idl_fetch %d ids (%d max)\n", idl->b_nids,
idl->b_nmax, 0 );
return( idl );
}
static int
idl_store(
Backend *be,
struct dbcache *db,
Datum key,
IDList *idl
)
{
int rc;
Datum data;
/* Debug( LDAP_DEBUG_TRACE, "=> idl_store\n", 0, 0, 0 ); */
data.dptr = (char *) idl;
data.dsize = (2 + idl->b_nmax) * sizeof(ID);
rc = ldbm_cache_store( db, key, data, LDBM_REPLACE );
/* Debug( LDAP_DEBUG_TRACE, "<= idl_store %d\n", rc, 0, 0 ); */
return( rc );
}
static void
idl_split_block(
IDList *b,
ID id,
IDList **n1,
IDList **n2
)
{
int i;
/* find where to split the block */
for ( i = 0; i < b->b_nids && id > b->b_ids[i]; i++ )
; /* NULL */
*n1 = idl_alloc( i == 0 ? 1 : i );
*n2 = idl_alloc( b->b_nids - i + (i == 0 ? 0 : 1));
/*
* everything before the id being inserted in the first block
* unless there is nothing, in which case the id being inserted
* goes there.
*/
SAFEMEMCPY( (char *) &(*n1)->b_ids[0], (char *) &b->b_ids[0],
i * sizeof(ID) );
(*n1)->b_nids = (i == 0 ? 1 : i);
if ( i == 0 ) {
(*n1)->b_ids[0] = id;
} else {
(*n2)->b_ids[0] = id;
}
/* the id being inserted & everything after in the second block */
SAFEMEMCPY( (char *) &(*n2)->b_ids[i == 0 ? 0 : 1],
(char *) &b->b_ids[i], (b->b_nids - i) * sizeof(ID) );
(*n2)->b_nids = b->b_nids - i + (i == 0 ? 0 : 1);
}
/*
* idl_change_first - called when an indirect block's first key has
* changed, meaning it needs to be stored under a new key, and the
* header block pointing to it needs updating.
*/
static int
idl_change_first(
Backend *be,
struct dbcache *db,
Datum hkey, /* header block key */
IDList *h, /* header block */
int pos, /* pos in h to update */
Datum bkey, /* data block key */
IDList *b /* data block */
)
{
int rc;
/* Debug( LDAP_DEBUG_TRACE, "=> idl_change_first\n", 0, 0, 0 ); */
/* delete old key block */
if ( (rc = ldbm_cache_delete( db, bkey )) != 0 ) {
Debug( LDAP_DEBUG_ANY,
"ldbm_delete of (%s) returns %d\n", bkey.dptr, rc,
0 );
return( rc );
}
/* write block with new key */
sprintf( bkey.dptr, "%c%s%d", CONT_PREFIX, hkey.dptr, b->b_ids[0] );
bkey.dsize = strlen( bkey.dptr ) + 1;
if ( (rc = idl_store( be, db, bkey, b )) != 0 ) {
Debug( LDAP_DEBUG_ANY,
"idl_store of (%s) returns %d\n", bkey.dptr, rc, 0 );
return( rc );
}
/* update + write indirect header block */
h->b_ids[pos] = b->b_ids[0];
if ( (rc = idl_store( be, db, hkey, h )) != 0 ) {
Debug( LDAP_DEBUG_ANY,
"idl_store of (%s) returns %d\n", hkey.dptr, rc, 0 );
return( rc );
}
return( 0 );
}
int
idl_insert_key(
Backend *be,
struct dbcache *db,
Datum key,
ID id
)
{
int i, j, first, rc;
IDList *idl, *tmp, *tmp2, *tmp3;
char *kstr;
Datum k2;
if ( (idl = idl_fetch_one( be, db, key )) == NULL ) {
idl = idl_alloc( 1 );
idl->b_ids[idl->b_nids++] = id;
rc = idl_store( be, db, key, idl );
idl_free( idl );
return( rc );
}
/* regular block */
if ( ! INDIRECT_BLOCK( idl ) ) {
switch ( idl_insert( &idl, id, db->dbc_maxids ) ) {
case 0: /* id inserted - store the updated block */
case 1:
rc = idl_store( be, db, key, idl );
break;
case 2: /* id already there - nothing to do */
rc = 0;
break;
case 3: /* id not inserted - block must be split */
/* check threshold for marking this an all-id block */
if ( db->dbc_maxindirect < 2 ) {
idl_free( idl );
idl = idl_allids( be );
rc = idl_store( be, db, key, idl );
idl_free( idl );
return( rc );
}
idl_split_block( idl, id, &tmp, &tmp2 );
idl_free( idl );
/* create the header indirect block */
idl = idl_alloc( 3 );
idl->b_nmax = 3;
idl->b_nids = INDBLOCK;
idl->b_ids[0] = tmp->b_ids[0];
idl->b_ids[1] = tmp2->b_ids[0];
idl->b_ids[2] = NOID;
/* store it */
rc = idl_store( be, db, key, idl );
/* store the first id block */
kstr = (char *) ch_malloc( key.dsize + 20 );
sprintf( kstr, "%c%s%d", CONT_PREFIX, key.dptr,
tmp->b_ids[0] );
k2.dptr = kstr;
k2.dsize = strlen( kstr ) + 1;
rc = idl_store( be, db, k2, tmp );
/* store the second id block */
sprintf( kstr, "%c%s%d", CONT_PREFIX, key.dptr,
tmp2->b_ids[0] );
k2.dptr = kstr;
k2.dsize = strlen( kstr ) + 1;
rc = idl_store( be, db, k2, tmp2 );
free( kstr );
idl_free( tmp );
idl_free( tmp2 );
break;
}
idl_free( idl );
return( rc );
}
/*
* this is an indirect block which points to other blocks.
* we need to read in the block into which the id should be
* inserted, then insert the id and store the block. we might
* have to split the block if it is full, which means we also
* need to write a new "header" block.
*/
/* select the block to try inserting into */
for ( i = 0; idl->b_ids[i] != NOID && id > idl->b_ids[i]; i++ )
; /* NULL */
if ( i != 0 ) {
i--;
first = 0;
} else {
first = 1;
}
/* get the block */
kstr = (char *) ch_malloc( key.dsize + 20 );
sprintf( kstr, "%c%s%d", CONT_PREFIX, key.dptr, idl->b_ids[i] );
k2.dptr = kstr;
k2.dsize = strlen( kstr ) + 1;
if ( (tmp = idl_fetch_one( be, db, k2 )) == NULL ) {
Debug( LDAP_DEBUG_ANY, "nonexistent continuation block (%s)\n",
k2.dptr, 0, 0 );
return( -1 );
}
/* insert the id */
switch ( idl_insert( &tmp, id, db->dbc_maxids ) ) {
case 0: /* id inserted ok */
if ( (rc = idl_store( be, db, k2, tmp )) != 0 ) {
Debug( LDAP_DEBUG_ANY,
"idl_store of (%s) returns %d\n", k2.dptr, rc, 0 );
}
break;
case 1: /* id inserted - first id in block has changed */
/*
* key for this block has changed, so we have to
* write the block under the new key, delete the
* old key block + update and write the indirect
* header block.
*/
rc = idl_change_first( be, db, key, idl, i, k2, tmp );
break;
case 2: /* id not inserted - already there */
break;
case 3: /* id not inserted - block is full */
/*
* first, see if it will fit in the next block,
* without splitting, unless we're trying to insert
* into the beginning of the first block.
*/
/* is there a next block? */
if ( !first && idl->b_ids[i + 1] != NOID ) {
/* read it in */
sprintf( kstr, "%c%s%d", CONT_PREFIX, key.dptr,
idl->b_ids[i + 1] );
k2.dptr = kstr;
k2.dsize = strlen( kstr ) + 1;
if ( (tmp2 = idl_fetch_one( be, db, k2 )) == NULL ) {
Debug( LDAP_DEBUG_ANY,
"idl_fetch_one (%s) returns NULL\n",
k2.dptr, 0, 0 );
break;
}
switch ( (rc = idl_insert( &tmp2, id,
db->dbc_maxids )) ) {
case 1: /* id inserted first in block */
rc = idl_change_first( be, db, key, idl,
i + 1, k2, tmp2 );
/* FALL */
case 2: /* id already there - how? */
case 0: /* id inserted */
if ( rc == 2 ) {
Debug( LDAP_DEBUG_ANY,
"id %d already in next block\n",
id, 0, 0 );
}
free( kstr );
idl_free( tmp );
idl_free( tmp2 );
idl_free( idl );
return( 0 );
case 3: /* split the original block */
idl_free( tmp2 );
break;
}
}
/*
* must split the block, write both new blocks + update
* and write the indirect header block.
*/
/* count how many indirect blocks */
for ( j = 0; idl->b_ids[j] != NOID; j++ )
; /* NULL */
/* check it against all-id thresholed */
if ( j + 1 > db->dbc_maxindirect ) {
/*
* we've passed the all-id threshold, meaning
* that this set of blocks should be replaced
* by a single "all-id" block. our job: delete
* all the indirect blocks, and replace the header
* block by an all-id block.
*/
/* delete all indirect blocks */
for ( j = 0; idl->b_ids[j] != NOID; j++ ) {
sprintf( kstr, "%c%s%d", CONT_PREFIX, key.dptr,
idl->b_ids[j] );
k2.dptr = kstr;
k2.dsize = strlen( kstr ) + 1;
rc = ldbm_cache_delete( db, k2 );
}
/* store allid block in place of header block */
idl_free( idl );
idl = idl_allids( be );
rc = idl_store( be, db, key, idl );
free( kstr );
idl_free( idl );
idl_free( tmp );
return( rc );
}
idl_split_block( tmp, id, &tmp2, &tmp3 );
idl_free( tmp );
/* create a new updated indirect header block */
tmp = idl_alloc( idl->b_nmax + 1 );
tmp->b_nids = INDBLOCK;
/* everything up to the split block */
SAFEMEMCPY( (char *) tmp->b_ids, (char *) idl->b_ids,
i * sizeof(ID) );
/* the two new blocks */
tmp->b_ids[i] = tmp2->b_ids[0];
tmp->b_ids[i + 1] = tmp3->b_ids[0];
/* everything after the split block */
SAFEMEMCPY( (char *) &tmp->b_ids[i + 2], (char *)
&idl->b_ids[i + 1], (idl->b_nmax - i - 1) * sizeof(ID) );
/* store the header block */
rc = idl_store( be, db, key, tmp );
/* store the first id block */
sprintf( kstr, "%c%s%d", CONT_PREFIX, key.dptr,
tmp2->b_ids[0] );
k2.dptr = kstr;
k2.dsize = strlen( kstr ) + 1;
rc = idl_store( be, db, k2, tmp2 );
/* store the second id block */
sprintf( kstr, "%c%s%d", CONT_PREFIX, key.dptr,
tmp3->b_ids[0] );
k2.dptr = kstr;
k2.dsize = strlen( kstr ) + 1;
rc = idl_store( be, db, k2, tmp3 );
idl_free( tmp2 );
idl_free( tmp3 );
break;
}
free( kstr );
idl_free( tmp );
idl_free( idl );
return( rc );
}
/*
* idl_insert - insert an id into an id list.
* returns 0 id inserted
* 1 id inserted, first id in block has changed
* 2 id not inserted, already there
* 3 id not inserted, block must be split
*/
int
idl_insert( IDList **idl, ID id, int maxids )
{
int i, j;
if ( ALLIDS( *idl ) ) {
return( 2 ); /* already there */
}
/* is it already there? XXX bin search XXX */
for ( i = 0; i < (*idl)->b_nids && id > (*idl)->b_ids[i]; i++ ) {
; /* NULL */
}
if ( i < (*idl)->b_nids && (*idl)->b_ids[i] == id ) {
return( 2 ); /* already there */
}
/* do we need to make room for it? */
if ( (*idl)->b_nids == (*idl)->b_nmax ) {
/* make room or indicate block needs splitting */
if ( (*idl)->b_nmax == maxids ) {
return( 3 ); /* block needs splitting */
}
(*idl)->b_nmax *= 2;
if ( (*idl)->b_nmax > maxids ) {
(*idl)->b_nmax = maxids;
}
*idl = (IDList *) ch_realloc( (char *) *idl,
((*idl)->b_nmax + 2) * sizeof(ID) );
}
/* make a slot for the new id */
for ( j = (*idl)->b_nids; j != i; j-- ) {
(*idl)->b_ids[j] = (*idl)->b_ids[j-1];
}
(*idl)->b_ids[i] = id;
(*idl)->b_nids++;
(void) memset( (char *) &(*idl)->b_ids[(*idl)->b_nids], '\0',
((*idl)->b_nmax - (*idl)->b_nids) * sizeof(ID) );
return( i == 0 ? 1 : 0 ); /* inserted - first id changed or not */
}
static IDList *
idl_dup( IDList *idl )
{
IDList *new;
if ( idl == NULL ) {
return( NULL );
}
new = idl_alloc( idl->b_nmax );
SAFEMEMCPY( (char *) new, (char *) idl, (idl->b_nmax + 2)
* sizeof(ID) );
return( new );
}
static IDList *
idl_min( IDList *a, IDList *b )
{
return( a->b_nids > b->b_nids ? b : a );
}
/*
* idl_intersection - return a intersection b
*/
IDList *
idl_intersection(
Backend *be,
IDList *a,
IDList *b
)
{
int ai, bi, ni;
IDList *n;
if ( a == NULL || b == NULL ) {
return( NULL );
}
if ( ALLIDS( a ) ) {
return( idl_dup( b ) );
}
if ( ALLIDS( b ) ) {
return( idl_dup( a ) );
}
n = idl_dup( idl_min( a, b ) );
for ( ni = 0, ai = 0, bi = 0; ai < a->b_nids; ai++ ) {
for ( ; bi < b->b_nids && b->b_ids[bi] < a->b_ids[ai]; bi++ )
; /* NULL */
if ( bi == b->b_nids ) {
break;
}
if ( b->b_ids[bi] == a->b_ids[ai] ) {
n->b_ids[ni++] = a->b_ids[ai];
}
}
if ( ni == 0 ) {
idl_free( n );
return( NULL );
}
n->b_nids = ni;
return( n );
}
/*
* idl_union - return a union b
*/
IDList *
idl_union(
Backend *be,
IDList *a,
IDList *b
)
{
int ai, bi, ni;
IDList *n;
if ( a == NULL ) {
return( idl_dup( b ) );
}
if ( b == NULL ) {
return( idl_dup( a ) );
}
if ( ALLIDS( a ) || ALLIDS( b ) ) {
return( idl_allids( be ) );
}
if ( b->b_nids < a->b_nids ) {
n = a;
a = b;
b = n;
}
n = idl_alloc( a->b_nids + b->b_nids );
for ( ni = 0, ai = 0, bi = 0; ai < a->b_nids && bi < b->b_nids; ) {
if ( a->b_ids[ai] < b->b_ids[bi] ) {
n->b_ids[ni++] = a->b_ids[ai++];
} else if ( b->b_ids[bi] < a->b_ids[ai] ) {
n->b_ids[ni++] = b->b_ids[bi++];
} else {
n->b_ids[ni++] = a->b_ids[ai];
ai++, bi++;
}
}
for ( ; ai < a->b_nids; ai++ ) {
n->b_ids[ni++] = a->b_ids[ai];
}
for ( ; bi < b->b_nids; bi++ ) {
n->b_ids[ni++] = b->b_ids[bi];
}
n->b_nids = ni;
return( n );
}
/*
* idl_notin - return a intersection ~b (or a minus b)
*/
IDList *
idl_notin(
Backend *be,
IDList *a,
IDList *b
)
{
int ni, ai, bi;
IDList *n;
if ( a == NULL ) {
return( NULL );
}
if ( b == NULL ) {
return( idl_dup( a ) );
}
if ( ALLIDS( b ) ) {
return( NULL );
}
if ( ALLIDS( a ) ) {
n = idl_alloc( SLAPD_LDBM_MIN_MAXIDS );
ni = 0;
for ( ai = 1, bi = 0; ai < a->b_nids && ni < n->b_nmax &&
bi < b->b_nmax; ai++ ) {
if ( b->b_ids[bi] == ai ) {
bi++;
} else {
n->b_ids[ni++] = ai;
}
}
for ( ; ai < a->b_nids && ni < n->b_nmax; ai++ ) {
n->b_ids[ni++] = ai;
}
if ( ni == n->b_nmax ) {
idl_free( n );
return( idl_allids( be ) );
} else {
n->b_nids = ni;
return( n );
}
}
n = idl_dup( a );
ni = 0;
for ( ai = 0, bi = 0; ai < a->b_nids; ai++ ) {
for ( ; bi < b->b_nids && b->b_ids[bi] < a->b_ids[ai];
bi++ ) {
; /* NULL */
}
if ( bi == b->b_nids ) {
break;
}
if ( b->b_ids[bi] != a->b_ids[ai] ) {
n->b_ids[ni++] = a->b_ids[ai];
}
}
for ( ; ai < a->b_nids; ai++ ) {
n->b_ids[ni++] = a->b_ids[ai];
}
n->b_nids = ni;
return( n );
}
ID
idl_firstid( IDList *idl )
{
if ( idl == NULL || idl->b_nids == 0 ) {
return( NOID );
}
if ( ALLIDS( idl ) ) {
return( idl->b_nids == 1 ? NOID : 1 );
}
return( idl->b_ids[0] );
}
ID
idl_nextid( IDList *idl, ID id )
{
int i;
if ( ALLIDS( idl ) ) {
return( ++id < idl->b_nids ? id : NOID );
}
for ( i = 0; i < idl->b_nids && idl->b_ids[i] < id; i++ ) {
; /* NULL */
}
i++;
if ( i >= idl->b_nids ) {
return( NOID );
} else {
return( idl->b_ids[i] );
}
}