openldap/libraries/liblutil/utils.c
2008-01-08 00:19:56 +00:00

939 lines
18 KiB
C

/* $OpenLDAP$ */
/* This work is part of OpenLDAP Software <http://www.openldap.org/>.
*
* Copyright 1998-2008 The OpenLDAP Foundation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted only as authorized by the OpenLDAP
* Public License.
*
* A copy of this license is available in the file LICENSE in the
* top-level directory of the distribution or, alternatively, at
* <http://www.OpenLDAP.org/license.html>.
*/
#include "portable.h"
#include <stdio.h>
#include <ac/stdlib.h>
#include <ac/stdarg.h>
#include <ac/string.h>
#include <ac/ctype.h>
#include <ac/unistd.h>
#include <ac/time.h>
#include <ac/errno.h>
#ifdef HAVE_IO_H
#include <io.h>
#endif
#ifdef HAVE_FCNTL_H
#include <fcntl.h>
#endif
#ifdef _WIN32
#include <windows.h>
#endif
#include "lutil.h"
#include "ldap_defaults.h"
#include "ldap_pvt.h"
#include "lber_pvt.h"
#ifdef HAVE_EBCDIC
int _trans_argv = 1;
#endif
#ifdef _WIN32
/* Some Windows versions accept both forward and backslashes in
* directory paths, but we always use backslashes when generating
* and parsing...
*/
void lutil_slashpath( char *path )
{
char *c, *p;
p = path;
while (( c=strchr( p, '/' ))) {
*c++ = '\\';
p = c;
}
}
#endif
char* lutil_progname( const char* name, int argc, char *argv[] )
{
char *progname;
if(argc == 0) {
return (char *)name;
}
#ifdef HAVE_EBCDIC
if (_trans_argv) {
int i;
for (i=0; i<argc; i++) __etoa(argv[i]);
_trans_argv = 0;
}
#endif
LUTIL_SLASHPATH( argv[0] );
progname = strrchr ( argv[0], *LDAP_DIRSEP );
progname = progname ? &progname[1] : argv[0];
return progname;
}
#if 0
size_t lutil_gentime( char *s, size_t smax, const struct tm *tm )
{
size_t ret;
#ifdef HAVE_EBCDIC
/* We've been compiling in ASCII so far, but we want EBCDIC now since
* strftime only understands EBCDIC input.
*/
#pragma convlit(suspend)
#endif
ret = strftime( s, smax, "%Y%m%d%H%M%SZ", tm );
#ifdef HAVE_EBCDIC
#pragma convlit(resume)
__etoa( s );
#endif
return ret;
}
#endif
size_t lutil_localtime( char *s, size_t smax, const struct tm *tm, long delta )
{
size_t ret;
char *p;
if ( smax < 16 ) { /* YYYYmmddHHMMSSZ */
return 0;
}
#ifdef HAVE_EBCDIC
/* We've been compiling in ASCII so far, but we want EBCDIC now since
* strftime only understands EBCDIC input.
*/
#pragma convlit(suspend)
#endif
ret = strftime( s, smax, "%Y%m%d%H%M%SZ", tm );
#ifdef HAVE_EBCDIC
#pragma convlit(resume)
__etoa( s );
#endif
if ( delta == 0 || ret == 0 ) {
return ret;
}
if ( smax < 20 ) { /* YYYYmmddHHMMSS+HHMM */
return 0;
}
p = s + 14;
if ( delta < 0 ) {
p[ 0 ] = '-';
delta = -delta;
} else {
p[ 0 ] = '+';
}
p++;
snprintf( p, smax - 15, "%02ld%02ld", delta / 3600,
( delta % 3600 ) / 60 );
return ret + 5;
}
int lutil_tm2time( struct lutil_tm *tm, struct lutil_timet *tt )
{
static int moffset[12] = {
0, 31, 59, 90, 120,
151, 181, 212, 243,
273, 304, 334 };
int sec;
tt->tt_usec = tm->tm_usec;
/* special case 0000/01/01+00:00:00 is returned as zero */
if ( tm->tm_year == -1900 && tm->tm_mon == 0 && tm->tm_mday == 1 &&
tm->tm_hour == 0 && tm->tm_min == 0 && tm->tm_sec == 0 ) {
tt->tt_sec = 0;
tt->tt_gsec = 0;
return 0;
}
/* tm->tm_year is years since 1900 */
/* calculate days from years since 1970 (epoch) */
tt->tt_sec = tm->tm_year - 70;
tt->tt_sec *= 365L;
/* count leap days in preceding years */
tt->tt_sec += ((tm->tm_year -69) >> 2);
/* calculate days from months */
tt->tt_sec += moffset[tm->tm_mon];
/* add in this year's leap day, if any */
if (((tm->tm_year & 3) == 0) && (tm->tm_mon > 1)) {
tt->tt_sec ++;
}
/* add in days in this month */
tt->tt_sec += (tm->tm_mday - 1);
/* this function can handle a range of about 17408 years... */
/* 86400 seconds in a day, divided by 128 = 675 */
tt->tt_sec *= 675;
/* move high 7 bits into tt_gsec */
tt->tt_gsec = tt->tt_sec >> 25;
tt->tt_sec -= tt->tt_gsec << 25;
/* get hours */
sec = tm->tm_hour;
/* convert to minutes */
sec *= 60L;
sec += tm->tm_min;
/* convert to seconds */
sec *= 60L;
sec += tm->tm_sec;
/* add remaining seconds */
tt->tt_sec <<= 7;
tt->tt_sec += sec;
/* return success */
return 0;
}
int lutil_parsetime( char *atm, struct lutil_tm *tm )
{
while (atm && tm) {
char *ptr = atm;
unsigned i, fracs;
/* Is the stamp reasonably long? */
for (i=0; isdigit((unsigned char) atm[i]); i++);
if (i < sizeof("00000101000000")-1)
break;
/*
* parse the time into a struct tm
*/
/* 4 digit year to year - 1900 */
tm->tm_year = *ptr++ - '0';
tm->tm_year *= 10; tm->tm_year += *ptr++ - '0';
tm->tm_year *= 10; tm->tm_year += *ptr++ - '0';
tm->tm_year *= 10; tm->tm_year += *ptr++ - '0';
tm->tm_year -= 1900;
/* month 01-12 to 0-11 */
tm->tm_mon = *ptr++ - '0';
tm->tm_mon *=10; tm->tm_mon += *ptr++ - '0';
if (tm->tm_mon < 1 || tm->tm_mon > 12) break;
tm->tm_mon--;
/* day of month 01-31 */
tm->tm_mday = *ptr++ - '0';
tm->tm_mday *=10; tm->tm_mday += *ptr++ - '0';
if (tm->tm_mday < 1 || tm->tm_mday > 31) break;
/* Hour 00-23 */
tm->tm_hour = *ptr++ - '0';
tm->tm_hour *=10; tm->tm_hour += *ptr++ - '0';
if (tm->tm_hour < 0 || tm->tm_hour > 23) break;
/* Minute 00-59 */
tm->tm_min = *ptr++ - '0';
tm->tm_min *=10; tm->tm_min += *ptr++ - '0';
if (tm->tm_min < 0 || tm->tm_min > 59) break;
/* Second 00-61 */
tm->tm_sec = *ptr++ - '0';
tm->tm_sec *=10; tm->tm_sec += *ptr++ - '0';
if (tm->tm_sec < 0 || tm->tm_sec > 61) break;
/* Fractions of seconds */
if ( *ptr == '.' ) {
ptr++;
for (i = 0, fracs = 0; isdigit((unsigned char) *ptr); ) {
i*=10; i+= *ptr++ - '0';
fracs++;
}
tm->tm_usec = i;
if (i) {
for (i = fracs; i<6; i++)
tm->tm_usec *= 10;
}
}
/* Must be UTC */
if (*ptr != 'Z') break;
return 0;
}
return -1;
}
/* return a broken out time, with microseconds
* Must be mutex-protected.
*/
#ifdef _WIN32
/* Windows SYSTEMTIME only has 10 millisecond resolution, so we
* also need to use a high resolution timer to get microseconds.
* This is pretty clunky.
*/
void
lutil_gettime( struct lutil_tm *tm )
{
static LARGE_INTEGER cFreq;
static LARGE_INTEGER prevCount;
static int subs;
static int offset;
LARGE_INTEGER count;
SYSTEMTIME st;
GetSystemTime( &st );
QueryPerformanceCounter( &count );
/* We assume Windows has at least a vague idea of
* when a second begins. So we align our microsecond count
* with the Windows millisecond count using this offset.
* We retain the submillisecond portion of our own count.
*/
if ( !cFreq.QuadPart ) {
long long t;
int usec;
QueryPerformanceFrequency( &cFreq );
t = count.QuadPart * 1000000;
t /= cFreq.QuadPart;
usec = t % 10000000;
usec /= 1000;
offset = ( usec - st.wMilliseconds ) * 1000;
}
/* It shouldn't ever go backwards, but multiple CPUs might
* be able to hit in the same tick.
*/
if ( count.QuadPart <= prevCount.QuadPart ) {
subs++;
} else {
subs = 0;
prevCount = count;
}
tm->tm_usub = subs;
/* convert to microseconds */
count.QuadPart *= 1000000;
count.QuadPart /= cFreq.QuadPart;
count.QuadPart -= offset;
tm->tm_usec = count.QuadPart % 1000000;
/* any difference larger than microseconds is
* already reflected in st
*/
tm->tm_sec = st.wSecond;
tm->tm_min = st.wMinute;
tm->tm_hour = st.wHour;
tm->tm_mday = st.wDay;
tm->tm_mon = st.wMonth - 1;
tm->tm_year = st.wYear - 1900;
}
#else
void
lutil_gettime( struct lutil_tm *ltm )
{
struct timeval tv;
static struct timeval prevTv;
static int subs;
#ifdef HAVE_GMTIME_R
struct tm tm_buf;
#endif
struct tm *tm;
time_t t;
gettimeofday( &tv, NULL );
t = tv.tv_sec;
if ( tv.tv_sec < prevTv.tv_sec
|| ( tv.tv_sec == prevTv.tv_sec && tv.tv_usec == prevTv.tv_usec )) {
subs++;
} else {
subs = 0;
prevTv = tv;
}
ltm->tm_usub = subs;
#ifdef HAVE_GMTIME_R
tm = gmtime_r( &t, &tm_buf );
#else
tm = gmtime( &t );
#endif
ltm->tm_sec = tm->tm_sec;
ltm->tm_min = tm->tm_min;
ltm->tm_hour = tm->tm_hour;
ltm->tm_mday = tm->tm_mday;
ltm->tm_mon = tm->tm_mon;
ltm->tm_year = tm->tm_year;
ltm->tm_usec = tv.tv_usec;
}
#endif
/* strcopy is like strcpy except it returns a pointer to the trailing NUL of
* the result string. This allows fast construction of catenated strings
* without the overhead of strlen/strcat.
*/
char *
lutil_strcopy(
char *a,
const char *b
)
{
if (!a || !b)
return a;
while ((*a++ = *b++)) ;
return a-1;
}
/* strncopy is like strcpy except it returns a pointer to the trailing NUL of
* the result string. This allows fast construction of catenated strings
* without the overhead of strlen/strcat.
*/
char *
lutil_strncopy(
char *a,
const char *b,
size_t n
)
{
if (!a || !b || n == 0)
return a;
while ((*a++ = *b++) && n-- > 0) ;
return a-1;
}
#ifndef HAVE_MKSTEMP
int mkstemp( char * template )
{
#ifdef HAVE_MKTEMP
return open ( mktemp ( template ), O_RDWR|O_CREAT|O_EXCL, 0600 );
#else
return -1;
#endif
}
#endif
#ifdef _MSC_VER
struct dirent {
char *d_name;
};
typedef struct DIR {
HANDLE dir;
struct dirent data;
int first;
char buf[MAX_PATH+1];
} DIR;
DIR *opendir( char *path )
{
char tmp[32768];
int len = strlen(path);
DIR *d;
HANDLE h;
WIN32_FIND_DATA data;
if (len+3 >= sizeof(tmp))
return NULL;
strcpy(tmp, path);
tmp[len++] = '\\';
tmp[len++] = '*';
tmp[len] = '\0';
h = FindFirstFile( tmp, &data );
if ( h == INVALID_HANDLE_VALUE )
return NULL;
d = ber_memalloc( sizeof(DIR) );
if ( !d )
return NULL;
d->dir = h;
d->data.d_name = d->buf;
d->first = 1;
strcpy(d->data.d_name, data.cFileName);
return d;
}
struct dirent *readdir(DIR *dir)
{
WIN32_FIND_DATA data;
if (dir->first) {
dir->first = 0;
} else {
if (!FindNextFile(dir->dir, &data))
return NULL;
strcpy(dir->data.d_name, data.cFileName);
}
return &dir->data;
}
void closedir(DIR *dir)
{
FindClose(dir->dir);
ber_memfree(dir);
}
#endif
/*
* Memory Reverse Search
*/
void *
lutil_memrchr(const void *b, int c, size_t n)
{
if (n != 0) {
const unsigned char *s, *bb = b, cc = c;
for ( s = bb + n; s > bb; ) {
if ( *--s == cc ) {
return (void *) s;
}
}
}
return NULL;
}
int
lutil_atoix( int *v, const char *s, int x )
{
char *next;
long i;
assert( s != NULL );
assert( v != NULL );
i = strtol( s, &next, x );
if ( next == s || next[ 0 ] != '\0' ) {
return -1;
}
if ( (long)(int)i != i ) {
return 1;
}
*v = (int)i;
return 0;
}
int
lutil_atoux( unsigned *v, const char *s, int x )
{
char *next;
unsigned long u;
assert( s != NULL );
assert( v != NULL );
/* strtoul() has an odd interface */
if ( s[ 0 ] == '-' ) {
return -1;
}
u = strtoul( s, &next, x );
if ( next == s || next[ 0 ] != '\0' ) {
return -1;
}
if ( (unsigned long)(unsigned)u != u ) {
return 1;
}
*v = u;
return 0;
}
int
lutil_atolx( long *v, const char *s, int x )
{
char *next;
long l;
assert( s != NULL );
assert( v != NULL );
l = strtol( s, &next, x );
if ( next == s || next[ 0 ] != '\0' ) {
return -1;
}
*v = l;
return 0;
}
int
lutil_atoulx( unsigned long *v, const char *s, int x )
{
char *next;
unsigned long ul;
assert( s != NULL );
assert( v != NULL );
/* strtoul() has an odd interface */
if ( s[ 0 ] == '-' ) {
return -1;
}
ul = strtoul( s, &next, x );
if ( next == s || next[ 0 ] != '\0' ) {
return -1;
}
*v = ul;
return 0;
}
/* Multiply an integer by 100000000 and add new */
typedef struct lutil_int_decnum {
unsigned char *buf;
int bufsiz;
int beg;
int len;
} lutil_int_decnum;
#define FACTOR1 (100000000&0xffff)
#define FACTOR2 (100000000>>16)
static void
scale( int new, lutil_int_decnum *prev, unsigned char *tmp )
{
int i, j;
unsigned char *in = prev->buf+prev->beg;
unsigned int part;
unsigned char *out = tmp + prev->bufsiz - prev->len;
memset( tmp, 0, prev->bufsiz );
if ( prev->len ) {
for ( i = prev->len-1; i>=0; i-- ) {
part = in[i] * FACTOR1;
for ( j = i; part; j-- ) {
part += out[j];
out[j] = part & 0xff;
part >>= 8;
}
part = in[i] * FACTOR2;
for ( j = i-2; part; j-- ) {
part += out[j];
out[j] = part & 0xff;
part >>= 8;
}
}
j++;
prev->beg += j;
prev->len -= j;
}
out = tmp + prev->bufsiz;
i = 0;
do {
i--;
new += out[i];
out[i] = new & 0xff;
new >>= 8;
} while ( new );
i = -i;
if ( prev->len < i ) {
prev->beg = prev->bufsiz - i;
prev->len = i;
}
AC_MEMCPY( prev->buf+prev->beg, tmp+prev->beg, prev->len );
}
/* Convert unlimited length decimal or hex string to binary.
* Output buffer must be provided, bv_len must indicate buffer size
* Hex input can be "0x1234" or "'1234'H"
*
* Temporarily modifies the input string.
*
* Note: High bit of binary form is always the sign bit. If the number
* is supposed to be positive but has the high bit set, a zero byte
* is prepended. It is assumed that this has already been handled on
* any hex input.
*/
int
lutil_str2bin( struct berval *in, struct berval *out, void *ctx )
{
char *pin, *pout, ctmp;
char *end;
long l;
int i, chunk, len, rc = 0, hex = 0;
if ( !out || !out->bv_val || out->bv_len < in->bv_len )
return -1;
pout = out->bv_val;
/* Leading "0x" for hex input */
if ( in->bv_len > 2 && in->bv_val[0] == '0' &&
( in->bv_val[1] == 'x' || in->bv_val[1] == 'X' ) )
{
len = in->bv_len - 2;
pin = in->bv_val + 2;
hex = 1;
} else if ( in->bv_len > 3 && in->bv_val[0] == '\'' &&
in->bv_val[in->bv_len-2] == '\'' &&
in->bv_val[in->bv_len-1] == 'H' )
{
len = in->bv_len - 3;
pin = in->bv_val + 1;
hex = 1;
}
if ( hex ) {
#define HEXMAX (2 * sizeof(long))
/* Convert a longword at a time, but handle leading
* odd bytes first
*/
chunk = len & (HEXMAX-1);
if ( !chunk )
chunk = HEXMAX;
while ( len ) {
ctmp = pin[chunk];
pin[chunk] = '\0';
errno = 0;
l = strtol( pin, &end, 16 );
pin[chunk] = ctmp;
if ( errno )
return -1;
chunk++;
chunk >>= 1;
for ( i = chunk; i>=0; i-- ) {
pout[i] = l & 0xff;
l >>= 8;
}
pin += chunk;
pout += sizeof(long);
len -= chunk;
chunk = HEXMAX;
}
out->bv_len = pout + len - out->bv_val;
} else {
/* Decimal */
char tmpbuf[64], *tmp;
lutil_int_decnum num;
int neg = 0;
len = in->bv_len;
pin = in->bv_val;
num.buf = (unsigned char *)out->bv_val;
num.bufsiz = out->bv_len;
num.beg = num.bufsiz-1;
num.len = 0;
if ( pin[0] == '-' ) {
neg = 0xff;
len--;
pin++;
}
#define DECMAX 8 /* 8 digits at a time */
/* tmp must be at least as large as outbuf */
if ( out->bv_len > sizeof(tmpbuf)) {
tmp = ber_memalloc_x( out->bv_len, ctx );
} else {
tmp = tmpbuf;
}
chunk = len & (DECMAX-1);
if ( !chunk )
chunk = DECMAX;
while ( len ) {
ctmp = pin[chunk];
pin[chunk] = '\0';
errno = 0;
l = strtol( pin, &end, 10 );
pin[chunk] = ctmp;
if ( errno ) {
rc = -1;
goto decfail;
}
scale( l, &num, (unsigned char *)tmp );
pin += chunk;
len -= chunk;
chunk = DECMAX;
}
/* Negate the result */
if ( neg ) {
unsigned char *ptr;
ptr = num.buf+num.beg;
/* flip all bits */
for ( i=0; i<num.len; i++ )
ptr[i] ^= 0xff;
/* add 1, with carry - overflow handled below */
while ( i-- && ! (ptr[i] = (ptr[i] + 1) & 0xff )) ;
}
/* Prepend sign byte if wrong sign bit */
if (( num.buf[num.beg] ^ neg ) & 0x80 ) {
num.beg--;
num.len++;
num.buf[num.beg] = neg;
}
if ( num.beg )
AC_MEMCPY( num.buf, num.buf+num.beg, num.len );
out->bv_len = num.len;
decfail:
if ( tmp != tmpbuf ) {
ber_memfree_x( tmp, ctx );
}
}
return rc;
}
static char time_unit[] = "dhms";
/* Used to parse and unparse time intervals, not timestamps */
int
lutil_parse_time(
const char *in,
unsigned long *tp )
{
unsigned long t = 0;
char *s,
*next;
int sofar = -1,
scale[] = { 86400, 3600, 60, 1 };
*tp = 0;
for ( s = (char *)in; s[ 0 ] != '\0'; ) {
unsigned long u;
char *what;
/* strtoul() has an odd interface */
if ( s[ 0 ] == '-' ) {
return -1;
}
u = strtoul( s, &next, 10 );
if ( next == s ) {
return -1;
}
if ( next[ 0 ] == '\0' ) {
/* assume seconds */
t += u;
break;
}
what = strchr( time_unit, next[ 0 ] );
if ( what == NULL ) {
return -1;
}
if ( what - time_unit <= sofar ) {
return -1;
}
sofar = what - time_unit;
t += u * scale[ sofar ];
s = &next[ 1 ];
}
*tp = t;
return 0;
}
int
lutil_unparse_time(
char *buf,
size_t buflen,
unsigned long t )
{
int len, i;
unsigned long v[ 4 ];
char *ptr = buf;
v[ 0 ] = t/86400;
v[ 1 ] = (t%86400)/3600;
v[ 2 ] = (t%3600)/60;
v[ 3 ] = t%60;
for ( i = 0; i < 4; i++ ) {
if ( v[i] > 0 || ( i == 3 && ptr == buf ) ) {
len = snprintf( ptr, buflen, "%lu%c", v[ i ], time_unit[ i ] );
if ( len < 0 || (unsigned)len >= buflen ) {
return -1;
}
buflen -= len;
ptr += len;
}
}
return 0;
}
/*
* formatted print to string
*
* - if return code < 0, the error code returned by vsnprintf(3) is returned
*
* - if return code > 0, the buffer was not long enough;
* - if next is not NULL, *next will be set to buf + bufsize - 1
* - if len is not NULL, *len will contain the required buffer length
*
* - if return code == 0, the buffer was long enough;
* - if next is not NULL, *next will point to the end of the string printed so far
* - if len is not NULL, *len will contain the length of the string printed so far
*/
int
lutil_snprintf( char *buf, ber_len_t bufsize, char **next, ber_len_t *len, LDAP_CONST char *fmt, ... )
{
va_list ap;
int ret;
assert( buf != NULL );
assert( bufsize > 0 );
assert( fmt != NULL );
va_start( ap, fmt );
ret = vsnprintf( buf, bufsize, fmt, ap );
va_end( ap );
if ( ret < 0 ) {
return ret;
}
if ( len ) {
*len = ret;
}
if ( ret >= bufsize ) {
if ( next ) {
*next = &buf[ bufsize - 1 ];
}
return 1;
}
if ( next ) {
*next = &buf[ ret ];
}
return 0;
}