/* dn2id.c - routines to deal with the dn2id index */
/* $OpenLDAP$ */
/* This work is part of OpenLDAP Software .
*
* Copyright 2000-2007 The OpenLDAP Foundation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted only as authorized by the OpenLDAP
* Public License.
*
* A copy of this license is available in the file LICENSE in the
* top-level directory of the distribution or, alternatively, at
* .
*/
#include "portable.h"
#include
#include
#include "back-bdb.h"
#include "idl.h"
#include "lutil.h"
#ifndef BDB_HIER
int
bdb_dn2id_add(
Operation *op,
DB_TXN *txn,
EntryInfo *eip,
Entry *e )
{
struct bdb_info *bdb = (struct bdb_info *) op->o_bd->be_private;
DB *db = bdb->bi_dn2id->bdi_db;
int rc;
DBT key, data;
ID nid;
char *buf;
struct berval ptr, pdn;
Debug( LDAP_DEBUG_TRACE, "=> bdb_dn2id_add( \"%s\", 0x%08lx )\n",
e->e_ndn, (long) e->e_id, 0 );
assert( e->e_id != NOID );
DBTzero( &key );
key.size = e->e_nname.bv_len + 2;
key.ulen = key.size;
key.flags = DB_DBT_USERMEM;
buf = op->o_tmpalloc( key.size, op->o_tmpmemctx );
key.data = buf;
buf[0] = DN_BASE_PREFIX;
ptr.bv_val = buf + 1;
ptr.bv_len = e->e_nname.bv_len;
AC_MEMCPY( ptr.bv_val, e->e_nname.bv_val, e->e_nname.bv_len );
ptr.bv_val[ptr.bv_len] = '\0';
DBTzero( &data );
data.data = &nid;
data.size = sizeof( nid );
BDB_ID2DISK( e->e_id, &nid );
/* store it -- don't override */
rc = db->put( db, txn, &key, &data, DB_NOOVERWRITE );
if( rc != 0 ) {
Debug( LDAP_DEBUG_ANY, "=> bdb_dn2id_add: put failed: %s %d\n",
db_strerror(rc), rc, 0 );
goto done;
}
#ifndef BDB_MULTIPLE_SUFFIXES
if( !be_issuffix( op->o_bd, &ptr ))
#endif
{
buf[0] = DN_SUBTREE_PREFIX;
rc = db->put( db, txn, &key, &data, DB_NOOVERWRITE );
if( rc != 0 ) {
Debug( LDAP_DEBUG_ANY,
"=> bdb_dn2id_add: subtree (%s) put failed: %d\n",
ptr.bv_val, rc, 0 );
goto done;
}
#ifdef BDB_MULTIPLE_SUFFIXES
if( !be_issuffix( op->o_bd, &ptr ))
#endif
{
dnParent( &ptr, &pdn );
key.size = pdn.bv_len + 2;
key.ulen = key.size;
pdn.bv_val[-1] = DN_ONE_PREFIX;
key.data = pdn.bv_val-1;
ptr = pdn;
rc = bdb_idl_insert_key( op->o_bd, db, txn, &key, e->e_id );
if( rc != 0 ) {
Debug( LDAP_DEBUG_ANY,
"=> bdb_dn2id_add: parent (%s) insert failed: %d\n",
ptr.bv_val, rc, 0 );
goto done;
}
}
#ifndef BDB_MULTIPLE_SUFFIXES
while( !be_issuffix( op->o_bd, &ptr ))
#else
for (;;)
#endif
{
ptr.bv_val[-1] = DN_SUBTREE_PREFIX;
rc = bdb_idl_insert_key( op->o_bd, db, txn, &key, e->e_id );
if( rc != 0 ) {
Debug( LDAP_DEBUG_ANY,
"=> bdb_dn2id_add: subtree (%s) insert failed: %d\n",
ptr.bv_val, rc, 0 );
break;
}
#ifdef BDB_MULTIPLE_SUFFIXES
if( be_issuffix( op->o_bd, &ptr )) break;
#endif
dnParent( &ptr, &pdn );
key.size = pdn.bv_len + 2;
key.ulen = key.size;
key.data = pdn.bv_val - 1;
ptr = pdn;
}
}
done:
op->o_tmpfree( buf, op->o_tmpmemctx );
Debug( LDAP_DEBUG_TRACE, "<= bdb_dn2id_add: %d\n", rc, 0, 0 );
return rc;
}
int
bdb_dn2id_delete(
Operation *op,
DB_TXN *txn,
EntryInfo *eip,
Entry *e )
{
struct bdb_info *bdb = (struct bdb_info *) op->o_bd->be_private;
DB *db = bdb->bi_dn2id->bdi_db;
int rc;
DBT key;
char *buf;
struct berval pdn, ptr;
Debug( LDAP_DEBUG_TRACE, "=> bdb_dn2id_delete( \"%s\", 0x%08lx )\n",
e->e_ndn, e->e_id, 0 );
DBTzero( &key );
key.size = e->e_nname.bv_len + 2;
buf = op->o_tmpalloc( key.size, op->o_tmpmemctx );
key.data = buf;
key.flags = DB_DBT_USERMEM;
buf[0] = DN_BASE_PREFIX;
ptr.bv_val = buf+1;
ptr.bv_len = e->e_nname.bv_len;
AC_MEMCPY( ptr.bv_val, e->e_nname.bv_val, e->e_nname.bv_len );
ptr.bv_val[ptr.bv_len] = '\0';
/* delete it */
rc = db->del( db, txn, &key, 0 );
if( rc != 0 ) {
Debug( LDAP_DEBUG_ANY, "=> bdb_dn2id_delete: delete failed: %s %d\n",
db_strerror(rc), rc, 0 );
goto done;
}
#ifndef BDB_MULTIPLE_SUFFIXES
if( !be_issuffix( op->o_bd, &ptr ))
#endif
{
buf[0] = DN_SUBTREE_PREFIX;
rc = bdb_idl_delete_key( op->o_bd, db, txn, &key, e->e_id );
if( rc != 0 ) {
Debug( LDAP_DEBUG_ANY,
"=> bdb_dn2id_delete: subtree (%s) delete failed: %d\n",
ptr.bv_val, rc, 0 );
goto done;
}
#ifdef BDB_MULTIPLE_SUFFIXES
if( !be_issuffix( op->o_bd, &ptr ))
#endif
{
dnParent( &ptr, &pdn );
key.size = pdn.bv_len + 2;
key.ulen = key.size;
pdn.bv_val[-1] = DN_ONE_PREFIX;
key.data = pdn.bv_val - 1;
ptr = pdn;
rc = bdb_idl_delete_key( op->o_bd, db, txn, &key, e->e_id );
if( rc != 0 ) {
Debug( LDAP_DEBUG_ANY,
"=> bdb_dn2id_delete: parent (%s) delete failed: %d\n",
ptr.bv_val, rc, 0 );
goto done;
}
}
#ifndef BDB_MULTIPLE_SUFFIXES
while( !be_issuffix( op->o_bd, &ptr ))
#else
for (;;)
#endif
{
ptr.bv_val[-1] = DN_SUBTREE_PREFIX;
rc = bdb_idl_delete_key( op->o_bd, db, txn, &key, e->e_id );
if( rc != 0 ) {
Debug( LDAP_DEBUG_ANY,
"=> bdb_dn2id_delete: subtree (%s) delete failed: %d\n",
ptr.bv_val, rc, 0 );
goto done;
}
#ifdef BDB_MULTIPLE_SUFFIXES
if( be_issuffix( op->o_bd, &ptr )) break;
#endif
dnParent( &ptr, &pdn );
key.size = pdn.bv_len + 2;
key.ulen = key.size;
key.data = pdn.bv_val - 1;
ptr = pdn;
}
}
done:
op->o_tmpfree( buf, op->o_tmpmemctx );
Debug( LDAP_DEBUG_TRACE, "<= bdb_dn2id_delete %d\n", rc, 0, 0 );
return rc;
}
int
bdb_dn2id(
Operation *op,
DB_TXN *txn,
struct berval *dn,
EntryInfo *ei )
{
struct bdb_info *bdb = (struct bdb_info *) op->o_bd->be_private;
DB *db = bdb->bi_dn2id->bdi_db;
int rc;
DBT key, data;
ID nid;
Debug( LDAP_DEBUG_TRACE, "=> bdb_dn2id(\"%s\")\n", dn->bv_val, 0, 0 );
DBTzero( &key );
key.size = dn->bv_len + 2;
key.data = op->o_tmpalloc( key.size, op->o_tmpmemctx );
((char *)key.data)[0] = DN_BASE_PREFIX;
AC_MEMCPY( &((char *)key.data)[1], dn->bv_val, key.size - 1 );
/* store the ID */
DBTzero( &data );
data.data = &nid;
data.ulen = sizeof(ID);
data.flags = DB_DBT_USERMEM;
/* fetch it */
rc = db->get( db, txn, &key, &data, bdb->bi_db_opflags );
if( rc != 0 ) {
Debug( LDAP_DEBUG_TRACE, "<= bdb_dn2id: get failed: %s (%d)\n",
db_strerror( rc ), rc, 0 );
} else {
BDB_DISK2ID( &nid, &ei->bei_id );
Debug( LDAP_DEBUG_TRACE, "<= bdb_dn2id: got id=0x%08lx\n",
ei->bei_id, 0, 0 );
}
op->o_tmpfree( key.data, op->o_tmpmemctx );
return rc;
}
int
bdb_dn2id_children(
Operation *op,
DB_TXN *txn,
Entry *e )
{
DBT key, data;
struct bdb_info *bdb = (struct bdb_info *) op->o_bd->be_private;
DB *db = bdb->bi_dn2id->bdi_db;
ID id;
int rc;
Debug( LDAP_DEBUG_TRACE, "=> bdb_dn2id_children(\"%s\")\n",
e->e_nname.bv_val, 0, 0 );
DBTzero( &key );
key.size = e->e_nname.bv_len + 2;
key.data = op->o_tmpalloc( key.size, op->o_tmpmemctx );
((char *)key.data)[0] = DN_ONE_PREFIX;
AC_MEMCPY( &((char *)key.data)[1], e->e_nname.bv_val, key.size - 1 );
if ( bdb->bi_idl_cache_size ) {
rc = bdb_idl_cache_get( bdb, db, &key, NULL );
if ( rc != LDAP_NO_SUCH_OBJECT ) {
op->o_tmpfree( key.data, op->o_tmpmemctx );
return rc;
}
}
/* we actually could do a empty get... */
DBTzero( &data );
data.data = &id;
data.ulen = sizeof(id);
data.flags = DB_DBT_USERMEM;
data.doff = 0;
data.dlen = sizeof(id);
rc = db->get( db, txn, &key, &data, bdb->bi_db_opflags );
op->o_tmpfree( key.data, op->o_tmpmemctx );
Debug( LDAP_DEBUG_TRACE, "<= bdb_dn2id_children(\"%s\"): %s (%d)\n",
e->e_nname.bv_val,
rc == 0 ? "" : ( rc == DB_NOTFOUND ? "no " :
db_strerror(rc) ), rc );
return rc;
}
int
bdb_dn2idl(
Operation *op,
BDB_LOCKER locker,
struct berval *ndn,
EntryInfo *ei,
ID *ids,
ID *stack )
{
int rc;
DBT key;
struct bdb_info *bdb = (struct bdb_info *) op->o_bd->be_private;
DB *db = bdb->bi_dn2id->bdi_db;
int prefix = ( op->ors_scope == LDAP_SCOPE_ONELEVEL )
? DN_ONE_PREFIX : DN_SUBTREE_PREFIX;
Debug( LDAP_DEBUG_TRACE, "=> bdb_dn2idl(\"%s\")\n",
ndn->bv_val, 0, 0 );
#ifndef BDB_MULTIPLE_SUFFIXES
if ( prefix == DN_SUBTREE_PREFIX
&& ( ei->bei_id == 0 || ei->bei_parent->bei_id == 0 )) {
BDB_IDL_ALL(bdb, ids);
return 0;
}
#endif
DBTzero( &key );
key.size = ndn->bv_len + 2;
key.ulen = key.size;
key.flags = DB_DBT_USERMEM;
key.data = op->o_tmpalloc( key.size, op->o_tmpmemctx );
((char *)key.data)[0] = prefix;
AC_MEMCPY( &((char *)key.data)[1], ndn->bv_val, key.size - 1 );
BDB_IDL_ZERO( ids );
rc = bdb_idl_fetch_key( op->o_bd, db, locker, &key, ids, NULL, 0 );
if( rc != 0 ) {
Debug( LDAP_DEBUG_TRACE,
"<= bdb_dn2idl: get failed: %s (%d)\n",
db_strerror( rc ), rc, 0 );
} else {
Debug( LDAP_DEBUG_TRACE,
"<= bdb_dn2idl: id=%ld first=%ld last=%ld\n",
(long) ids[0],
(long) BDB_IDL_FIRST( ids ), (long) BDB_IDL_LAST( ids ) );
}
op->o_tmpfree( key.data, op->o_tmpmemctx );
return rc;
}
#else /* BDB_HIER */
/* Management routines for a hierarchically structured database.
*
* Instead of a ldbm-style dn2id database, we use a hierarchical one. Each
* entry in this database is a struct diskNode, keyed by entryID and with
* the data containing the RDN and entryID of the node's children. We use
* a B-Tree with sorted duplicates to store all the children of a node under
* the same key. Also, the first item under the key contains the entry's own
* rdn and the ID of the node's parent, to allow bottom-up tree traversal as
* well as top-down. To keep this info first in the list, the high bit of all
* subsequent nrdnlen's is always set. This means we can only accomodate
* RDNs up to length 32767, but that's fine since full DNs are already
* restricted to 8192.
*
* The diskNode is a variable length structure. This definition is not
* directly usable for in-memory manipulation.
*/
typedef struct diskNode {
unsigned char nrdnlen[2];
char nrdn[1];
char rdn[1]; /* variable placement */
unsigned char entryID[sizeof(ID)]; /* variable placement */
} diskNode;
/* This function constructs a full DN for a given entry.
*/
int hdb_fix_dn(
Entry *e,
int checkit )
{
EntryInfo *ei;
int rlen = 0, nrlen = 0;
char *ptr, *nptr;
int max = 0;
if ( !e->e_id )
return 0;
/* count length of all DN components */
for ( ei = BEI(e); ei && ei->bei_id; ei=ei->bei_parent ) {
rlen += ei->bei_rdn.bv_len + 1;
nrlen += ei->bei_nrdn.bv_len + 1;
if (ei->bei_modrdns > max) max = ei->bei_modrdns;
}
/* See if the entry DN was invalidated by a subtree rename */
if ( checkit ) {
if ( BEI(e)->bei_modrdns >= max ) {
return 0;
}
/* We found a mismatch, tell the caller to lock it */
if ( checkit == 1 ) {
return 1;
}
/* checkit == 2. do the fix. */
free( e->e_name.bv_val );
free( e->e_nname.bv_val );
}
e->e_name.bv_len = rlen - 1;
e->e_nname.bv_len = nrlen - 1;
e->e_name.bv_val = ch_malloc(rlen);
e->e_nname.bv_val = ch_malloc(nrlen);
ptr = e->e_name.bv_val;
nptr = e->e_nname.bv_val;
for ( ei = BEI(e); ei && ei->bei_id; ei=ei->bei_parent ) {
ptr = lutil_strcopy(ptr, ei->bei_rdn.bv_val);
nptr = lutil_strcopy(nptr, ei->bei_nrdn.bv_val);
if ( ei->bei_parent ) {
*ptr++ = ',';
*nptr++ = ',';
}
}
BEI(e)->bei_modrdns = max;
ptr[-1] = '\0';
nptr[-1] = '\0';
return 0;
}
/* We add two elements to the DN2ID database - a data item under the parent's
* entryID containing the child's RDN and entryID, and an item under the
* child's entryID containing the parent's entryID.
*/
int
hdb_dn2id_add(
Operation *op,
DB_TXN *txn,
EntryInfo *eip,
Entry *e )
{
struct bdb_info *bdb = (struct bdb_info *) op->o_bd->be_private;
DB *db = bdb->bi_dn2id->bdi_db;
DBT key, data;
ID nid;
int rc, rlen, nrlen;
diskNode *d;
char *ptr;
nrlen = dn_rdnlen( op->o_bd, &e->e_nname );
if (nrlen) {
rlen = dn_rdnlen( op->o_bd, &e->e_name );
} else {
nrlen = e->e_nname.bv_len;
rlen = e->e_name.bv_len;
}
d = op->o_tmpalloc(sizeof(diskNode) + rlen + nrlen, op->o_tmpmemctx);
d->nrdnlen[1] = nrlen & 0xff;
d->nrdnlen[0] = (nrlen >> 8) | 0x80;
ptr = lutil_strncopy( d->nrdn, e->e_nname.bv_val, nrlen );
*ptr++ = '\0';
ptr = lutil_strncopy( ptr, e->e_name.bv_val, rlen );
*ptr++ = '\0';
BDB_ID2DISK( e->e_id, ptr );
DBTzero(&key);
DBTzero(&data);
key.size = sizeof(ID);
key.flags = DB_DBT_USERMEM;
BDB_ID2DISK( eip->bei_id, &nid );
key.data = &nid;
/* Need to make dummy root node once. Subsequent attempts
* will fail harmlessly.
*/
if ( eip->bei_id == 0 ) {
diskNode dummy = {{0, 0}, "", "", ""};
data.data = &dummy;
data.size = sizeof(diskNode);
data.flags = DB_DBT_USERMEM;
db->put( db, txn, &key, &data, DB_NODUPDATA );
}
data.data = d;
data.size = sizeof(diskNode) + rlen + nrlen;
data.flags = DB_DBT_USERMEM;
rc = db->put( db, txn, &key, &data, DB_NODUPDATA );
if (rc == 0) {
BDB_ID2DISK( e->e_id, &nid );
BDB_ID2DISK( eip->bei_id, ptr );
d->nrdnlen[0] ^= 0x80;
rc = db->put( db, txn, &key, &data, DB_NODUPDATA );
}
/* Update all parents' IDL cache entries */
if ( rc == 0 && bdb->bi_idl_cache_size ) {
ID tmp[2];
char *ptr = ((char *)&tmp[1])-1;
key.data = ptr;
key.size = sizeof(ID)+1;
tmp[1] = eip->bei_id;
*ptr = DN_ONE_PREFIX;
bdb_idl_cache_add_id( bdb, db, &key, e->e_id );
*ptr = DN_SUBTREE_PREFIX;
for (; eip && eip->bei_parent->bei_id; eip = eip->bei_parent) {
tmp[1] = eip->bei_id;
bdb_idl_cache_add_id( bdb, db, &key, e->e_id );
}
}
op->o_tmpfree( d, op->o_tmpmemctx );
return rc;
}
int
hdb_dn2id_delete(
Operation *op,
DB_TXN *txn,
EntryInfo *eip,
Entry *e )
{
struct bdb_info *bdb = (struct bdb_info *) op->o_bd->be_private;
DB *db = bdb->bi_dn2id->bdi_db;
DBT key, data;
DBC *cursor;
diskNode *d;
int rc;
ID nid;
unsigned char dlen[2];
DBTzero(&key);
key.size = sizeof(ID);
key.ulen = key.size;
key.flags = DB_DBT_USERMEM;
BDB_ID2DISK( eip->bei_id, &nid );
DBTzero(&data);
data.size = sizeof(diskNode) + BEI(e)->bei_nrdn.bv_len - sizeof(ID) - 1;
data.ulen = data.size;
data.dlen = data.size;
data.flags = DB_DBT_USERMEM | DB_DBT_PARTIAL;
key.data = &nid;
rc = db->cursor( db, txn, &cursor, bdb->bi_db_opflags );
if ( rc ) return rc;
d = op->o_tmpalloc( data.size, op->o_tmpmemctx );
d->nrdnlen[1] = BEI(e)->bei_nrdn.bv_len & 0xff;
d->nrdnlen[0] = (BEI(e)->bei_nrdn.bv_len >> 8) | 0x80;
dlen[0] = d->nrdnlen[0];
dlen[1] = d->nrdnlen[1];
strcpy( d->nrdn, BEI(e)->bei_nrdn.bv_val );
data.data = d;
/* Delete our ID from the parent's list */
rc = cursor->c_get( cursor, &key, &data, DB_GET_BOTH_RANGE );
if ( rc == 0 ) {
if ( dlen[1] == d->nrdnlen[1] && dlen[0] == d->nrdnlen[0] &&
!strcmp( d->nrdn, BEI(e)->bei_nrdn.bv_val ))
rc = cursor->c_del( cursor, 0 );
else
rc = DB_NOTFOUND;
}
/* Delete our ID from the tree. With sorted duplicates, this
* will leave any child nodes still hanging around. This is OK
* for modrdn, which will add our info back in later.
*/
if ( rc == 0 ) {
BDB_ID2DISK( e->e_id, &nid );
rc = cursor->c_get( cursor, &key, &data, DB_SET );
if ( rc == 0 )
rc = cursor->c_del( cursor, 0 );
}
cursor->c_close( cursor );
op->o_tmpfree( d, op->o_tmpmemctx );
/* Delete IDL cache entries */
if ( rc == 0 && bdb->bi_idl_cache_size ) {
ID tmp[2];
char *ptr = ((char *)&tmp[1])-1;
key.data = ptr;
key.size = sizeof(ID)+1;
tmp[1] = eip->bei_id;
*ptr = DN_ONE_PREFIX;
bdb_idl_cache_del_id( bdb, db, &key, e->e_id );
*ptr = DN_SUBTREE_PREFIX;
for (; eip && eip->bei_parent->bei_id; eip = eip->bei_parent) {
tmp[1] = eip->bei_id;
bdb_idl_cache_del_id( bdb, db, &key, e->e_id );
}
}
return rc;
}
int
hdb_dn2id(
Operation *op,
DB_TXN *txn,
struct berval *in,
EntryInfo *ei )
{
struct bdb_info *bdb = (struct bdb_info *) op->o_bd->be_private;
DB *db = bdb->bi_dn2id->bdi_db;
DBT key, data;
DBC *cursor;
int rc = 0, nrlen;
diskNode *d;
char *ptr;
unsigned char dlen[2];
ID idp, parentID;
nrlen = dn_rdnlen( op->o_bd, in );
if (!nrlen) nrlen = in->bv_len;
DBTzero(&key);
key.size = sizeof(ID);
key.data = &idp;
key.ulen = sizeof(ID);
key.flags = DB_DBT_USERMEM;
parentID = ( ei->bei_parent != NULL ) ? ei->bei_parent->bei_id : 0;
BDB_ID2DISK( parentID, &idp );
DBTzero(&data);
data.size = sizeof(diskNode) + nrlen - sizeof(ID) - 1;
data.ulen = data.size * 3;
data.dlen = data.ulen;
data.flags = DB_DBT_USERMEM | DB_DBT_PARTIAL;
rc = db->cursor( db, txn, &cursor, bdb->bi_db_opflags );
if ( rc ) return rc;
d = op->o_tmpalloc( data.size * 3, op->o_tmpmemctx );
d->nrdnlen[1] = nrlen & 0xff;
d->nrdnlen[0] = (nrlen >> 8) | 0x80;
dlen[0] = d->nrdnlen[0];
dlen[1] = d->nrdnlen[1];
ptr = lutil_strncopy( d->nrdn, in->bv_val, nrlen );
*ptr = '\0';
data.data = d;
rc = cursor->c_get( cursor, &key, &data, DB_GET_BOTH_RANGE );
if ( rc == 0 && (dlen[1] != d->nrdnlen[1] || dlen[0] != d->nrdnlen[0] ||
strncmp( d->nrdn, in->bv_val, nrlen ))) {
rc = DB_NOTFOUND;
}
if ( rc == 0 ) {
ptr = (char *) data.data + data.size - sizeof(ID);
BDB_DISK2ID( ptr, &ei->bei_id );
ei->bei_rdn.bv_len = data.size - sizeof(diskNode) - nrlen;
ptr = d->nrdn + nrlen + 1;
ber_str2bv( ptr, ei->bei_rdn.bv_len, 1, &ei->bei_rdn );
if ( ei->bei_parent != NULL && !ei->bei_parent->bei_dkids ) {
db_recno_t dkids;
/* How many children does the parent have? */
/* FIXME: do we need to lock the parent
* entryinfo? Seems safe...
*/
cursor->c_count( cursor, &dkids, 0 );
ei->bei_parent->bei_dkids = dkids;
}
}
cursor->c_close( cursor );
op->o_tmpfree( d, op->o_tmpmemctx );
return rc;
}
int
hdb_dn2id_parent(
Operation *op,
DB_TXN *txn,
BDB_LOCKER locker,
EntryInfo *ei,
ID *idp )
{
struct bdb_info *bdb = (struct bdb_info *) op->o_bd->be_private;
DB *db = bdb->bi_dn2id->bdi_db;
DBT key, data;
DBC *cursor;
int rc = 0;
diskNode *d;
char *ptr;
ID nid;
DBTzero(&key);
key.size = sizeof(ID);
key.data = &nid;
key.ulen = sizeof(ID);
key.flags = DB_DBT_USERMEM;
BDB_ID2DISK( ei->bei_id, &nid );
DBTzero(&data);
data.flags = DB_DBT_USERMEM;
rc = db->cursor( db, txn, &cursor, bdb->bi_db_opflags );
if ( rc ) return rc;
if ( !txn && locker ) {
CURSOR_SETLOCKER(cursor, locker);
}
data.ulen = sizeof(diskNode) + (SLAP_LDAPDN_MAXLEN * 2);
d = op->o_tmpalloc( data.ulen, op->o_tmpmemctx );
data.data = d;
rc = cursor->c_get( cursor, &key, &data, DB_SET );
if ( rc == 0 ) {
if (d->nrdnlen[0] & 0x80) {
rc = LDAP_OTHER;
} else {
db_recno_t dkids;
ptr = (char *) data.data + data.size - sizeof(ID);
BDB_DISK2ID( ptr, idp );
ei->bei_nrdn.bv_len = (d->nrdnlen[0] << 8) | d->nrdnlen[1];
ber_str2bv( d->nrdn, ei->bei_nrdn.bv_len, 1, &ei->bei_nrdn );
ei->bei_rdn.bv_len = data.size - sizeof(diskNode) -
ei->bei_nrdn.bv_len;
ptr = d->nrdn + ei->bei_nrdn.bv_len + 1;
ber_str2bv( ptr, ei->bei_rdn.bv_len, 1, &ei->bei_rdn );
/* How many children does this node have? */
cursor->c_count( cursor, &dkids, 0 );
ei->bei_dkids = dkids;
}
}
cursor->c_close( cursor );
op->o_tmpfree( d, op->o_tmpmemctx );
return rc;
}
int
hdb_dn2id_children(
Operation *op,
DB_TXN *txn,
Entry *e )
{
struct bdb_info *bdb = (struct bdb_info *) op->o_bd->be_private;
DB *db = bdb->bi_dn2id->bdi_db;
DBT key, data;
DBC *cursor;
int rc;
ID id;
diskNode d;
DBTzero(&key);
key.size = sizeof(ID);
key.data = &e->e_id;
key.flags = DB_DBT_USERMEM;
BDB_ID2DISK( e->e_id, &id );
/* IDL cache is in host byte order */
if ( bdb->bi_idl_cache_size ) {
rc = bdb_idl_cache_get( bdb, db, &key, NULL );
if ( rc != LDAP_NO_SUCH_OBJECT ) {
return rc;
}
}
key.data = &id;
DBTzero(&data);
data.data = &d;
data.ulen = sizeof(d);
data.flags = DB_DBT_USERMEM | DB_DBT_PARTIAL;
data.dlen = sizeof(d);
rc = db->cursor( db, txn, &cursor, bdb->bi_db_opflags );
if ( rc ) return rc;
rc = cursor->c_get( cursor, &key, &data, DB_SET );
if ( rc == 0 ) {
db_recno_t dkids;
rc = cursor->c_count( cursor, &dkids, 0 );
if ( rc == 0 ) {
BEI(e)->bei_dkids = dkids;
if ( dkids < 2 ) rc = DB_NOTFOUND;
}
}
cursor->c_close( cursor );
return rc;
}
/* bdb_dn2idl:
* We can't just use bdb_idl_fetch_key because
* 1 - our data items are longer than just an entry ID
* 2 - our data items are sorted alphabetically by nrdn, not by ID.
*
* We descend the tree recursively, so we define this cookie
* to hold our necessary state information. The bdb_dn2idl_internal
* function uses this cookie when calling itself.
*/
struct dn2id_cookie {
struct bdb_info *bdb;
Operation *op;
BDB_LOCKER locker;
EntryInfo *ei;
ID *ids;
ID *tmp;
ID *buf;
DB *db;
DBC *dbc;
DBT key;
DBT data;
ID dbuf;
ID id;
ID nid;
int rc;
int depth;
char need_sort;
char prefix;
};
static int
apply_func(
void *data,
void *arg )
{
EntryInfo *ei = data;
ID *idl = arg;
bdb_idl_append_one( idl, ei->bei_id );
return 0;
}
static int
hdb_dn2idl_internal(
struct dn2id_cookie *cx
)
{
BDB_IDL_ZERO( cx->tmp );
if ( cx->bdb->bi_idl_cache_size ) {
char *ptr = ((char *)&cx->id)-1;
cx->key.data = ptr;
cx->key.size = sizeof(ID)+1;
if ( cx->prefix == DN_SUBTREE_PREFIX ) {
ID *ids = cx->depth ? cx->tmp : cx->ids;
*ptr = cx->prefix;
cx->rc = bdb_idl_cache_get(cx->bdb, cx->db, &cx->key, ids);
if ( cx->rc == LDAP_SUCCESS ) {
if ( cx->depth ) {
bdb_idl_append( cx->ids, cx->tmp );
cx->need_sort = 1;
}
return cx->rc;
}
}
*ptr = DN_ONE_PREFIX;
cx->rc = bdb_idl_cache_get(cx->bdb, cx->db, &cx->key, cx->tmp);
if ( cx->rc == LDAP_SUCCESS ) {
goto gotit;
}
if ( cx->rc == DB_NOTFOUND ) {
return cx->rc;
}
}
bdb_cache_entryinfo_lock( cx->ei );
/* If number of kids in the cache differs from on-disk, load
* up all the kids from the database
*/
if ( cx->ei->bei_ckids+1 != cx->ei->bei_dkids ) {
EntryInfo ei;
db_recno_t dkids = cx->ei->bei_dkids;
ei.bei_parent = cx->ei;
/* Only one thread should load the cache */
while ( cx->ei->bei_state & CACHE_ENTRY_ONELEVEL ) {
bdb_cache_entryinfo_unlock( cx->ei );
ldap_pvt_thread_yield();
bdb_cache_entryinfo_lock( cx->ei );
if ( cx->ei->bei_ckids+1 == cx->ei->bei_dkids ) {
goto synced;
}
}
cx->ei->bei_state |= CACHE_ENTRY_ONELEVEL;
bdb_cache_entryinfo_unlock( cx->ei );
cx->rc = cx->db->cursor( cx->db, NULL, &cx->dbc,
cx->bdb->bi_db_opflags );
if ( cx->rc )
goto done_one;
cx->data.data = &cx->dbuf;
cx->data.ulen = sizeof(ID);
cx->data.dlen = sizeof(ID);
cx->data.flags = DB_DBT_USERMEM | DB_DBT_PARTIAL;
/* The first item holds the parent ID. Ignore it. */
cx->key.data = &cx->nid;
cx->key.size = sizeof(ID);
cx->rc = cx->dbc->c_get( cx->dbc, &cx->key, &cx->data, DB_SET );
if ( cx->rc ) {
cx->dbc->c_close( cx->dbc );
goto done_one;
}
/* If the on-disk count is zero we've never checked it.
* Count it now.
*/
if ( !dkids ) {
cx->dbc->c_count( cx->dbc, &dkids, 0 );
cx->ei->bei_dkids = dkids;
}
cx->data.data = cx->buf;
cx->data.ulen = BDB_IDL_UM_SIZE * sizeof(ID);
cx->data.flags = DB_DBT_USERMEM;
if ( dkids > 1 ) {
/* Fetch the rest of the IDs in a loop... */
while ( (cx->rc = cx->dbc->c_get( cx->dbc, &cx->key, &cx->data,
DB_MULTIPLE | DB_NEXT_DUP )) == 0 ) {
u_int8_t *j;
size_t len;
void *ptr;
DB_MULTIPLE_INIT( ptr, &cx->data );
while (ptr) {
DB_MULTIPLE_NEXT( ptr, &cx->data, j, len );
if (j) {
EntryInfo *ei2;
diskNode *d = (diskNode *)j;
short nrlen;
BDB_DISK2ID( j + len - sizeof(ID), &ei.bei_id );
nrlen = ((d->nrdnlen[0] ^ 0x80) << 8) | d->nrdnlen[1];
ei.bei_nrdn.bv_len = nrlen;
/* nrdn/rdn are set in-place.
* hdb_cache_load will copy them as needed
*/
ei.bei_nrdn.bv_val = d->nrdn;
ei.bei_rdn.bv_len = len - sizeof(diskNode)
- ei.bei_nrdn.bv_len;
ei.bei_rdn.bv_val = d->nrdn + ei.bei_nrdn.bv_len + 1;
bdb_idl_append_one( cx->tmp, ei.bei_id );
hdb_cache_load( cx->bdb, &ei, &ei2 );
}
}
}
}
cx->rc = cx->dbc->c_close( cx->dbc );
done_one:
bdb_cache_entryinfo_lock( cx->ei );
cx->ei->bei_state ^= CACHE_ENTRY_ONELEVEL;
bdb_cache_entryinfo_unlock( cx->ei );
if ( cx->rc )
return cx->rc;
} else {
/* The in-memory cache is in sync with the on-disk data.
* do we have any kids?
*/
synced:
cx->rc = 0;
if ( cx->ei->bei_ckids > 0 ) {
/* Walk the kids tree; order is irrelevant since bdb_idl_sort
* will sort it later.
*/
avl_apply( cx->ei->bei_kids, apply_func,
cx->tmp, -1, AVL_POSTORDER );
}
bdb_cache_entryinfo_unlock( cx->ei );
}
if ( !BDB_IDL_IS_RANGE( cx->tmp ) && cx->tmp[0] > 3 )
bdb_idl_sort( cx->tmp, cx->buf );
if ( cx->bdb->bi_idl_cache_max_size && !BDB_IDL_IS_ZERO( cx->tmp )) {
char *ptr = ((char *)&cx->id)-1;
cx->key.data = ptr;
cx->key.size = sizeof(ID)+1;
*ptr = DN_ONE_PREFIX;
bdb_idl_cache_put( cx->bdb, cx->db, &cx->key, cx->tmp, cx->rc );
}
gotit:
if ( !BDB_IDL_IS_ZERO( cx->tmp )) {
if ( cx->prefix == DN_SUBTREE_PREFIX ) {
bdb_idl_append( cx->ids, cx->tmp );
cx->need_sort = 1;
if ( !(cx->ei->bei_state & CACHE_ENTRY_NO_GRANDKIDS)) {
ID *save, idcurs;
EntryInfo *ei = cx->ei;
int nokids = 1;
save = cx->op->o_tmpalloc( BDB_IDL_SIZEOF( cx->tmp ),
cx->op->o_tmpmemctx );
BDB_IDL_CPY( save, cx->tmp );
idcurs = 0;
cx->depth++;
for ( cx->id = bdb_idl_first( save, &idcurs );
cx->id != NOID;
cx->id = bdb_idl_next( save, &idcurs )) {
cx->ei = bdb_cache_find_info( cx->bdb, cx->id );
if ( !cx->ei ||
( cx->ei->bei_state & CACHE_ENTRY_NO_KIDS ))
continue;
BDB_ID2DISK( cx->id, &cx->nid );
hdb_dn2idl_internal( cx );
if ( !BDB_IDL_IS_ZERO( cx->tmp ))
nokids = 0;
}
cx->depth--;
cx->op->o_tmpfree( save, cx->op->o_tmpmemctx );
if ( nokids ) ei->bei_state |= CACHE_ENTRY_NO_GRANDKIDS;
}
/* Make sure caller knows it had kids! */
cx->tmp[0]=1;
cx->rc = 0;
} else {
BDB_IDL_CPY( cx->ids, cx->tmp );
}
}
return cx->rc;
}
int
hdb_dn2idl(
Operation *op,
BDB_LOCKER locker,
struct berval *ndn,
EntryInfo *ei,
ID *ids,
ID *stack )
{
struct bdb_info *bdb = (struct bdb_info *)op->o_bd->be_private;
struct dn2id_cookie cx;
Debug( LDAP_DEBUG_TRACE, "=> hdb_dn2idl(\"%s\")\n",
ndn->bv_val, 0, 0 );
#ifndef BDB_MULTIPLE_SUFFIXES
if ( op->ors_scope != LDAP_SCOPE_ONELEVEL &&
( ei->bei_id == 0 ||
ei->bei_parent->bei_id == 0 ))
{
BDB_IDL_ALL( bdb, ids );
return 0;
}
#endif
cx.id = ei->bei_id;
BDB_ID2DISK( cx.id, &cx.nid );
cx.ei = ei;
cx.bdb = bdb;
cx.db = cx.bdb->bi_dn2id->bdi_db;
cx.prefix = (op->ors_scope == LDAP_SCOPE_ONELEVEL) ?
DN_ONE_PREFIX : DN_SUBTREE_PREFIX;
cx.ids = ids;
cx.tmp = stack;
cx.buf = stack + BDB_IDL_UM_SIZE;
cx.op = op;
cx.locker = locker;
cx.need_sort = 0;
cx.depth = 0;
if ( cx.prefix == DN_SUBTREE_PREFIX ) {
ids[0] = 1;
ids[1] = cx.id;
} else {
BDB_IDL_ZERO( ids );
}
if ( cx.ei->bei_state & CACHE_ENTRY_NO_KIDS )
return LDAP_SUCCESS;
DBTzero(&cx.key);
cx.key.ulen = sizeof(ID);
cx.key.size = sizeof(ID);
cx.key.flags = DB_DBT_USERMEM;
DBTzero(&cx.data);
hdb_dn2idl_internal(&cx);
if ( cx.need_sort ) {
char *ptr = ((char *)&cx.id)-1;
if ( !BDB_IDL_IS_RANGE( cx.ids ) && cx.ids[0] > 3 )
bdb_idl_sort( cx.ids, cx.tmp );
cx.key.data = ptr;
cx.key.size = sizeof(ID)+1;
*ptr = cx.prefix;
cx.id = ei->bei_id;
if ( cx.bdb->bi_idl_cache_max_size )
bdb_idl_cache_put( cx.bdb, cx.db, &cx.key, cx.ids, cx.rc );
}
if ( cx.rc == DB_NOTFOUND )
cx.rc = LDAP_SUCCESS;
return cx.rc;
}
#endif /* BDB_HIER */