/* entry.c - routines for dealing with entries */ /* $OpenLDAP$ */ /* This work is part of OpenLDAP Software . * * Copyright 1998-2007 The OpenLDAP Foundation. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted only as authorized by the OpenLDAP * Public License. * * A copy of this license is available in the file LICENSE in the * top-level directory of the distribution or, alternatively, at * . */ /* Portions Copyright (c) 1995 Regents of the University of Michigan. * All rights reserved. * * Redistribution and use in source and binary forms are permitted * provided that this notice is preserved and that due credit is given * to the University of Michigan at Ann Arbor. The name of the University * may not be used to endorse or promote products derived from this * software without specific prior written permission. This software * is provided ``as is'' without express or implied warranty. */ #include "portable.h" #include #include #include #include #include #include "slap.h" #include "ldif.h" static char *ebuf; /* buf returned by entry2str */ static char *ecur; /* pointer to end of currently used ebuf */ static int emaxsize;/* max size of ebuf */ /* * Empty root entry */ const Entry slap_entry_root = { NOID, { 0, "" }, { 0, "" }, NULL, 0, { 0, "" }, NULL }; /* * these mutexes must be used when calling the entry2str() * routine since it returns a pointer to static data. */ ldap_pvt_thread_mutex_t entry2str_mutex; static const struct berval dn_bv = BER_BVC("dn"); /* * Entry free list * * Allocate in chunks, minimum of 1000 at a time. */ #define CHUNK_SIZE 1000 typedef struct slap_list { struct slap_list *next; } slap_list; static slap_list *entry_chunks; static Entry *entry_list; static ldap_pvt_thread_mutex_t entry_mutex; int entry_destroy(void) { slap_list *e; if ( ebuf ) free( ebuf ); ebuf = NULL; ecur = NULL; emaxsize = 0; for ( e=entry_chunks; e; e=entry_chunks ) { entry_chunks = e->next; free( e ); } ldap_pvt_thread_mutex_destroy( &entry_mutex ); ldap_pvt_thread_mutex_destroy( &entry2str_mutex ); return attr_destroy(); } int entry_init(void) { ldap_pvt_thread_mutex_init( &entry2str_mutex ); ldap_pvt_thread_mutex_init( &entry_mutex ); return attr_init(); } Entry * str2entry( char *s ) { return str2entry2( s, 1 ); } #define bvcasematch(bv1, bv2) (ber_bvstrcasecmp(bv1, bv2) == 0) Entry * str2entry2( char *s, int checkvals ) { int rc; Entry *e; struct berval *type, *vals, *nvals; char *freeval; AttributeDescription *ad, *ad_prev; const char *text; char *next; int attr_cnt; int i, lines; Attribute ahead, *atail; /* * LDIF is used as the string format. * An entry looks like this: * * dn: \n * [:[:] \n] * [\n]* * ... * * If a double colon is used after a type, it means the * following value is encoded as a base 64 string. This * happens if the value contains a non-printing character * or newline. */ Debug( LDAP_DEBUG_TRACE, "=> str2entry: \"%s\"\n", s ? s : "NULL", 0, 0 ); e = entry_alloc(); if( e == NULL ) { Debug( LDAP_DEBUG_ANY, "<= str2entry NULL (entry allocation failed)\n", 0, 0, 0 ); return( NULL ); } /* initialize entry */ e->e_id = NOID; /* dn + attributes */ atail = &ahead; ahead.a_next = NULL; ad = NULL; ad_prev = NULL; attr_cnt = 0; next = s; lines = ldif_countlines( s ); type = ch_calloc( 1, (lines+1)*3*sizeof(struct berval)+lines ); vals = type+lines+1; nvals = vals+lines+1; freeval = (char *)(nvals+lines+1); i = -1; /* parse into individual values, record DN */ while ( (s = ldif_getline( &next )) != NULL ) { int freev; if ( *s == '\n' || *s == '\0' ) { break; } i++; if (i >= lines) { Debug( LDAP_DEBUG_TRACE, "<= str2entry ran past end of entry\n", 0, 0, 0 ); goto fail; } rc = ldif_parse_line2( s, type+i, vals+i, &freev ); freeval[i] = freev; if ( rc ) { Debug( LDAP_DEBUG_TRACE, "<= str2entry NULL (parse_line)\n", 0, 0, 0 ); continue; } if ( bvcasematch( &type[i], &dn_bv ) ) { if ( e->e_dn != NULL ) { Debug( LDAP_DEBUG_ANY, "str2entry: " "entry %ld has multiple DNs \"%s\" and \"%s\"\n", (long) e->e_id, e->e_dn, vals[i].bv_val ); goto fail; } rc = dnPrettyNormal( NULL, &vals[i], &e->e_name, &e->e_nname, NULL ); if( rc != LDAP_SUCCESS ) { Debug( LDAP_DEBUG_ANY, "str2entry: " "entry %ld has invalid DN \"%s\"\n", (long) e->e_id, vals[i].bv_val, 0 ); goto fail; } if ( freeval[i] ) free( vals[i].bv_val ); vals[i].bv_val = NULL; i--; continue; } } lines = i+1; /* check to make sure there was a dn: line */ if ( BER_BVISNULL( &e->e_name )) { Debug( LDAP_DEBUG_ANY, "str2entry: entry %ld has no dn\n", (long) e->e_id, 0, 0 ); goto fail; } /* Make sure all attributes with multiple values are contiguous */ if ( checkvals ) { int j, k; struct berval bv; int fv; for (i=0; ii; k-- ) { type[k] = type[k-1]; vals[k] = vals[k-1]; freeval[k] = freeval[k-1]; } k++; type[k] = type[i]; vals[k] = bv; freeval[k] = fv; } i++; } } } } for ( i=0; i<=lines; i++ ) { ad_prev = ad; if ( !ad || ( iad_cname ))) { ad = NULL; rc = slap_bv2ad( type+i, &ad, &text ); if( rc != LDAP_SUCCESS ) { Debug( slapMode & SLAP_TOOL_MODE ? LDAP_DEBUG_ANY : LDAP_DEBUG_TRACE, "<= str2entry: str2ad(%s): %s\n", type[i].bv_val, text, 0 ); if( slapMode & SLAP_TOOL_MODE ) { goto fail; } rc = slap_bv2undef_ad( type+i, &ad, &text, 0 ); if( rc != LDAP_SUCCESS ) { Debug( LDAP_DEBUG_ANY, "<= str2entry: slap_str2undef_ad(%s): %s\n", type[i].bv_val, text, 0 ); goto fail; } } /* require ';binary' when appropriate (ITS#5071) */ if ( slap_syntax_is_binary( ad->ad_type->sat_syntax ) && !slap_ad_is_binary( ad ) ) { Debug( LDAP_DEBUG_ANY, "str2entry: attributeType %s #%d: " "needs ';binary' transfer as per syntax %s\n", ad->ad_cname.bv_val, 0, ad->ad_type->sat_syntax->ssyn_oid ); goto fail; } } if (( ad_prev && ad != ad_prev ) || ( i == lines )) { int j, k; atail->a_next = attr_alloc( NULL ); atail = atail->a_next; atail->a_flags = 0; atail->a_desc = ad_prev; atail->a_vals = ch_malloc( (attr_cnt + 1) * sizeof(struct berval)); if( ad_prev->ad_type->sat_equality && ad_prev->ad_type->sat_equality->smr_normalize ) atail->a_nvals = ch_malloc( (attr_cnt + 1) * sizeof(struct berval)); else atail->a_nvals = NULL; k = i - attr_cnt; for ( j=0; ja_vals[j] = vals[k]; else ber_dupbv( atail->a_vals+j, &vals[k] ); vals[k].bv_val = NULL; if ( atail->a_nvals ) { atail->a_nvals[j] = nvals[k]; nvals[k].bv_val = NULL; } k++; } BER_BVZERO( &atail->a_vals[j] ); if ( atail->a_nvals ) { BER_BVZERO( &atail->a_nvals[j] ); } else { atail->a_nvals = atail->a_vals; } attr_cnt = 0; if ( i == lines ) break; } if( slapMode & SLAP_TOOL_MODE ) { struct berval pval; slap_syntax_validate_func *validate = ad->ad_type->sat_syntax->ssyn_validate; slap_syntax_transform_func *pretty = ad->ad_type->sat_syntax->ssyn_pretty; if ( pretty ) { rc = ordered_value_pretty( ad, &vals[i], &pval, NULL ); } else if ( validate ) { /* * validate value per syntax */ rc = ordered_value_validate( ad, &vals[i], LDAP_MOD_ADD ); } else { Debug( LDAP_DEBUG_ANY, "str2entry: attributeType %s #%d: " "no validator for syntax %s\n", ad->ad_cname.bv_val, attr_cnt, ad->ad_type->sat_syntax->ssyn_oid ); goto fail; } if( rc != 0 ) { Debug( LDAP_DEBUG_ANY, "str2entry: invalid value " "for attributeType %s #%d (syntax %s)\n", ad->ad_cname.bv_val, attr_cnt, ad->ad_type->sat_syntax->ssyn_oid ); goto fail; } if( pretty ) { if ( freeval[i] ) free( vals[i].bv_val ); vals[i] = pval; freeval[i] = 1; } } if ( ad->ad_type->sat_equality && ad->ad_type->sat_equality->smr_normalize ) { rc = ordered_value_normalize( SLAP_MR_VALUE_OF_ATTRIBUTE_SYNTAX, ad, ad->ad_type->sat_equality, &vals[i], &nvals[i], NULL ); if ( rc ) { Debug( LDAP_DEBUG_ANY, "<= str2entry NULL (smr_normalize %d)\n", rc, 0, 0 ); goto fail; } } attr_cnt++; } free( type ); atail->a_next = NULL; e->e_attrs = ahead.a_next; Debug(LDAP_DEBUG_TRACE, "<= str2entry(%s) -> 0x%lx\n", e->e_dn, (unsigned long) e, 0 ); return( e ); fail: for ( i=0; i ebuf + emaxsize ) { \ ptrdiff_t offset; \ offset = (int) (ecur - ebuf); \ ebuf = ch_realloc( ebuf, \ emaxsize + GRABSIZE ); \ emaxsize += GRABSIZE; \ ecur = ebuf + offset; \ } \ } char * entry2str( Entry *e, int *len ) { Attribute *a; struct berval *bv; int i; ber_len_t tmplen; assert( e != NULL ); /* * In string format, an entry looks like this: * dn: \n * [: \n]* */ ecur = ebuf; /* put the dn */ if ( e->e_dn != NULL ) { /* put "dn: " */ tmplen = e->e_name.bv_len; MAKE_SPACE( LDIF_SIZE_NEEDED( 2, tmplen )); ldif_sput( &ecur, LDIF_PUT_VALUE, "dn", e->e_dn, tmplen ); } /* put the attributes */ for ( a = e->e_attrs; a != NULL; a = a->a_next ) { /* put ":[:] " line for each value */ for ( i = 0; a->a_vals[i].bv_val != NULL; i++ ) { bv = &a->a_vals[i]; tmplen = a->a_desc->ad_cname.bv_len; MAKE_SPACE( LDIF_SIZE_NEEDED( tmplen, bv->bv_len )); ldif_sput( &ecur, LDIF_PUT_VALUE, a->a_desc->ad_cname.bv_val, bv->bv_val, bv->bv_len ); } } MAKE_SPACE( 1 ); *ecur = '\0'; *len = ecur - ebuf; return( ebuf ); } void entry_clean( Entry *e ) { /* free an entry structure */ assert( e != NULL ); /* e_private must be freed by the caller */ assert( e->e_private == NULL ); e->e_id = 0; /* free DNs */ if ( !BER_BVISNULL( &e->e_name ) ) { free( e->e_name.bv_val ); BER_BVZERO( &e->e_name ); } if ( !BER_BVISNULL( &e->e_nname ) ) { free( e->e_nname.bv_val ); BER_BVZERO( &e->e_nname ); } if ( !BER_BVISNULL( &e->e_bv ) ) { free( e->e_bv.bv_val ); BER_BVZERO( &e->e_bv ); } /* free attributes */ if ( e->e_attrs ) { attrs_free( e->e_attrs ); e->e_attrs = NULL; } e->e_ocflags = 0; } void entry_free( Entry *e ) { entry_clean( e ); ldap_pvt_thread_mutex_lock( &entry_mutex ); e->e_private = entry_list; entry_list = e; ldap_pvt_thread_mutex_unlock( &entry_mutex ); } /* These parameters work well on AMD64 */ #if 0 #define STRIDE 8 #define STRIPE 5 #else #define STRIDE 1 #define STRIPE 1 #endif #define STRIDE_FACTOR (STRIDE*STRIPE) int entry_prealloc( int num ) { Entry *e, **prev, *tmp; slap_list *s; int i, j; if (!num) return 0; #if STRIDE_FACTOR > 1 /* Round up to our stride factor */ num += STRIDE_FACTOR-1; num /= STRIDE_FACTOR; num *= STRIDE_FACTOR; #endif s = ch_calloc( 1, sizeof(slap_list) + num * sizeof(Entry)); s->next = entry_chunks; entry_chunks = s; prev = &tmp; for (i=0; ie_private; e += STRIDE; } } *prev = entry_list; entry_list = (Entry *)(s+1); return 0; } Entry * entry_alloc( void ) { Entry *e; ldap_pvt_thread_mutex_lock( &entry_mutex ); if ( !entry_list ) entry_prealloc( CHUNK_SIZE ); e = entry_list; entry_list = e->e_private; e->e_private = NULL; ldap_pvt_thread_mutex_unlock( &entry_mutex ); return e; } /* * These routines are used only by Backend. * * the Entry has three entry points (ways to find things): * * by entry e.g., if you already have an entry from the cache * and want to delete it. (really by entry ptr) * by dn e.g., when looking for the base object of a search * by id e.g., for search candidates * * these correspond to three different avl trees that are maintained. */ int entry_cmp( Entry *e1, Entry *e2 ) { return SLAP_PTRCMP( e1, e2 ); } int entry_dn_cmp( const void *v_e1, const void *v_e2 ) { /* compare their normalized UPPERCASED dn's */ const Entry *e1 = v_e1, *e2 = v_e2; return ber_bvcmp( &e1->e_nname, &e2->e_nname ); } int entry_id_cmp( const void *v_e1, const void *v_e2 ) { const Entry *e1 = v_e1, *e2 = v_e2; return( e1->e_id < e2->e_id ? -1 : (e1->e_id > e2->e_id ? 1 : 0) ); } /* This is like a ber_len */ #define entry_lenlen(l) (((l) < 0x80) ? 1 : ((l) < 0x100) ? 2 : \ ((l) < 0x10000) ? 3 : ((l) < 0x1000000) ? 4 : 5) static void entry_putlen(unsigned char **buf, ber_len_t len) { ber_len_t lenlen = entry_lenlen(len); if (lenlen == 1) { **buf = (unsigned char) len; } else { int i; **buf = 0x80 | ((unsigned char) lenlen - 1); for (i=lenlen-1; i>0; i--) { (*buf)[i] = (unsigned char) len; len >>= 8; } } *buf += lenlen; } static ber_len_t entry_getlen(unsigned char **buf) { ber_len_t len; int i; len = *(*buf)++; if (len <= 0x7f) return len; i = len & 0x7f; len = 0; for (;i > 0; i--) { len <<= 8; len |= *(*buf)++; } return len; } /* Count up the sizes of the components of an entry */ void entry_partsize(Entry *e, ber_len_t *plen, int *pnattrs, int *pnvals, int norm) { ber_len_t len, dnlen, ndnlen; int i, nat = 0, nval = 0; Attribute *a; dnlen = e->e_name.bv_len; len = dnlen + 1; /* trailing NUL byte */ len += entry_lenlen(dnlen); if (norm) { ndnlen = e->e_nname.bv_len; len += ndnlen + 1; len += entry_lenlen(ndnlen); } for (a=e->e_attrs; a; a=a->a_next) { /* For AttributeDesc, we only store the attr name */ nat++; len += a->a_desc->ad_cname.bv_len+1; len += entry_lenlen(a->a_desc->ad_cname.bv_len); for (i=0; a->a_vals[i].bv_val; i++) { nval++; len += a->a_vals[i].bv_len + 1; len += entry_lenlen(a->a_vals[i].bv_len); } len += entry_lenlen(i); nval++; /* empty berval at end */ if (norm && a->a_nvals != a->a_vals) { for (i=0; a->a_nvals[i].bv_val; i++) { nval++; len += a->a_nvals[i].bv_len + 1; len += entry_lenlen(a->a_nvals[i].bv_len); } len += entry_lenlen(i); /* i nvals */ nval++; } else { len += entry_lenlen(0); /* 0 nvals */ } } len += entry_lenlen(nat); len += entry_lenlen(nval); *plen = len; *pnattrs = nat; *pnvals = nval; } /* Add up the size of the entry for a flattened buffer */ ber_len_t entry_flatsize(Entry *e, int norm) { ber_len_t len; int nattrs, nvals; entry_partsize(e, &len, &nattrs, &nvals, norm); len += sizeof(Entry) + (nattrs * sizeof(Attribute)) + (nvals * sizeof(struct berval)); return len; } /* Flatten an Entry into a buffer. The buffer is filled with just the * strings/bervals of all the entry components. Each field is preceded * by its length, encoded the way ber_put_len works. Every field is NUL * terminated. The entire buffer size is precomputed so that a single * malloc can be performed. The entry size is also recorded, * to aid in entry_decode. */ int entry_encode(Entry *e, struct berval *bv) { ber_len_t len, dnlen, ndnlen; int i, nattrs, nvals; Attribute *a; unsigned char *ptr; Debug( LDAP_DEBUG_TRACE, "=> entry_encode(0x%08lx): %s\n", (long) e->e_id, e->e_dn, 0 ); dnlen = e->e_name.bv_len; ndnlen = e->e_nname.bv_len; entry_partsize( e, &len, &nattrs, &nvals, 1 ); bv->bv_len = len; bv->bv_val = ch_malloc(len); ptr = (unsigned char *)bv->bv_val; entry_putlen(&ptr, nattrs); entry_putlen(&ptr, nvals); entry_putlen(&ptr, dnlen); AC_MEMCPY(ptr, e->e_dn, dnlen); ptr += dnlen; *ptr++ = '\0'; entry_putlen(&ptr, ndnlen); AC_MEMCPY(ptr, e->e_ndn, ndnlen); ptr += ndnlen; *ptr++ = '\0'; for (a=e->e_attrs; a; a=a->a_next) { entry_putlen(&ptr, a->a_desc->ad_cname.bv_len); AC_MEMCPY(ptr, a->a_desc->ad_cname.bv_val, a->a_desc->ad_cname.bv_len); ptr += a->a_desc->ad_cname.bv_len; *ptr++ = '\0'; if (a->a_vals) { for (i=0; a->a_vals[i].bv_val; i++); entry_putlen(&ptr, i); for (i=0; a->a_vals[i].bv_val; i++) { entry_putlen(&ptr, a->a_vals[i].bv_len); AC_MEMCPY(ptr, a->a_vals[i].bv_val, a->a_vals[i].bv_len); ptr += a->a_vals[i].bv_len; *ptr++ = '\0'; } if (a->a_nvals != a->a_vals) { entry_putlen(&ptr, i); for (i=0; a->a_nvals[i].bv_val; i++) { entry_putlen(&ptr, a->a_nvals[i].bv_len); AC_MEMCPY(ptr, a->a_nvals[i].bv_val, a->a_nvals[i].bv_len); ptr += a->a_nvals[i].bv_len; *ptr++ = '\0'; } } else { entry_putlen(&ptr, 0); } } } return 0; } /* Retrieve an Entry that was stored using entry_encode above. * First entry_header must be called to decode the size of the entry. * Then a single block of memory must be malloc'd to accomodate the * bervals and the bulk data. Next the bulk data is retrieved from * the DB and parsed by entry_decode. * * Note: everything is stored in a single contiguous block, so * you can not free individual attributes or names from this * structure. Attempting to do so will likely corrupt memory. */ int entry_header(EntryHeader *eh) { unsigned char *ptr = (unsigned char *)eh->bv.bv_val; eh->nattrs = entry_getlen(&ptr); if ( !eh->nattrs ) { Debug( LDAP_DEBUG_ANY, "entry_header: attribute count was zero\n", 0, 0, 0); return LDAP_OTHER; } eh->nvals = entry_getlen(&ptr); if ( !eh->nvals ) { Debug( LDAP_DEBUG_ANY, "entry_header: value count was zero\n", 0, 0, 0); return LDAP_OTHER; } eh->data = (char *)ptr; return LDAP_SUCCESS; } #ifdef SLAP_ZONE_ALLOC int entry_decode(EntryHeader *eh, Entry **e, void *ctx) #else int entry_decode(EntryHeader *eh, Entry **e) #endif { int i, j, count, nattrs, nvals; int rc; Attribute *a; Entry *x; const char *text; AttributeDescription *ad; unsigned char *ptr = (unsigned char *)eh->bv.bv_val; BerVarray bptr; nattrs = eh->nattrs; nvals = eh->nvals; x = entry_alloc(); x->e_attrs = attrs_alloc( nattrs ); ptr = (unsigned char *)eh->data; i = entry_getlen(&ptr); x->e_name.bv_val = (char *) ptr; x->e_name.bv_len = i; ptr += i+1; i = entry_getlen(&ptr); x->e_nname.bv_val = (char *) ptr; x->e_nname.bv_len = i; ptr += i+1; Debug( LDAP_DEBUG_TRACE, "entry_decode: \"%s\"\n", x->e_dn, 0, 0 ); x->e_bv = eh->bv; a = x->e_attrs; bptr = (BerVarray)eh->bv.bv_val; while ((i = entry_getlen(&ptr))) { struct berval bv; bv.bv_len = i; bv.bv_val = (char *) ptr; ad = NULL; rc = slap_bv2ad( &bv, &ad, &text ); if( rc != LDAP_SUCCESS ) { Debug( LDAP_DEBUG_TRACE, "<= entry_decode: str2ad(%s): %s\n", ptr, text, 0 ); rc = slap_bv2undef_ad( &bv, &ad, &text, 0 ); if( rc != LDAP_SUCCESS ) { Debug( LDAP_DEBUG_ANY, "<= entry_decode: slap_str2undef_ad(%s): %s\n", ptr, text, 0 ); return rc; } } ptr += i + 1; a->a_desc = ad; a->a_flags = SLAP_ATTR_DONT_FREE_DATA | SLAP_ATTR_DONT_FREE_VALS; count = j = entry_getlen(&ptr); a->a_vals = bptr; while (j) { i = entry_getlen(&ptr); bptr->bv_len = i; bptr->bv_val = (char *)ptr; ptr += i+1; bptr++; j--; } bptr->bv_val = NULL; bptr->bv_len = 0; bptr++; j = entry_getlen(&ptr); if (j) { a->a_nvals = bptr; while (j) { i = entry_getlen(&ptr); bptr->bv_len = i; bptr->bv_val = (char *)ptr; ptr += i+1; bptr++; j--; } bptr->bv_val = NULL; bptr->bv_len = 0; bptr++; } else { a->a_nvals = a->a_vals; } a = a->a_next; nattrs--; if ( !nattrs ) break; } Debug(LDAP_DEBUG_TRACE, "<= entry_decode(%s)\n", x->e_dn, 0, 0 ); *e = x; return 0; } Entry *entry_dup( Entry *e ) { Entry *ret; ret = entry_alloc(); ret->e_id = e->e_id; ber_dupbv( &ret->e_name, &e->e_name ); ber_dupbv( &ret->e_nname, &e->e_nname ); ret->e_attrs = attrs_dup( e->e_attrs ); ret->e_ocflags = e->e_ocflags; return ret; } #if 1 /* Duplicates an entry using a single malloc. Saves CPU time, increases * heap usage because a single large malloc is harder to satisfy than * lots of small ones, and the freed space isn't as easily reusable. * * Probably not worth using this function. */ Entry *entry_dup_bv( Entry *e ) { ber_len_t len; int nattrs, nvals; Entry *ret; struct berval *bvl; char *ptr; Attribute *src, *dst; ret = entry_alloc(); entry_partsize(e, &len, &nattrs, &nvals, 1); ret->e_id = e->e_id; ret->e_attrs = attrs_alloc( nattrs ); ret->e_ocflags = e->e_ocflags; ret->e_bv.bv_len = len + nvals * sizeof(struct berval); ret->e_bv.bv_val = ch_malloc( ret->e_bv.bv_len ); bvl = (struct berval *)ret->e_bv.bv_val; ptr = (char *)(bvl + nvals); ret->e_name.bv_len = e->e_name.bv_len; ret->e_name.bv_val = ptr; AC_MEMCPY( ptr, e->e_name.bv_val, e->e_name.bv_len ); ptr += e->e_name.bv_len; *ptr++ = '\0'; ret->e_nname.bv_len = e->e_nname.bv_len; ret->e_nname.bv_val = ptr; AC_MEMCPY( ptr, e->e_nname.bv_val, e->e_nname.bv_len ); ptr += e->e_name.bv_len; *ptr++ = '\0'; dst = ret->e_attrs; for (src = e->e_attrs; src; src=src->a_next,dst=dst->a_next ) { int i; dst->a_desc = src->a_desc; dst->a_flags = SLAP_ATTR_DONT_FREE_DATA | SLAP_ATTR_DONT_FREE_VALS; dst->a_vals = bvl; for ( i=0; src->a_vals[i].bv_val; i++ ) { bvl->bv_len = src->a_vals[i].bv_len; bvl->bv_val = ptr; AC_MEMCPY( ptr, src->a_vals[i].bv_val, bvl->bv_len ); ptr += bvl->bv_len; *ptr++ = '\0'; bvl++; } BER_BVZERO(bvl); bvl++; if ( src->a_vals != src->a_nvals ) { dst->a_nvals = bvl; for ( i=0; src->a_nvals[i].bv_val; i++ ) { bvl->bv_len = src->a_nvals[i].bv_len; bvl->bv_val = ptr; AC_MEMCPY( ptr, src->a_nvals[i].bv_val, bvl->bv_len ); ptr += bvl->bv_len; *ptr++ = '\0'; bvl++; } BER_BVZERO(bvl); bvl++; } } return ret; } #endif