/* idl.c - ldap id list handling routines */
/* $OpenLDAP$ */
/* This work is part of OpenLDAP Software .
*
* Copyright 1998-2003 The OpenLDAP Foundation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted only as authorized by the OpenLDAP
* Public License.
*
* A copy of this license is available in the file LICENSE in the
* top-level directory of the distribution or, alternatively, at
* .
*/
#include "portable.h"
#include
#include
#include
#include "slap.h"
#include "back-ldbm.h"
static ID_BLOCK* idl_dup( ID_BLOCK *idl );
static void cont_alloc( Datum *cont, Datum *key )
{
ldbm_datum_init( *cont );
cont->dsize = 1 + sizeof(ID) + key->dsize;
cont->dptr = ch_malloc( cont->dsize );
* (unsigned char *) cont->dptr = SLAP_INDEX_CONT_PREFIX;
AC_MEMCPY( &((unsigned char *)cont->dptr)[1 + sizeof(ID)],
key->dptr, key->dsize );
}
static void cont_id( Datum *cont, ID id )
{
unsigned int i;
for( i=1; i <= sizeof(id); i++) {
((unsigned char *)cont->dptr)[i] = (unsigned char)(id & 0xFF);
id >>= 8;
}
}
static void cont_free( Datum *cont )
{
ch_free( cont->dptr );
}
#ifdef LDBM_DEBUG_IDL
static void idl_check(ID_BLOCK *idl)
{
int i, max;
ID_BLOCK last;
if( ID_BLOCK_ALLIDS(idl) )
{
return;
}
#ifndef USE_INDIRECT_NIDS
if( ID_BLOCK_INDIRECT(idl) )
{
for ( max = 0; !ID_BLOCK_NOID(idl, max); max++ ) ;
} else
#endif
{
max = ID_BLOCK_NIDS(idl);
}
if ( max <= 1 )
{
return;
}
for( last = ID_BLOCK_ID(idl, 0), i = 1;
i < max;
last = ID_BLOCK_ID(idl, i), i++ )
{
assert (last < ID_BLOCK_ID(idl, i) );
}
}
#endif
/* Allocate an ID_BLOCK with room for nids ids */
ID_BLOCK *
idl_alloc( unsigned int nids )
{
ID_BLOCK *new;
/* nmax + nids + space for the ids */
new = (ID_BLOCK *) ch_calloc( (ID_BLOCK_IDS_OFFSET + nids), sizeof(ID) );
ID_BLOCK_NMAX(new) = nids;
ID_BLOCK_NIDS(new) = 0;
return( new );
}
/* Allocate an empty ALLIDS ID_BLOCK */
ID_BLOCK *
idl_allids( Backend *be )
{
ID_BLOCK *idl;
ID id;
idl = idl_alloc( 0 );
ID_BLOCK_NMAX(idl) = ID_BLOCK_ALLIDS_VALUE;
if ( next_id_get( be, &id ) ) {
return NULL;
}
ID_BLOCK_NIDS(idl) = id;
return( idl );
}
/* Free an ID_BLOCK */
void
idl_free( ID_BLOCK *idl )
{
if ( idl == NULL ) {
#ifdef NEW_LOGGING
LDAP_LOG( INDEX, INFO, "idl_free: called with NULL pointer\n" , 0,0,0);
#else
Debug( LDAP_DEBUG_TRACE,
"idl_free: called with NULL pointer\n",
0, 0, 0 );
#endif
return;
}
free( (char *) idl );
}
/* Fetch an single ID_BLOCK from the cache */
static ID_BLOCK *
idl_fetch_one(
Backend *be,
DBCache *db,
Datum key
)
{
Datum data;
ID_BLOCK *idl;
/* Debug( LDAP_DEBUG_TRACE, "=> idl_fetch_one\n", 0, 0, 0 ); */
data = ldbm_cache_fetch( db, key );
if( data.dptr == NULL ) {
return NULL;
}
idl = (ID_BLOCK *) data.dptr;
if ( ID_BLOCK_ALLIDS(idl) ) {
/* make sure we have the current value of highest id */
idl = idl_allids( be );
} else {
idl = idl_dup((ID_BLOCK *) data.dptr);
}
ldbm_datum_free( db->dbc_db, data );
return idl;
}
/* Fetch a set of ID_BLOCKs from the cache
* if not INDIRECT
* if block return is an ALLIDS block,
* return an new ALLIDS block
* otherwise
* return block
* construct super block from all blocks referenced by INDIRECT block
* return super block
*/
ID_BLOCK *
idl_fetch(
Backend *be,
DBCache *db,
Datum key
)
{
Datum data;
ID_BLOCK *idl;
ID_BLOCK **tmp;
unsigned i, nids, nblocks;
idl = idl_fetch_one( be, db, key );
if ( idl == NULL ) {
return NULL;
}
if ( ID_BLOCK_ALLIDS(idl) ) {
/* all ids block */
return( idl );
}
if ( ! ID_BLOCK_INDIRECT( idl ) ) {
/* regular block */
return( idl );
}
/*
* this is an indirect block which points to other blocks.
* we need to read in all the blocks it points to and construct
* a big id list containing all the ids, which we will return.
*/
#ifndef USE_INDIRECT_NIDS
/* count the number of blocks & allocate space for pointers to them */
for ( nblocks = 0; !ID_BLOCK_NOID(idl, nblocks); nblocks++ )
; /* NULL */
#else
nblocks = ID_BLOCK_NIDS(idl);
#endif
tmp = (ID_BLOCK **) ch_malloc( nblocks * sizeof(ID_BLOCK *) );
/* read in all the blocks */
cont_alloc( &data, &key );
nids = 0;
for ( i = 0; i < nblocks; i++ ) {
cont_id( &data, ID_BLOCK_ID(idl, i) );
if ( (tmp[i] = idl_fetch_one( be, db, data )) == NULL ) {
#ifdef NEW_LOGGING
LDAP_LOG( INDEX, INFO,
"idl_fetch: idl_fetch_one returned NULL\n", 0,0,0 );
#else
Debug( LDAP_DEBUG_ANY,
"idl_fetch: one returned NULL\n", 0, 0, 0 );
#endif
continue;
}
nids += ID_BLOCK_NIDS(tmp[i]);
}
cont_free( &data );
idl_free( idl );
/* allocate space for the big block */
idl = idl_alloc( nids );
ID_BLOCK_NIDS(idl) = nids;
nids = 0;
/* copy in all the ids from the component blocks */
for ( i = 0; i < nblocks; i++ ) {
if ( tmp[i] == NULL ) {
continue;
}
AC_MEMCPY(
(char *) &ID_BLOCK_ID(idl, nids),
(char *) &ID_BLOCK_ID(tmp[i], 0),
ID_BLOCK_NIDS(tmp[i]) * sizeof(ID) );
nids += ID_BLOCK_NIDS(tmp[i]);
idl_free( tmp[i] );
}
free( (char *) tmp );
assert( ID_BLOCK_NIDS(idl) == nids );
#ifdef LDBM_DEBUG_IDL
idl_check(idl);
#endif
#ifdef NEW_LOGGING
LDAP_LOG( INDEX, ENTRY,
"idl_fetch: %ld ids (%ld max)\n",
ID_BLOCK_NIDS(idl), ID_BLOCK_NMAXN(idl), 0 );
#else
Debug( LDAP_DEBUG_TRACE, "<= idl_fetch %ld ids (%ld max)\n",
ID_BLOCK_NIDS(idl), ID_BLOCK_NMAXN(idl), 0 );
#endif
return( idl );
}
/* store a single block */
static int
idl_store(
Backend *be,
DBCache *db,
Datum key,
ID_BLOCK *idl
)
{
int rc, flags;
Datum data;
#ifdef LDBM_DEBUG_IDL
idl_check(idl);
#endif
ldbm_datum_init( data );
/* Debug( LDAP_DEBUG_TRACE, "=> idl_store\n", 0, 0, 0 ); */
data.dptr = (char *) idl;
data.dsize = (ID_BLOCK_IDS_OFFSET + ID_BLOCK_NMAXN(idl)) * sizeof(ID);
flags = LDBM_REPLACE;
rc = ldbm_cache_store( db, key, data, flags );
/* Debug( LDAP_DEBUG_TRACE, "<= idl_store %d\n", rc, 0, 0 ); */
return( rc );
}
/* Binary search for id in block, return index
* an index is always returned, even with no match. If no
* match, the returned index is the insertion point.
*/
static unsigned int
idl_find(
ID_BLOCK *b,
ID id
)
{
int lo=0, hi=ID_BLOCK_NIDS(b)-1, nr=0;
for (;lo<=hi;)
{
nr = ( lo + hi ) / 2;
if (ID_BLOCK_ID(b, nr) == id)
break;
if (ID_BLOCK_ID(b, nr) > id)
hi = nr - 1;
else
lo = nr + 1;
}
return nr;
}
/* split the block at id
* locate ID greater than or equal to id.
*/
static void
idl_split_block(
ID_BLOCK *b,
ID id,
ID_BLOCK **right,
ID_BLOCK **left
)
{
unsigned int nr, nl;
/* find where to split the block */
nr = idl_find(b, id);
if ( ID_BLOCK_ID(b,nr) < id )
nr++;
nl = ID_BLOCK_NIDS(b) - nr;
*right = idl_alloc( nr == 0 ? 1 : nr );
*left = idl_alloc( nl + (nr == 0 ? 0 : 1));
/*
* everything before the id being inserted in the first block
* unless there is nothing, in which case the id being inserted
* goes there.
*/
if ( nr == 0 ) {
ID_BLOCK_NIDS(*right) = 1;
ID_BLOCK_ID(*right, 0) = id;
} else {
AC_MEMCPY(
(char *) &ID_BLOCK_ID(*right, 0),
(char *) &ID_BLOCK_ID(b, 0),
nr * sizeof(ID) );
ID_BLOCK_NIDS(*right) = nr;
ID_BLOCK_ID(*left, 0) = id;
}
/* the id being inserted & everything after in the second block */
AC_MEMCPY(
(char *) &ID_BLOCK_ID(*left, (nr == 0 ? 0 : 1)),
(char *) &ID_BLOCK_ID(b, nr),
nl * sizeof(ID) );
ID_BLOCK_NIDS(*left) = nl + (nr == 0 ? 0 : 1);
#ifdef LDBM_DEBUG_IDL
idl_check(*right);
idl_check(*left);
#endif
}
/*
* idl_change_first - called when an indirect block's first key has
* changed, meaning it needs to be stored under a new key, and the
* header block pointing to it needs updating.
*/
static int
idl_change_first(
Backend *be,
DBCache *db,
Datum hkey, /* header block key */
ID_BLOCK *h, /* header block */
int pos, /* pos in h to update */
Datum bkey, /* data block key */
ID_BLOCK *b /* data block */
)
{
int rc;
/* Debug( LDAP_DEBUG_TRACE, "=> idl_change_first\n", 0, 0, 0 ); */
/* delete old key block */
if ( (rc = ldbm_cache_delete( db, bkey )) != 0 ) {
#ifdef NEW_LOGGING
LDAP_LOG( INDEX, INFO,
"idl_change_first: ldbm_cache_delete returned %d\n", rc, 0, 0 );
#else
Debug( LDAP_DEBUG_ANY,
"idl_change_first: ldbm_cache_delete returned %d\n",
rc, 0, 0 );
#endif
return( rc );
}
/* write block with new key */
cont_id( &bkey, ID_BLOCK_ID(b, 0) );
if ( (rc = idl_store( be, db, bkey, b )) != 0 ) {
#ifdef NEW_LOGGING
LDAP_LOG( INDEX, INFO,
"idl_change_first: idl_store returned %d\n", rc, 0, 0 );
#else
Debug( LDAP_DEBUG_ANY,
"idl_change_first: idl_store returned %d\n", rc, 0, 0 );
#endif
return( rc );
}
/* update + write indirect header block */
ID_BLOCK_ID(h, pos) = ID_BLOCK_ID(b, 0);
if ( (rc = idl_store( be, db, hkey, h )) != 0 ) {
#ifdef NEW_LOGGING
LDAP_LOG( INDEX, INFO,
"idl_change_first: idl_store returned %s\n", rc, 0, 0 );
#else
Debug( LDAP_DEBUG_ANY,
"idl_change_first: idl_store returned %d\n", rc, 0, 0 );
#endif
return( rc );
}
return( 0 );
}
int
idl_insert_key(
Backend *be,
DBCache *db,
Datum key,
ID id
)
{
int i, j, first, rc = 0;
ID_BLOCK *idl, *tmp, *tmp2, *tmp3;
Datum k2;
if ( (idl = idl_fetch_one( be, db, key )) == NULL ) {
idl = idl_alloc( 1 );
ID_BLOCK_ID(idl, ID_BLOCK_NIDS(idl)++) = id;
rc = idl_store( be, db, key, idl );
idl_free( idl );
return( rc );
}
if ( ID_BLOCK_ALLIDS( idl ) ) {
/* ALLIDS */
idl_free( idl );
return 0;
}
if ( ! ID_BLOCK_INDIRECT( idl ) ) {
/* regular block */
switch ( idl_insert( &idl, id, db->dbc_maxids ) ) {
case 0: /* id inserted - store the updated block */
case 1:
rc = idl_store( be, db, key, idl );
break;
case 2: /* id already there - nothing to do */
rc = 0;
break;
case 3: /* id not inserted - block must be split */
/* check threshold for marking this an all-id block */
if ( db->dbc_maxindirect < 2 ) {
idl_free( idl );
idl = idl_allids( be );
rc = idl_store( be, db, key, idl );
break;
}
idl_split_block( idl, id, &tmp, &tmp2 );
idl_free( idl );
/* create the header indirect block */
#ifndef USE_INDIRECT_NIDS
idl = idl_alloc( 3 );
ID_BLOCK_NMAX(idl) = 3;
ID_BLOCK_NIDS(idl) = ID_BLOCK_INDIRECT_VALUE;
ID_BLOCK_ID(idl, 0) = ID_BLOCK_ID(tmp, 0);
ID_BLOCK_ID(idl, 1) = ID_BLOCK_ID(tmp2, 0);
ID_BLOCK_ID(idl, 2) = NOID;
#else
idl = idl_alloc( 2 );
ID_BLOCK_NMAX(idl) = 2 | ID_BLOCK_INDIRECT_VALUE;
ID_BLOCK_NIDS(idl) = 2;
ID_BLOCK_ID(idl, 0) = ID_BLOCK_ID(tmp, 0);
ID_BLOCK_ID(idl, 1) = ID_BLOCK_ID(tmp2, 0);
#endif
/* store it */
rc = idl_store( be, db, key, idl );
cont_alloc( &k2, &key );
cont_id( &k2, ID_BLOCK_ID(tmp, 0) );
rc = idl_store( be, db, k2, tmp );
cont_id( &k2, ID_BLOCK_ID(tmp2, 0) );
rc = idl_store( be, db, k2, tmp2 );
cont_free( &k2 );
idl_free( tmp );
idl_free( tmp2 );
break;
}
idl_free( idl );
return( rc );
}
/*
* this is an indirect block which points to other blocks.
* we need to read in the block into which the id should be
* inserted, then insert the id and store the block. we might
* have to split the block if it is full, which means we also
* need to write a new "header" block.
*/
#ifndef USE_INDIRECT_NIDS
/* select the block to try inserting into *//* XXX linear search XXX */
for ( i = 0; !ID_BLOCK_NOID(idl, i) && id >= ID_BLOCK_ID(idl, i); i++ )
; /* NULL */
#else
i = idl_find(idl, id);
if (ID_BLOCK_ID(idl, i) <= id)
i++;
#endif
if ( i != 0 ) {
i--;
first = 0;
} else {
first = 1;
}
/* At this point, the following condition must be true:
* ID_BLOCK_ID(idl, i) <= id && id < ID_BLOCK_ID(idl, i+1)
* except when i is the first or the last block.
*/
/* get the block */
cont_alloc( &k2, &key );
cont_id( &k2, ID_BLOCK_ID(idl, i) );
if ( (tmp = idl_fetch_one( be, db, k2 )) == NULL ) {
#ifdef NEW_LOGGING
LDAP_LOG( INDEX, ERR,
"idl_insert_key: nonexistent continuation block\n", 0, 0, 0 );
#else
Debug( LDAP_DEBUG_ANY, "idl_insert_key: nonexistent continuation block\n",
0, 0, 0 );
#endif
cont_free( &k2 );
idl_free( idl );
return( -1 );
}
/* insert the id */
switch ( idl_insert( &tmp, id, db->dbc_maxids ) ) {
case 0: /* id inserted ok */
if ( (rc = idl_store( be, db, k2, tmp )) != 0 ) {
#ifdef NEW_LOGGING
LDAP_LOG( INDEX, ERR,
"ids_insert_key: idl_store returned %d\n", rc, 0, 0 );
#else
Debug( LDAP_DEBUG_ANY,
"idl_insert_key: idl_store returned %d\n", rc, 0, 0 );
#endif
}
break;
case 1: /* id inserted - first id in block has changed */
/*
* key for this block has changed, so we have to
* write the block under the new key, delete the
* old key block + update and write the indirect
* header block.
*/
rc = idl_change_first( be, db, key, idl, i, k2, tmp );
break;
case 2: /* id not inserted - already there, do nothing */
rc = 0;
break;
case 3: /* id not inserted - block is full */
/*
* first, see if it will fit in the next block,
* without splitting, unless we're trying to insert
* into the beginning of the first block.
*/
#ifndef USE_INDIRECT_NIDS
/* is there a next block? */
if ( !first && !ID_BLOCK_NOID(idl, i + 1) ) {
#else
if ( !first && (unsigned long)(i + 1) < ID_BLOCK_NIDS(idl) ) {
#endif
Datum k3;
/* read it in */
cont_alloc( &k3, &key );
cont_id( &k3, ID_BLOCK_ID(idl, i + 1) );
if ( (tmp2 = idl_fetch_one( be, db, k3 )) == NULL ) {
#ifdef NEW_LOGGING
LDAP_LOG( INDEX, ERR,
"idl_insert_key: idl_fetch_one returned NULL\n", 0, 0, 0);
#else
Debug( LDAP_DEBUG_ANY,
"idl_insert_key: idl_fetch_one returned NULL\n",
0, 0, 0 );
#endif
/* split the original block */
cont_free( &k3 );
goto split;
}
/* If the new id is less than the last id in the
* current block, it must not be put into the next
* block. Push the last id of the current block
* into the next block instead.
*/
if (id < ID_BLOCK_ID(tmp, ID_BLOCK_NIDS(tmp) - 1)) {
ID id2 = ID_BLOCK_ID(tmp, ID_BLOCK_NIDS(tmp) - 1);
--ID_BLOCK_NIDS(tmp);
/* This must succeed since we just popped one
* ID off the end of it.
*/
rc = idl_insert( &tmp, id, db->dbc_maxids );
if ( (rc = idl_store( be, db, k2, tmp )) != 0 ) {
#ifdef NEW_LOGGING
LDAP_LOG( INDEX, ERR,
"idl_insert_key: idl_store returned %d\n", rc, 0, 0 );
#else
Debug( LDAP_DEBUG_ANY,
"idl_insert_key: idl_store returned %d\n", rc, 0, 0 );
#endif
}
id = id2;
/* This new id will necessarily be inserted
* as the first id of the next block by the
* following switch() statement.
*/
}
switch ( (rc = idl_insert( &tmp2, id,
db->dbc_maxids )) ) {
case 1: /* id inserted first in block */
rc = idl_change_first( be, db, key, idl,
i + 1, k3, tmp2 );
/* FALL */
case 2: /* id already there - how? */
case 0: /* id inserted: this can never be
* the result of idl_insert, because
* we guaranteed that idl_change_first
* will always be called.
*/
if ( rc == 2 ) {
#ifdef NEW_LOGGING
LDAP_LOG( INDEX, INFO,
"idl_insert_key: id %ld is already in next block\n",
id, 0, 0 );
#else
Debug( LDAP_DEBUG_ANY,
"idl_insert_key: id %ld already in next block\n",
id, 0, 0 );
#endif
}
idl_free( tmp );
idl_free( tmp2 );
cont_free( &k3 );
cont_free( &k2 );
idl_free( idl );
return( 0 );
case 3: /* split the original block */
break;
}
idl_free( tmp2 );
cont_free( &k3 );
}
split:
/*
* must split the block, write both new blocks + update
* and write the indirect header block.
*/
rc = 0; /* optimistic */
#ifndef USE_INDIRECT_NIDS
/* count how many indirect blocks *//* XXX linear count XXX */
for ( j = 0; !ID_BLOCK_NOID(idl, j); j++ )
; /* NULL */
#else
j = ID_BLOCK_NIDS(idl);
#endif
/* check it against all-id thresholed */
if ( j + 1 > db->dbc_maxindirect ) {
/*
* we've passed the all-id threshold, meaning
* that this set of blocks should be replaced
* by a single "all-id" block. our job: delete
* all the indirect blocks, and replace the header
* block by an all-id block.
*/
/* delete all indirect blocks */
#ifndef USE_INDIRECT_NIDS
for ( j = 0; !ID_BLOCK_NOID(idl, j); j++ ) {
#else
for ( j = 0; (unsigned long) j < ID_BLOCK_NIDS(idl); j++ ) {
#endif
cont_id( &k2, ID_BLOCK_ID(idl, j) );
rc = ldbm_cache_delete( db, k2 );
}
/* store allid block in place of header block */
idl_free( idl );
idl = idl_allids( be );
rc = idl_store( be, db, key, idl );
cont_free( &k2 );
idl_free( idl );
idl_free( tmp );
return( rc );
}
idl_split_block( tmp, id, &tmp2, &tmp3 );
idl_free( tmp );
/* create a new updated indirect header block */
tmp = idl_alloc( ID_BLOCK_NMAXN(idl) + 1 );
#ifndef USE_INDIRECT_NIDS
ID_BLOCK_NIDS(tmp) = ID_BLOCK_INDIRECT_VALUE;
#else
ID_BLOCK_NMAX(tmp) |= ID_BLOCK_INDIRECT_VALUE;
#endif
/* everything up to the split block */
AC_MEMCPY(
(char *) &ID_BLOCK_ID(tmp, 0),
(char *) &ID_BLOCK_ID(idl, 0),
i * sizeof(ID) );
/* the two new blocks */
ID_BLOCK_ID(tmp, i) = ID_BLOCK_ID(tmp2, 0);
ID_BLOCK_ID(tmp, i + 1) = ID_BLOCK_ID(tmp3, 0);
/* everything after the split block */
#ifndef USE_INDIRECT_NIDS
AC_MEMCPY(
(char *) &ID_BLOCK_ID(tmp, i + 2),
(char *) &ID_BLOCK_ID(idl, i + 1),
(ID_BLOCK_NMAXN(idl) - i - 1) * sizeof(ID) );
#else
AC_MEMCPY(
(char *) &ID_BLOCK_ID(tmp, i + 2),
(char *) &ID_BLOCK_ID(idl, i + 1),
(ID_BLOCK_NIDS(idl) - i - 1) * sizeof(ID) );
ID_BLOCK_NIDS(tmp) = ID_BLOCK_NIDS(idl) + 1;
#endif
/* store the header block */
rc = idl_store( be, db, key, tmp );
/* store the first id block */
cont_id( &k2, ID_BLOCK_ID(tmp2, 0) );
rc = idl_store( be, db, k2, tmp2 );
/* store the second id block */
cont_id( &k2, ID_BLOCK_ID(tmp3, 0) );
rc = idl_store( be, db, k2, tmp3 );
idl_free( tmp2 );
idl_free( tmp3 );
break;
}
cont_free( &k2 );
idl_free( tmp );
idl_free( idl );
return( rc );
}
/*
* idl_insert - insert an id into an id list.
*
* returns
* 0 id inserted
* 1 id inserted, first id in block has changed
* 2 id not inserted, already there
* 3 id not inserted, block must be split
*/
int
idl_insert( ID_BLOCK **idl, ID id, unsigned int maxids )
{
unsigned int i;
if ( ID_BLOCK_ALLIDS( *idl ) ) {
return( 2 ); /* already there */
}
/* is it already there? */
i = idl_find(*idl, id);
if ( ID_BLOCK_ID(*idl, i) == id ) {
return( 2 ); /* already there */
}
if ( ID_BLOCK_NIDS(*idl) && ID_BLOCK_ID(*idl, i) < id )
i++;
/* do we need to make room for it? */
if ( ID_BLOCK_NIDS(*idl) == ID_BLOCK_NMAXN(*idl) ) {
/* make room or indicate block needs splitting */
if ( ID_BLOCK_NMAXN(*idl) >= maxids ) {
return( 3 ); /* block needs splitting */
}
ID_BLOCK_NMAX(*idl) *= 2;
if ( ID_BLOCK_NMAXN(*idl) > maxids ) {
ID_BLOCK_NMAX(*idl) = maxids;
}
*idl = (ID_BLOCK *) ch_realloc( (char *) *idl,
(ID_BLOCK_NMAXN(*idl) + ID_BLOCK_IDS_OFFSET) * sizeof(ID) );
}
/* make a slot for the new id */
AC_MEMCPY( &ID_BLOCK_ID(*idl, i+1), &ID_BLOCK_ID(*idl, i),
(ID_BLOCK_NIDS(*idl) - i) * sizeof(ID) );
ID_BLOCK_ID(*idl, i) = id;
ID_BLOCK_NIDS(*idl)++;
(void) memset(
(char *) &ID_BLOCK_ID((*idl), ID_BLOCK_NIDS(*idl)),
'\0',
(ID_BLOCK_NMAXN(*idl) - ID_BLOCK_NIDS(*idl)) * sizeof(ID) );
#ifdef LDBM_DEBUG_IDL
idl_check(*idl);
#endif
return( i == 0 ? 1 : 0 ); /* inserted - first id changed or not */
}
int
idl_delete_key (
Backend *be,
DBCache *db,
Datum key,
ID id
)
{
Datum data;
ID_BLOCK *idl;
unsigned i;
int j, nids;
if ( (idl = idl_fetch_one( be, db, key ) ) == NULL )
{
/* It wasn't found. Hmm... */
return -1;
}
if ( ID_BLOCK_ALLIDS( idl ) ) {
idl_free( idl );
return 0;
}
if ( ! ID_BLOCK_INDIRECT( idl ) ) {
i = idl_find(idl, id);
if ( ID_BLOCK_ID(idl, i) == id ) {
if( --ID_BLOCK_NIDS(idl) == 0 ) {
ldbm_cache_delete( db, key );
} else {
AC_MEMCPY(
&ID_BLOCK_ID(idl, i),
&ID_BLOCK_ID(idl, i+1),
(ID_BLOCK_NIDS(idl)-i) * sizeof(ID) );
ID_BLOCK_ID(idl, ID_BLOCK_NIDS(idl)) = NOID;
idl_store( be, db, key, idl );
}
idl_free( idl );
return 0;
}
/* We didn't find the ID. Hmmm... */
idl_free( idl );
return -1;
}
/* We have to go through an indirect block and find the ID
in the list of IDL's
*/
cont_alloc( &data, &key );
#ifndef USE_INDIRECT_NIDS
for ( nids = 0; !ID_BLOCK_NOID(idl, nids); nids++ )
; /* NULL */
for ( j = 0; j= 0; j = -1) /* execute once */
#endif
{
ID_BLOCK *tmp;
cont_id( &data, ID_BLOCK_ID(idl, j) );
if ( (tmp = idl_fetch_one( be, db, data )) == NULL ) {
#ifdef NEW_LOGGING
LDAP_LOG( INDEX, INFO,
"idl_delete_key: idl_fetch_one returned NULL\n", 0, 0, 0 );
#else
Debug( LDAP_DEBUG_ANY,
"idl_delete_key: idl_fetch of returned NULL\n", 0, 0, 0 );
#endif
continue;
}
/*
Now try to find the ID in tmp
*/
i = idl_find(tmp, id);
if ( ID_BLOCK_ID(tmp, i) == id )
{
AC_MEMCPY(
&ID_BLOCK_ID(tmp, i),
&ID_BLOCK_ID(tmp, i+1),
(ID_BLOCK_NIDS(tmp)-(i+1)) * sizeof(ID));
ID_BLOCK_ID(tmp, ID_BLOCK_NIDS(tmp)-1 ) = NOID;
ID_BLOCK_NIDS(tmp)--;
if ( ID_BLOCK_NIDS(tmp) ) {
idl_store ( be, db, data, tmp );
} else {
ldbm_cache_delete( db, data );
AC_MEMCPY(
&ID_BLOCK_ID(idl, j),
&ID_BLOCK_ID(idl, j+1),
(nids-(j+1)) * sizeof(ID));
ID_BLOCK_ID(idl, nids-1) = NOID;
nids--;
#ifdef USE_INDIRECT_NIDS
ID_BLOCK_NIDS(idl)--;
#endif
if ( ! nids )
ldbm_cache_delete( db, key );
else
idl_store( be, db, key, idl );
}
idl_free( tmp );
cont_free( &data );
idl_free( idl );
return 0;
}
idl_free( tmp );
}
cont_free( &data );
idl_free( idl );
return -1;
}
/* return a duplicate of a single ID_BLOCK */
static ID_BLOCK *
idl_dup( ID_BLOCK *idl )
{
ID_BLOCK *new;
if ( idl == NULL ) {
return( NULL );
}
new = idl_alloc( ID_BLOCK_NMAXN(idl) );
AC_MEMCPY(
(char *) new,
(char *) idl,
(ID_BLOCK_NMAXN(idl) + ID_BLOCK_IDS_OFFSET) * sizeof(ID) );
#ifdef LDBM_DEBUG_IDL
idl_check(new);
#endif
return( new );
}
/* return the smaller ID_BLOCK */
static ID_BLOCK *
idl_min( ID_BLOCK *a, ID_BLOCK *b )
{
return( ID_BLOCK_NIDS(a) > ID_BLOCK_NIDS(b) ? b : a );
}
/*
* idl_intersection - return a intersection b
*/
ID_BLOCK *
idl_intersection(
Backend *be,
ID_BLOCK *a,
ID_BLOCK *b
)
{
unsigned int ai, bi, ni;
ID_BLOCK *n;
if ( a == NULL || b == NULL ) {
return( NULL );
}
if ( ID_BLOCK_ALLIDS( a ) ) {
return( idl_dup( b ) );
}
if ( ID_BLOCK_ALLIDS( b ) ) {
return( idl_dup( a ) );
}
if ( ID_BLOCK_NIDS(a) == 0 || ID_BLOCK_NIDS(b) == 0 ) {
return( NULL );
}
n = idl_dup( idl_min( a, b ) );
#ifdef LDBM_DEBUG_IDL
idl_check(a);
idl_check(b);
#endif
for ( ni = 0, ai = 0, bi = 0; ; ) {
if ( ID_BLOCK_ID(b, bi) == ID_BLOCK_ID(a, ai) ) {
ID_BLOCK_ID(n, ni++) = ID_BLOCK_ID(a, ai);
ai++;
bi++;
if ( ai >= ID_BLOCK_NIDS(a) || bi >= ID_BLOCK_NIDS(b) )
break;
} else if ( ID_BLOCK_ID(a, ai) < ID_BLOCK_ID(b, bi) ) {
ai++;
if ( ai >= ID_BLOCK_NIDS(a) )
break;
} else {
bi++;
if ( bi >= ID_BLOCK_NIDS(b) )
break;
}
}
if ( ni == 0 ) {
idl_free( n );
return( NULL );
}
ID_BLOCK_NIDS(n) = ni;
#ifdef LDBM_DEBUG_IDL
idl_check(n);
#endif
return( n );
}
/*
* idl_union - return a union b
*/
ID_BLOCK *
idl_union(
Backend *be,
ID_BLOCK *a,
ID_BLOCK *b
)
{
unsigned int ai, bi, ni;
ID_BLOCK *n;
if ( a == NULL ) {
return( idl_dup( b ) );
}
if ( b == NULL ) {
return( idl_dup( a ) );
}
if ( ID_BLOCK_ALLIDS( a ) || ID_BLOCK_ALLIDS( b ) ) {
return( idl_allids( be ) );
}
#ifdef LDBM_DEBUG_IDL
idl_check(a);
idl_check(b);
#endif
if ( ID_BLOCK_NIDS(b) < ID_BLOCK_NIDS(a) ) {
n = a;
a = b;
b = n;
}
n = idl_alloc( ID_BLOCK_NIDS(a) + ID_BLOCK_NIDS(b) );
for ( ni = 0, ai = 0, bi = 0;
ai < ID_BLOCK_NIDS(a) && bi < ID_BLOCK_NIDS(b);
)
{
if ( ID_BLOCK_ID(a, ai) < ID_BLOCK_ID(b, bi) ) {
ID_BLOCK_ID(n, ni++) = ID_BLOCK_ID(a, ai++);
} else if ( ID_BLOCK_ID(b, bi) < ID_BLOCK_ID(a, ai) ) {
ID_BLOCK_ID(n, ni++) = ID_BLOCK_ID(b, bi++);
} else {
ID_BLOCK_ID(n, ni++) = ID_BLOCK_ID(a, ai);
ai++, bi++;
}
}
for ( ; ai < ID_BLOCK_NIDS(a); ai++ ) {
ID_BLOCK_ID(n, ni++) = ID_BLOCK_ID(a, ai);
}
for ( ; bi < ID_BLOCK_NIDS(b); bi++ ) {
ID_BLOCK_ID(n, ni++) = ID_BLOCK_ID(b, bi);
}
ID_BLOCK_NIDS(n) = ni;
#ifdef LDBM_DEBUG_IDL
idl_check(n);
#endif
return( n );
}
/*
* idl_notin - return a intersection ~b (or a minus b)
*/
ID_BLOCK *
idl_notin(
Backend *be,
ID_BLOCK *a,
ID_BLOCK *b
)
{
unsigned int ni, ai, bi;
ID_BLOCK *n;
if ( a == NULL ) {
return( NULL );
}
if ( b == NULL || ID_BLOCK_ALLIDS( b )) {
return( idl_dup( a ) );
}
if ( ID_BLOCK_ALLIDS( a ) ) {
n = idl_alloc( SLAPD_LDBM_MIN_MAXIDS );
ni = 0;
for ( ai = 1, bi = 0;
ai < ID_BLOCK_NIDS(a) && ni < ID_BLOCK_NMAXN(n) && bi < ID_BLOCK_NMAXN(b);
ai++ )
{
if ( ID_BLOCK_ID(b, bi) == ai ) {
bi++;
} else {
ID_BLOCK_ID(n, ni++) = ai;
}
}
for ( ; ai < ID_BLOCK_NIDS(a) && ni < ID_BLOCK_NMAXN(n); ai++ ) {
ID_BLOCK_ID(n, ni++) = ai;
}
if ( ni == ID_BLOCK_NMAXN(n) ) {
idl_free( n );
return( idl_allids( be ) );
} else {
ID_BLOCK_NIDS(n) = ni;
return( n );
}
}
n = idl_dup( a );
ni = 0;
for ( ai = 0, bi = 0; ai < ID_BLOCK_NIDS(a); ai++ ) {
for ( ;
bi < ID_BLOCK_NIDS(b) && ID_BLOCK_ID(b, bi) < ID_BLOCK_ID(a, ai);
bi++ )
{
; /* NULL */
}
if ( bi == ID_BLOCK_NIDS(b) ) {
break;
}
if ( ID_BLOCK_ID(b, bi) != ID_BLOCK_ID(a, ai) ) {
ID_BLOCK_ID(n, ni++) = ID_BLOCK_ID(a, ai);
}
}
for ( ; ai < ID_BLOCK_NIDS(a); ai++ ) {
ID_BLOCK_ID(n, ni++) = ID_BLOCK_ID(a, ai);
}
ID_BLOCK_NIDS(n) = ni;
#ifdef LDBM_DEBUG_IDL
idl_check(n);
#endif
return( n );
}
/* return the first ID in the block
* if ALLIDS block
* NIDS > 1 return 1
* otherwise return NOID
* otherwise return first ID
*
* cursor is set to 1
*/
ID
idl_firstid( ID_BLOCK *idl, ID *cursor )
{
*cursor = 1;
if ( idl == NULL || ID_BLOCK_NIDS(idl) == 0 ) {
return( NOID );
}
if ( ID_BLOCK_ALLIDS( idl ) ) {
return( ID_BLOCK_NIDS(idl) > 1 ? 1 : NOID );
}
return( ID_BLOCK_ID(idl, 0) );
}
/* return next ID
* if ALLIDS block, cursor is id.
* increment id
* if id < NIDS return id
* otherwise NOID.
* otherwise cursor is index into block
* if index < nids
* return id at index then increment
*/
ID
idl_nextid( ID_BLOCK *idl, ID *cursor )
{
if ( ID_BLOCK_ALLIDS( idl ) ) {
if( ++(*cursor) < ID_BLOCK_NIDS(idl) ) {
return *cursor;
} else {
return NOID;
}
}
if ( *cursor < ID_BLOCK_NIDS(idl) ) {
return( ID_BLOCK_ID(idl, (*cursor)++) );
}
return( NOID );
}