/* sl_malloc.c - malloc routines using a per-thread slab */ /* $OpenLDAP$ */ /* This work is part of OpenLDAP Software . * * Copyright 2003-2019 The OpenLDAP Foundation. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted only as authorized by the OpenLDAP * Public License. * * A copy of this license is available in the file LICENSE in the * top-level directory of the distribution or, alternatively, at * . */ #include "portable.h" #include #include #include "slap.h" #ifdef USE_VALGRIND /* Get debugging help from Valgrind */ #include #define VGMEMP_MARK(m,s) VALGRIND_MAKE_MEM_NOACCESS(m,s) #define VGMEMP_CREATE(h,r,z) VALGRIND_CREATE_MEMPOOL(h,r,z) #define VGMEMP_TRIM(h,a,s) VALGRIND_MEMPOOL_TRIM(h,a,s) #define VGMEMP_ALLOC(h,a,s) VALGRIND_MEMPOOL_ALLOC(h,a,s) #define VGMEMP_CHANGE(h,a,b,s) VALGRIND_MEMPOOL_CHANGE(h,a,b,s) #else #define VGMEMP_MARK(m,s) #define VGMEMP_CREATE(h,r,z) #define VGMEMP_TRIM(h,a,s) #define VGMEMP_ALLOC(h,a,s) #define VGMEMP_CHANGE(h,a,b,s) #endif /* * This allocator returns temporary memory from a slab in a given memory * context, aligned on a 2-int boundary. It cannot be used for data * which will outlive the task allocating it. * * A new memory context attaches to the creator's thread context, if any. * Threads cannot use other threads' memory contexts; there are no locks. * * The caller of slap_sl_malloc, usually a thread pool task, must * slap_sl_free the memory before finishing: New tasks reuse the context * and normally reset it, reclaiming memory left over from last task. * * The allocator helps memory fragmentation, speed and memory leaks. * It is not (yet) reliable as a garbage collector: * * It falls back to context NULL - plain ber_memalloc() - when the * context's slab is full. A reset does not reclaim such memory. * Conversely, free/realloc of data not from the given context assumes * context NULL. The data must not belong to another memory context. * * Code which has lost track of the current memory context can try * slap_sl_context() or ch_malloc.c:ch_free/ch_realloc(). * * Allocations cannot yet return failure. Like ch_malloc, they succeed * or abort slapd. This will change, do fix code which assumes success. */ /* * The stack-based allocator stores (ber_len_t)sizeof(head+block) at * allocated blocks' head - and in freed blocks also at the tail, marked * by ORing *next* block's head with 1. Freed blocks are only reclaimed * from the last block forward. This is fast, but when a block is never * freed, older blocks will not be reclaimed until the slab is reset... */ #ifdef SLAP_NO_SL_MALLOC /* Useful with memory debuggers like Valgrind */ enum { No_sl_malloc = 1 }; #else enum { No_sl_malloc = 0 }; #endif #define SLAP_SLAB_SOBLOCK 64 struct slab_object { void *so_ptr; int so_blockhead; LDAP_LIST_ENTRY(slab_object) so_link; }; struct slab_heap { void *sh_base; void *sh_last; void *sh_end; int sh_stack; int sh_maxorder; unsigned char **sh_map; LDAP_LIST_HEAD(sh_freelist, slab_object) *sh_free; LDAP_LIST_HEAD(sh_so, slab_object) sh_sopool; }; enum { Align = sizeof(ber_len_t) > 2*sizeof(int) ? sizeof(ber_len_t) : 2*sizeof(int), Align_log2 = 1 + (Align>2) + (Align>4) + (Align>8) + (Align>16), order_start = Align_log2 - 1, pad = Align - 1 }; static struct slab_object * slap_replenish_sopool(struct slab_heap* sh); #ifdef SLAPD_UNUSED static void print_slheap(int level, void *ctx); #endif /* Keep memory context in a thread-local var, or in a global when no threads */ #ifdef NO_THREADS static struct slab_heap *slheap; # define SET_MEMCTX(thrctx, memctx, sfree) ((void) (slheap = (memctx))) # define GET_MEMCTX(thrctx, memctxp) (*(memctxp) = slheap) #else # define memctx_key ((void *) slap_sl_mem_init) # define SET_MEMCTX(thrctx, memctx, kfree) \ ldap_pvt_thread_pool_setkey(thrctx,memctx_key, memctx,kfree, NULL,NULL) # define GET_MEMCTX(thrctx, memctxp) \ ((void) (*(memctxp) = NULL), \ (void) ldap_pvt_thread_pool_getkey(thrctx,memctx_key, memctxp,NULL), \ *(memctxp)) #endif /* NO_THREADS */ /* Destroy the context, or if key==NULL clean it up for reuse. */ void slap_sl_mem_destroy( void *key, void *data ) { struct slab_heap *sh = data; struct slab_object *so; int i; if (!sh) return; if (!sh->sh_stack) { for (i = 0; i <= sh->sh_maxorder - order_start; i++) { so = LDAP_LIST_FIRST(&sh->sh_free[i]); while (so) { struct slab_object *so_tmp = so; so = LDAP_LIST_NEXT(so, so_link); LDAP_LIST_INSERT_HEAD(&sh->sh_sopool, so_tmp, so_link); } ch_free(sh->sh_map[i]); } ch_free(sh->sh_free); ch_free(sh->sh_map); so = LDAP_LIST_FIRST(&sh->sh_sopool); while (so) { struct slab_object *so_tmp = so; so = LDAP_LIST_NEXT(so, so_link); if (!so_tmp->so_blockhead) { LDAP_LIST_REMOVE(so_tmp, so_link); } } so = LDAP_LIST_FIRST(&sh->sh_sopool); while (so) { struct slab_object *so_tmp = so; so = LDAP_LIST_NEXT(so, so_link); ch_free(so_tmp); } } if (key != NULL) { ber_memfree_x(sh->sh_base, NULL); ber_memfree_x(sh, NULL); } } BerMemoryFunctions slap_sl_mfuncs = { slap_sl_malloc, slap_sl_calloc, slap_sl_realloc, slap_sl_free }; void slap_sl_mem_init() { assert( Align == 1 << Align_log2 ); ber_set_option( NULL, LBER_OPT_MEMORY_FNS, &slap_sl_mfuncs ); } /* Create, reset or just return the memory context of the current thread. */ void * slap_sl_mem_create( ber_len_t size, int stack, void *thrctx, int new ) { void *memctx; struct slab_heap *sh; ber_len_t size_shift; struct slab_object *so; char *base, *newptr; enum { Base_offset = (unsigned) -sizeof(ber_len_t) % Align }; sh = GET_MEMCTX(thrctx, &memctx); if ( sh && !new ) return sh; /* Round up to doubleword boundary, then make room for initial * padding, preserving expected available size for pool version */ size = ((size + Align-1) & -Align) + Base_offset; if (!sh) { sh = ch_malloc(sizeof(struct slab_heap)); base = ch_malloc(size); SET_MEMCTX(thrctx, sh, slap_sl_mem_destroy); VGMEMP_MARK(base, size); VGMEMP_CREATE(sh, 0, 0); } else { slap_sl_mem_destroy(NULL, sh); base = sh->sh_base; if (size > (ber_len_t) ((char *) sh->sh_end - base)) { newptr = ch_realloc(base, size); if ( newptr == NULL ) return NULL; VGMEMP_CHANGE(sh, base, newptr, size); base = newptr; } VGMEMP_TRIM(sh, base, 0); } sh->sh_base = base; sh->sh_end = base + size; /* Align (base + head of first block) == first returned block */ base += Base_offset; size -= Base_offset; sh->sh_stack = stack; if (stack) { sh->sh_last = base; } else { int i, order = -1, order_end = -1; size_shift = size - 1; do { order_end++; } while (size_shift >>= 1); order = order_end - order_start + 1; sh->sh_maxorder = order_end; sh->sh_free = (struct sh_freelist *) ch_malloc(order * sizeof(struct sh_freelist)); for (i = 0; i < order; i++) { LDAP_LIST_INIT(&sh->sh_free[i]); } LDAP_LIST_INIT(&sh->sh_sopool); if (LDAP_LIST_EMPTY(&sh->sh_sopool)) { slap_replenish_sopool(sh); } so = LDAP_LIST_FIRST(&sh->sh_sopool); LDAP_LIST_REMOVE(so, so_link); so->so_ptr = base; LDAP_LIST_INSERT_HEAD(&sh->sh_free[order-1], so, so_link); sh->sh_map = (unsigned char **) ch_malloc(order * sizeof(unsigned char *)); for (i = 0; i < order; i++) { int shiftamt = order_start + 1 + i; int nummaps = size >> shiftamt; assert(nummaps); nummaps >>= 3; if (!nummaps) nummaps = 1; sh->sh_map[i] = (unsigned char *) ch_malloc(nummaps); memset(sh->sh_map[i], 0, nummaps); } } return sh; } /* * Assign memory context to thread context. Use NULL to detach * current memory context from thread. Future users must * know the context, since ch_free/slap_sl_context() cannot find it. */ void slap_sl_mem_setctx( void *thrctx, void *memctx ) { SET_MEMCTX(thrctx, memctx, slap_sl_mem_destroy); } void * slap_sl_malloc( ber_len_t size, void *ctx ) { struct slab_heap *sh = ctx; ber_len_t *ptr, *newptr; /* ber_set_option calls us like this */ if (No_sl_malloc || !ctx) { newptr = ber_memalloc_x( size, NULL ); if ( newptr ) return newptr; Debug(LDAP_DEBUG_ANY, "slap_sl_malloc of %lu bytes failed\n", (unsigned long) size ); assert( 0 ); exit( EXIT_FAILURE ); } /* Add room for head, ensure room for tail when freed, and * round up to doubleword boundary. */ size = (size + sizeof(ber_len_t) + Align-1 + !size) & -Align; if (sh->sh_stack) { if (size < (ber_len_t) ((char *) sh->sh_end - (char *) sh->sh_last)) { newptr = sh->sh_last; sh->sh_last = (char *) sh->sh_last + size; VGMEMP_ALLOC(sh, newptr, size); *newptr++ = size; return( (void *)newptr ); } size -= sizeof(ber_len_t); } else { struct slab_object *so_new, *so_left, *so_right; ber_len_t size_shift; unsigned long diff; int i, j, order = -1; size_shift = size - 1; do { order++; } while (size_shift >>= 1); size -= sizeof(ber_len_t); for (i = order; i <= sh->sh_maxorder && LDAP_LIST_EMPTY(&sh->sh_free[i-order_start]); i++); if (i == order) { so_new = LDAP_LIST_FIRST(&sh->sh_free[i-order_start]); LDAP_LIST_REMOVE(so_new, so_link); ptr = so_new->so_ptr; diff = (unsigned long)((char*)ptr - (char*)sh->sh_base) >> (order + 1); sh->sh_map[order-order_start][diff>>3] |= (1 << (diff & 0x7)); *ptr++ = size; LDAP_LIST_INSERT_HEAD(&sh->sh_sopool, so_new, so_link); return((void*)ptr); } else if (i <= sh->sh_maxorder) { for (j = i; j > order; j--) { so_left = LDAP_LIST_FIRST(&sh->sh_free[j-order_start]); LDAP_LIST_REMOVE(so_left, so_link); if (LDAP_LIST_EMPTY(&sh->sh_sopool)) { slap_replenish_sopool(sh); } so_right = LDAP_LIST_FIRST(&sh->sh_sopool); LDAP_LIST_REMOVE(so_right, so_link); so_right->so_ptr = (void *)((char *)so_left->so_ptr + (1 << j)); if (j == order + 1) { ptr = so_left->so_ptr; diff = (unsigned long)((char*)ptr - (char*)sh->sh_base) >> (order+1); sh->sh_map[order-order_start][diff>>3] |= (1 << (diff & 0x7)); *ptr++ = size; LDAP_LIST_INSERT_HEAD( &sh->sh_free[j-1-order_start], so_right, so_link); LDAP_LIST_INSERT_HEAD(&sh->sh_sopool, so_left, so_link); return((void*)ptr); } else { LDAP_LIST_INSERT_HEAD( &sh->sh_free[j-1-order_start], so_right, so_link); LDAP_LIST_INSERT_HEAD( &sh->sh_free[j-1-order_start], so_left, so_link); } } } /* FIXME: missing return; guessing we failed... */ } Debug(LDAP_DEBUG_TRACE, "sl_malloc %lu: ch_malloc\n", (unsigned long) size ); return ch_malloc(size); } #define LIM_SQRT(t) /* some value < sqrt(max value of unsigned type t) */ \ ((0UL|(t)-1) >>31>>31 > 1 ? ((t)1 <<32) - 1 : \ (0UL|(t)-1) >>31 ? 65535U : (0UL|(t)-1) >>15 ? 255U : 15U) void * slap_sl_calloc( ber_len_t n, ber_len_t size, void *ctx ) { void *newptr; ber_len_t total = n * size; /* The sqrt test is a slight optimization: often avoids the division */ if ((n | size) <= LIM_SQRT(ber_len_t) || n == 0 || total/n == size) { newptr = slap_sl_malloc( total, ctx ); memset( newptr, 0, n*size ); } else { Debug(LDAP_DEBUG_ANY, "slap_sl_calloc(%lu,%lu) out of range\n", (unsigned long) n, (unsigned long) size ); assert(0); exit(EXIT_FAILURE); } return newptr; } void * slap_sl_realloc(void *ptr, ber_len_t size, void *ctx) { struct slab_heap *sh = ctx; ber_len_t oldsize, *p = (ber_len_t *) ptr, *nextp; void *newptr; if (ptr == NULL) return slap_sl_malloc(size, ctx); /* Not our memory? */ if (No_sl_malloc || !sh || ptr < sh->sh_base || ptr >= sh->sh_end) { /* Like ch_realloc(), except not trying a new context */ newptr = ber_memrealloc_x(ptr, size, NULL); if (newptr) { return newptr; } Debug(LDAP_DEBUG_ANY, "slap_sl_realloc of %lu bytes failed\n", (unsigned long) size ); assert(0); exit( EXIT_FAILURE ); } if (size == 0) { slap_sl_free(ptr, ctx); return NULL; } oldsize = p[-1]; if (sh->sh_stack) { /* Add room for head, round up to doubleword boundary */ size = (size + sizeof(ber_len_t) + Align-1) & -Align; p--; /* Never shrink blocks */ if (size <= oldsize) { return ptr; } oldsize &= -2; nextp = (ber_len_t *) ((char *) p + oldsize); /* If reallocing the last block, try to grow it */ if (nextp == sh->sh_last) { if (size < (ber_len_t) ((char *) sh->sh_end - (char *) p)) { sh->sh_last = (char *) p + size; p[0] = (p[0] & 1) | size; return ptr; } /* Nowhere to grow, need to alloc and copy */ } else { /* Slight optimization of the final realloc variant */ newptr = slap_sl_malloc(size-sizeof(ber_len_t), ctx); AC_MEMCPY(newptr, ptr, oldsize-sizeof(ber_len_t)); /* Not last block, can just mark old region as free */ nextp[-1] = oldsize; nextp[0] |= 1; return newptr; } size -= sizeof(ber_len_t); oldsize -= sizeof(ber_len_t); } else if (oldsize > size) { oldsize = size; } newptr = slap_sl_malloc(size, ctx); AC_MEMCPY(newptr, ptr, oldsize); slap_sl_free(ptr, ctx); return newptr; } void slap_sl_free(void *ptr, void *ctx) { struct slab_heap *sh = ctx; ber_len_t size; ber_len_t *p = ptr, *nextp, *tmpp; if (!ptr) return; if (No_sl_malloc || !sh || ptr < sh->sh_base || ptr >= sh->sh_end) { ber_memfree_x(ptr, NULL); return; } size = *(--p); if (sh->sh_stack) { size &= -2; nextp = (ber_len_t *) ((char *) p + size); if (sh->sh_last != nextp) { /* Mark it free: tail = size, head of next block |= 1 */ nextp[-1] = size; nextp[0] |= 1; /* We can't tell Valgrind about it yet, because we * still need read/write access to this block for * when we eventually get to reclaim it. */ } else { /* Reclaim freed block(s) off tail */ while (*p & 1) { p = (ber_len_t *) ((char *) p - p[-1]); } sh->sh_last = p; VGMEMP_TRIM(sh, sh->sh_base, (char *) sh->sh_last - (char *) sh->sh_base); } } else { int size_shift, order_size; struct slab_object *so; unsigned long diff; int i, inserted = 0, order = -1; size_shift = size + sizeof(ber_len_t) - 1; do { order++; } while (size_shift >>= 1); for (i = order, tmpp = p; i <= sh->sh_maxorder; i++) { order_size = 1 << (i+1); diff = (unsigned long)((char*)tmpp - (char*)sh->sh_base) >> (i+1); sh->sh_map[i-order_start][diff>>3] &= (~(1 << (diff & 0x7))); if (diff == ((diff>>1)<<1)) { if (!(sh->sh_map[i-order_start][(diff+1)>>3] & (1<<((diff+1)&0x7)))) { so = LDAP_LIST_FIRST(&sh->sh_free[i-order_start]); while (so) { if ((char*)so->so_ptr == (char*)tmpp) { LDAP_LIST_REMOVE( so, so_link ); } else if ((char*)so->so_ptr == (char*)tmpp + order_size) { LDAP_LIST_REMOVE(so, so_link); break; } so = LDAP_LIST_NEXT(so, so_link); } if (so) { if (i < sh->sh_maxorder) { inserted = 1; so->so_ptr = tmpp; LDAP_LIST_INSERT_HEAD(&sh->sh_free[i-order_start+1], so, so_link); } continue; } else { if (LDAP_LIST_EMPTY(&sh->sh_sopool)) { slap_replenish_sopool(sh); } so = LDAP_LIST_FIRST(&sh->sh_sopool); LDAP_LIST_REMOVE(so, so_link); so->so_ptr = tmpp; LDAP_LIST_INSERT_HEAD(&sh->sh_free[i-order_start], so, so_link); break; Debug(LDAP_DEBUG_TRACE, "slap_sl_free: " "free object not found while bit is clear.\n" ); assert(so != NULL); } } else { if (!inserted) { if (LDAP_LIST_EMPTY(&sh->sh_sopool)) { slap_replenish_sopool(sh); } so = LDAP_LIST_FIRST(&sh->sh_sopool); LDAP_LIST_REMOVE(so, so_link); so->so_ptr = tmpp; LDAP_LIST_INSERT_HEAD(&sh->sh_free[i-order_start], so, so_link); } break; } } else { if (!(sh->sh_map[i-order_start][(diff-1)>>3] & (1<<((diff-1)&0x7)))) { so = LDAP_LIST_FIRST(&sh->sh_free[i-order_start]); while (so) { if ((char*)so->so_ptr == (char*)tmpp) { LDAP_LIST_REMOVE(so, so_link); } else if ((char*)tmpp == (char *)so->so_ptr + order_size) { LDAP_LIST_REMOVE(so, so_link); tmpp = so->so_ptr; break; } so = LDAP_LIST_NEXT(so, so_link); } if (so) { if (i < sh->sh_maxorder) { inserted = 1; LDAP_LIST_INSERT_HEAD(&sh->sh_free[i-order_start+1], so, so_link); continue; } } else { if (LDAP_LIST_EMPTY(&sh->sh_sopool)) { slap_replenish_sopool(sh); } so = LDAP_LIST_FIRST(&sh->sh_sopool); LDAP_LIST_REMOVE(so, so_link); so->so_ptr = tmpp; LDAP_LIST_INSERT_HEAD(&sh->sh_free[i-order_start], so, so_link); break; Debug(LDAP_DEBUG_TRACE, "slap_sl_free: " "free object not found while bit is clear.\n" ); assert(so != NULL); } } else { if ( !inserted ) { if (LDAP_LIST_EMPTY(&sh->sh_sopool)) { slap_replenish_sopool(sh); } so = LDAP_LIST_FIRST(&sh->sh_sopool); LDAP_LIST_REMOVE(so, so_link); so->so_ptr = tmpp; LDAP_LIST_INSERT_HEAD(&sh->sh_free[i-order_start], so, so_link); } break; } } } } } void slap_sl_release( void *ptr, void *ctx ) { struct slab_heap *sh = ctx; if ( sh && ptr >= sh->sh_base && ptr <= sh->sh_end ) sh->sh_last = ptr; } void * slap_sl_mark( void *ctx ) { struct slab_heap *sh = ctx; return sh->sh_last; } /* * Return the memory context of the current thread if the given block of * memory belongs to it, otherwise return NULL. */ void * slap_sl_context( void *ptr ) { void *memctx; struct slab_heap *sh; if ( slapMode & SLAP_TOOL_MODE ) return NULL; sh = GET_MEMCTX(ldap_pvt_thread_pool_context(), &memctx); if (sh && ptr >= sh->sh_base && ptr <= sh->sh_end) { return sh; } return NULL; } static struct slab_object * slap_replenish_sopool( struct slab_heap* sh ) { struct slab_object *so_block; int i; so_block = (struct slab_object *)ch_malloc( SLAP_SLAB_SOBLOCK * sizeof(struct slab_object)); if ( so_block == NULL ) { return NULL; } so_block[0].so_blockhead = 1; LDAP_LIST_INSERT_HEAD(&sh->sh_sopool, &so_block[0], so_link); for (i = 1; i < SLAP_SLAB_SOBLOCK; i++) { so_block[i].so_blockhead = 0; LDAP_LIST_INSERT_HEAD(&sh->sh_sopool, &so_block[i], so_link ); } return so_block; } #ifdef SLAPD_UNUSED static void print_slheap(int level, void *ctx) { struct slab_heap *sh = ctx; struct slab_object *so; int i, j, once = 0; if (!ctx) { Debug(level, "NULL memctx\n" ); return; } Debug(level, "sh->sh_maxorder=%d\n", sh->sh_maxorder ); for (i = order_start; i <= sh->sh_maxorder; i++) { once = 0; Debug(level, "order=%d\n", i ); for (j = 0; j < (1<<(sh->sh_maxorder-i))/8; j++) { Debug(level, "%02x ", sh->sh_map[i-order_start][j] ); once = 1; } if (!once) { Debug(level, "%02x ", sh->sh_map[i-order_start][0] ); } Debug(level, "\n" ); Debug(level, "free list:\n" ); so = LDAP_LIST_FIRST(&sh->sh_free[i-order_start]); while (so) { Debug(level, "%p\n", so->so_ptr ); so = LDAP_LIST_NEXT(so, so_link); } } } #endif