/* dn.c - routines for dealing with distinguished names */ /* $OpenLDAP$ */ /* * Copyright 1998-2003 The OpenLDAP Foundation, All Rights Reserved. * COPYING RESTRICTIONS APPLY, see COPYRIGHT file */ #include "portable.h" #include #include #include #include #include #include "ldap_pvt.h" #include "slap.h" #include "lutil.h" /* * The DN syntax-related functions take advantage of the dn representation * handling functions ldap_str2dn/ldap_dn2str. The latter are not schema- * aware, so the attributes and their values need be validated (and possibly * normalized). In the current implementation the required validation/nor- * malization/"pretty"ing are done on newly created DN structural represen- * tations; however the idea is to move towards DN handling in structural * representation instead of the current string representation. To this * purpose, we need to do only the required operations and keep track of * what has been done to minimize their impact on performances. * * Developers are strongly encouraged to use this feature, to speed-up * its stabilization. */ #define AVA_PRIVATE( ava ) ( ( AttributeDescription * )(ava)->la_private ) /* * In-place, schema-aware validation of the * structural representation of a distinguished name. */ static int LDAPDN_validate( LDAPDN *dn ) { int iRDN; int rc; assert( dn ); for ( iRDN = 0; dn[ 0 ][ iRDN ]; iRDN++ ) { LDAPRDN *rdn = dn[ 0 ][ iRDN ]; int iAVA; assert( rdn ); for ( iAVA = 0; rdn[ 0 ][ iAVA ]; iAVA++ ) { LDAPAVA *ava = rdn[ 0 ][ iAVA ]; AttributeDescription *ad; slap_syntax_validate_func *validate = NULL; assert( ava ); if ( ( ad = AVA_PRIVATE( ava ) ) == NULL ) { const char *text = NULL; rc = slap_bv2ad( &ava->la_attr, &ad, &text ); if ( rc != LDAP_SUCCESS ) { return LDAP_INVALID_SYNTAX; } ava->la_private = ( void * )ad; } /* * Replace attr oid/name with the canonical name */ ava->la_attr = ad->ad_cname; validate = ad->ad_type->sat_syntax->ssyn_validate; if ( validate ) { /* * validate value by validate function */ rc = ( *validate )( ad->ad_type->sat_syntax, &ava->la_value ); if ( rc != LDAP_SUCCESS ) { return LDAP_INVALID_SYNTAX; } } } } return LDAP_SUCCESS; } /* * dn validate routine */ int dnValidate( Syntax *syntax, struct berval *in ) { int rc; LDAPDN *dn = NULL; assert( in ); if ( in->bv_len == 0 ) { return LDAP_SUCCESS; } else if ( in->bv_len > SLAP_LDAPDN_MAXLEN ) { return LDAP_INVALID_SYNTAX; } rc = ldap_bv2dn( in, &dn, LDAP_DN_FORMAT_LDAP ); if ( rc != LDAP_SUCCESS ) { return LDAP_INVALID_SYNTAX; } assert( strlen( in->bv_val ) == in->bv_len ); /* * Schema-aware validate */ rc = LDAPDN_validate( dn ); ldap_dnfree( dn ); if ( rc != LDAP_SUCCESS ) { return LDAP_INVALID_SYNTAX; } return LDAP_SUCCESS; } /* * AVA sorting inside a RDN * * rule: sort attributeTypes in alphabetical order; in case of multiple * occurrences of the same attributeType, sort values in byte order * (use memcmp, which implies alphabetical order in case of IA5 value; * this should guarantee the repeatability of the operation). * * Note: the sorting can be slightly improved by sorting first * by attribute type length, then by alphabetical order. * * uses a linear search; should be fine since the number of AVAs in * a RDN should be limited. */ static void AVA_Sort( LDAPRDN *rdn, int iAVA ) { int i; LDAPAVA *ava_in = rdn[ 0 ][ iAVA ]; assert( rdn ); assert( ava_in ); for ( i = 0; i < iAVA; i++ ) { LDAPAVA *ava = rdn[ 0 ][ i ]; int a, j; assert( ava ); a = strcmp( ava_in->la_attr.bv_val, ava->la_attr.bv_val ); if ( a > 0 ) { break; } while ( a == 0 ) { int v, d; d = ava_in->la_value.bv_len - ava->la_value.bv_len; v = memcmp( ava_in->la_value.bv_val, ava->la_value.bv_val, d <= 0 ? ava_in->la_value.bv_len : ava->la_value.bv_len ); if ( v == 0 && d != 0 ) { v = d; } if ( v <= 0 ) { /* * got it! */ break; } if ( ++i == iAVA ) { /* * already sorted */ return; } ava = rdn[ 0 ][ i ]; a = strcmp( ava_in->la_attr.bv_val, ava->la_attr.bv_val ); } /* * move ahead */ for ( j = iAVA; j > i; j-- ) { rdn[ 0 ][ j ] = rdn[ 0 ][ j - 1 ]; } rdn[ 0 ][ i ] = ava_in; return; } } /* * In-place, schema-aware normalization / "pretty"ing of the * structural representation of a distinguished name. */ static int LDAPDN_rewrite( LDAPDN *dn, unsigned flags ) { int iRDN; int rc; assert( dn ); for ( iRDN = 0; dn[ 0 ][ iRDN ]; iRDN++ ) { LDAPRDN *rdn = dn[ 0 ][ iRDN ]; int iAVA; assert( rdn ); for ( iAVA = 0; rdn[ 0 ][ iAVA ]; iAVA++ ) { LDAPAVA *ava = rdn[ 0 ][ iAVA ]; AttributeDescription *ad; slap_syntax_validate_func *validf = NULL; slap_mr_normalize_func *normf = NULL; slap_syntax_transform_func *transf = NULL; MatchingRule *mr = NULL; struct berval bv = { 0, NULL }; int do_sort = 0; assert( ava ); if ( ( ad = AVA_PRIVATE( ava ) ) == NULL ) { const char *text = NULL; rc = slap_bv2ad( &ava->la_attr, &ad, &text ); if ( rc != LDAP_SUCCESS ) { return LDAP_INVALID_SYNTAX; } ava->la_private = ( void * )ad; do_sort = 1; } /* * Replace attr oid/name with the canonical name */ ava->la_attr = ad->ad_cname; if( ava->la_flags & LDAP_AVA_BINARY ) { if( ava->la_value.bv_len == 0 ) { /* BER encoding is empty */ return LDAP_INVALID_SYNTAX; } /* AVA is binary encoded, don't muck with it */ } else if( flags & SLAP_LDAPDN_PRETTY ) { transf = ad->ad_type->sat_syntax->ssyn_pretty; if( !transf ) { validf = ad->ad_type->sat_syntax->ssyn_validate; } } else { /* normalization */ validf = ad->ad_type->sat_syntax->ssyn_validate; mr = ad->ad_type->sat_equality; if( mr ) normf = mr->smr_normalize; } if ( validf ) { /* validate value before normalization */ rc = ( *validf )( ad->ad_type->sat_syntax, ava->la_value.bv_len ? &ava->la_value : (struct berval *) &slap_empty_bv ); if ( rc != LDAP_SUCCESS ) { return LDAP_INVALID_SYNTAX; } } if ( transf ) { /* * transform value by pretty function * if value is empty, use empty_bv */ rc = ( *transf )( ad->ad_type->sat_syntax, ava->la_value.bv_len ? &ava->la_value : (struct berval *) &slap_empty_bv, &bv ); if ( rc != LDAP_SUCCESS ) { return LDAP_INVALID_SYNTAX; } } if ( normf ) { /* * normalize value * if value is empty, use empty_bv */ rc = ( *normf )( 0, ad->ad_type->sat_syntax, mr, ava->la_value.bv_len ? &ava->la_value : (struct berval *) &slap_empty_bv, &bv ); if ( rc != LDAP_SUCCESS ) { return LDAP_INVALID_SYNTAX; } } if( bv.bv_val ) { free( ava->la_value.bv_val ); ava->la_value = bv; } if( do_sort ) AVA_Sort( rdn, iAVA ); } } return LDAP_SUCCESS; } int dnNormalize( slap_mask_t use, Syntax *syntax, MatchingRule *mr, struct berval *val, struct berval *out ) { assert( val ); assert( out ); Debug( LDAP_DEBUG_TRACE, ">>> dnNormalize: <%s>\n", val->bv_val, 0, 0 ); if ( val->bv_len != 0 ) { LDAPDN *dn = NULL; int rc; /* * Go to structural representation */ rc = ldap_bv2dn( val, &dn, LDAP_DN_FORMAT_LDAP ); if ( rc != LDAP_SUCCESS ) { return LDAP_INVALID_SYNTAX; } assert( strlen( val->bv_val ) == val->bv_len ); /* * Schema-aware rewrite */ if ( LDAPDN_rewrite( dn, 0 ) != LDAP_SUCCESS ) { ldap_dnfree( dn ); return LDAP_INVALID_SYNTAX; } /* * Back to string representation */ rc = ldap_dn2bv( dn, out, LDAP_DN_FORMAT_LDAPV3 | LDAP_DN_PRETTY ); ldap_dnfree( dn ); if ( rc != LDAP_SUCCESS ) { return LDAP_INVALID_SYNTAX; } } else { ber_dupbv( out, val ); } Debug( LDAP_DEBUG_TRACE, "<<< dnNormalize: <%s>\n", out->bv_val, 0, 0 ); return LDAP_SUCCESS; } #if 0 /* * dn "pretty"ing routine */ int dnPretty( Syntax *syntax, struct berval *val, struct berval **pretty) { struct berval *out; int rc; assert( pretty && *pretty == NULL ); out = ch_malloc( sizeof( struct berval ) ); rc = dnPretty2( syntax, val, out ); if ( rc != LDAP_SUCCESS ) free( out ); else *pretty = out; return rc; } #endif int dnPretty2( Syntax *syntax, struct berval *val, struct berval *out) { assert( val ); assert( out ); #ifdef NEW_LOGGING LDAP_LOG( OPERATION, ARGS, ">>> dnPretty: <%s>\n", val->bv_val, 0, 0 ); #else Debug( LDAP_DEBUG_TRACE, ">>> dnPretty: <%s>\n", val->bv_val, 0, 0 ); #endif if ( val->bv_len == 0 ) { ber_dupbv( out, val ); } else if ( val->bv_len > SLAP_LDAPDN_MAXLEN ) { return LDAP_INVALID_SYNTAX; } else { LDAPDN *dn = NULL; int rc; /* FIXME: should be liberal in what we accept */ rc = ldap_bv2dn( val, &dn, LDAP_DN_FORMAT_LDAP ); if ( rc != LDAP_SUCCESS ) { return LDAP_INVALID_SYNTAX; } assert( strlen( val->bv_val ) == val->bv_len ); /* * Schema-aware rewrite */ if ( LDAPDN_rewrite( dn, SLAP_LDAPDN_PRETTY ) != LDAP_SUCCESS ) { ldap_dnfree( dn ); return LDAP_INVALID_SYNTAX; } /* FIXME: not sure why the default isn't pretty */ /* RE: the default is the form that is used as * an internal representation; the pretty form * is a variant */ rc = ldap_dn2bv( dn, out, LDAP_DN_FORMAT_LDAPV3 | LDAP_DN_PRETTY ); ldap_dnfree( dn ); if ( rc != LDAP_SUCCESS ) { return LDAP_INVALID_SYNTAX; } } Debug( LDAP_DEBUG_TRACE, "<<< dnPretty: <%s>\n", out->bv_val, 0, 0 ); return LDAP_SUCCESS; } int dnPrettyNormalDN( Syntax *syntax, struct berval *val, LDAPDN **dn, int flags ) { assert( val ); assert( dn ); #ifdef NEW_LOGGING LDAP_LOG( OPERATION, ARGS, ">>> dn%sDN: <%s>\n", flags == SLAP_LDAPDN_PRETTY ? "Pretty" : "Normal", val->bv_val, 0 ); #else Debug( LDAP_DEBUG_TRACE, ">>> dn%sDN: <%s>\n", flags == SLAP_LDAPDN_PRETTY ? "Pretty" : "Normal", val->bv_val, 0 ); #endif if ( val->bv_len == 0 ) { return LDAP_SUCCESS; } else if ( val->bv_len > SLAP_LDAPDN_MAXLEN ) { return LDAP_INVALID_SYNTAX; } else { int rc; /* FIXME: should be liberal in what we accept */ rc = ldap_bv2dn( val, dn, LDAP_DN_FORMAT_LDAP ); if ( rc != LDAP_SUCCESS ) { return LDAP_INVALID_SYNTAX; } assert( strlen( val->bv_val ) == val->bv_len ); /* * Schema-aware rewrite */ if ( LDAPDN_rewrite( *dn, flags ) != LDAP_SUCCESS ) { ldap_dnfree( *dn ); *dn = NULL; return LDAP_INVALID_SYNTAX; } } Debug( LDAP_DEBUG_TRACE, "<<< dn%sDN\n", flags == SLAP_LDAPDN_PRETTY ? "Pretty" : "Normal", 0, 0 ); return LDAP_SUCCESS; } /* * Combination of both dnPretty and dnNormalize */ int dnPrettyNormal( Syntax *syntax, struct berval *val, struct berval *pretty, struct berval *normal) { #ifdef NEW_LOGGING LDAP_LOG ( OPERATION, ENTRY, ">>> dnPrettyNormal: <%s>\n", val->bv_val, 0, 0 ); #else Debug( LDAP_DEBUG_TRACE, ">>> dnPrettyNormal: <%s>\n", val->bv_val, 0, 0 ); #endif assert( val ); assert( pretty ); assert( normal ); if ( val->bv_len == 0 ) { ber_dupbv( pretty, val ); ber_dupbv( normal, val ); } else if ( val->bv_len > SLAP_LDAPDN_MAXLEN ) { /* too big */ return LDAP_INVALID_SYNTAX; } else { LDAPDN *dn = NULL; int rc; pretty->bv_val = NULL; normal->bv_val = NULL; pretty->bv_len = 0; normal->bv_len = 0; /* FIXME: should be liberal in what we accept */ rc = ldap_bv2dn( val, &dn, LDAP_DN_FORMAT_LDAP ); if ( rc != LDAP_SUCCESS ) { return LDAP_INVALID_SYNTAX; } assert( strlen( val->bv_val ) == val->bv_len ); /* * Schema-aware rewrite */ if ( LDAPDN_rewrite( dn, SLAP_LDAPDN_PRETTY ) != LDAP_SUCCESS ) { ldap_dnfree( dn ); return LDAP_INVALID_SYNTAX; } rc = ldap_dn2bv( dn, pretty, LDAP_DN_FORMAT_LDAPV3 | LDAP_DN_PRETTY ); if ( rc != LDAP_SUCCESS ) { ldap_dnfree( dn ); return LDAP_INVALID_SYNTAX; } if ( LDAPDN_rewrite( dn, 0 ) != LDAP_SUCCESS ) { ldap_dnfree( dn ); free( pretty->bv_val ); pretty->bv_val = NULL; pretty->bv_len = 0; return LDAP_INVALID_SYNTAX; } rc = ldap_dn2bv( dn, normal, LDAP_DN_FORMAT_LDAPV3 | LDAP_DN_PRETTY ); ldap_dnfree( dn ); if ( rc != LDAP_SUCCESS ) { free( pretty->bv_val ); pretty->bv_val = NULL; pretty->bv_len = 0; return LDAP_INVALID_SYNTAX; } } #ifdef NEW_LOGGING LDAP_LOG (OPERATION, RESULTS, "<<< dnPrettyNormal: <%s>, <%s>\n", pretty->bv_val, normal->bv_val, 0 ); #else Debug( LDAP_DEBUG_TRACE, "<<< dnPrettyNormal: <%s>, <%s>\n", pretty->bv_val, normal->bv_val, 0 ); #endif return LDAP_SUCCESS; } /* * dnMatch routine */ int dnMatch( int *matchp, slap_mask_t flags, Syntax *syntax, MatchingRule *mr, struct berval *value, void *assertedValue ) { int match; struct berval *asserted = (struct berval *) assertedValue; assert( matchp ); assert( value ); assert( assertedValue ); match = value->bv_len - asserted->bv_len; if ( match == 0 ) { match = memcmp( value->bv_val, asserted->bv_val, value->bv_len ); } #ifdef NEW_LOGGING LDAP_LOG( CONFIG, ENTRY, "dnMatch: %d\n %s\n %s\n", match, value->bv_val, asserted->bv_val ); #else Debug( LDAP_DEBUG_ARGS, "dnMatch %d\n\t\"%s\"\n\t\"%s\"\n", match, value->bv_val, asserted->bv_val ); #endif *matchp = match; return( LDAP_SUCCESS ); } /* * dnParent - dn's parent, in-place * * note: the incoming dn is assumed to be normalized/prettyfied, * so that escaped rdn/ava separators are in '\'+hexpair form */ void dnParent( struct berval *dn, struct berval *pdn ) { char *p; p = strchr( dn->bv_val, ',' ); /* one-level dn */ if ( p == NULL ) { pdn->bv_len = 0; pdn->bv_val = dn->bv_val + dn->bv_len; return; } assert( DN_SEPARATOR( p[ 0 ] ) ); p++; assert( ATTR_LEADCHAR( p[ 0 ] ) ); pdn->bv_val = p; pdn->bv_len = dn->bv_len - (p - dn->bv_val); return; } int dnExtractRdn( struct berval *dn, struct berval *rdn ) { LDAPRDN *tmpRDN; const char *p; int rc; assert( dn ); assert( rdn ); if( dn->bv_len == 0 ) { return LDAP_OTHER; } rc = ldap_bv2rdn( dn, &tmpRDN, (char **)&p, LDAP_DN_FORMAT_LDAP ); if ( rc != LDAP_SUCCESS ) { return rc; } rc = ldap_rdn2bv( tmpRDN, rdn, LDAP_DN_FORMAT_LDAPV3 | LDAP_DN_PRETTY ); ldap_rdnfree( tmpRDN ); if ( rc != LDAP_SUCCESS ) { return rc; } return LDAP_SUCCESS; } /* * We can assume the input is a prettied or normalized DN */ int dn_rdnlen( Backend *be, struct berval *dn_in ) { const char *p; assert( dn_in ); if ( dn_in == NULL ) { return 0; } if ( !dn_in->bv_len ) { return 0; } if ( be != NULL && be_issuffix( be, dn_in ) ) { return 0; } p = strchr( dn_in->bv_val, ',' ); return p ? p - dn_in->bv_val : dn_in->bv_len; } /* rdnValidate: * * LDAP_SUCCESS if rdn is a legal rdn; * LDAP_INVALID_SYNTAX otherwise (including a sequence of rdns) */ int rdnValidate( struct berval *rdn ) { #if 1 /* Major cheat! * input is a pretty or normalized DN * hence, we can just search for ',' */ if( rdn == NULL || rdn->bv_len == 0 || rdn->bv_len > SLAP_LDAPDN_MAXLEN ) { return LDAP_INVALID_SYNTAX; } return strchr( rdn->bv_val, ',' ) == NULL ? LDAP_SUCCESS : LDAP_INVALID_SYNTAX; #else LDAPRDN *RDN, **DN[ 2 ] = { &RDN, NULL }; const char *p; int rc; /* * must be non-empty */ if ( rdn == NULL || rdn == '\0' ) { return 0; } /* * must be parsable */ rc = ldap_bv2rdn( rdn, &RDN, (char **)&p, LDAP_DN_FORMAT_LDAP ); if ( rc != LDAP_SUCCESS ) { return 0; } /* * Must be one-level */ if ( p[ 0 ] != '\0' ) { return 0; } /* * Schema-aware validate */ if ( rc == LDAP_SUCCESS ) { rc = LDAPDN_validate( DN ); } ldap_rdnfree( RDN ); /* * Must validate (there's a repeated parsing ...) */ return ( rc == LDAP_SUCCESS ); #endif } /* build_new_dn: * * Used by ldbm/bdb2 back_modrdn to create the new dn of entries being * renamed. * * new_dn = parent (p_dn) + separator + rdn (newrdn) + null. */ void build_new_dn( struct berval * new_dn, struct berval * parent_dn, struct berval * newrdn ) { char *ptr; if ( parent_dn == NULL ) { ber_dupbv( new_dn, newrdn ); return; } new_dn->bv_len = parent_dn->bv_len + newrdn->bv_len + 1; new_dn->bv_val = (char *) ch_malloc( new_dn->bv_len + 1 ); ptr = lutil_strcopy( new_dn->bv_val, newrdn->bv_val ); *ptr++ = ','; strcpy( ptr, parent_dn->bv_val ); } /* * dnIsSuffix - tells whether suffix is a suffix of dn. * Both dn and suffix must be normalized. */ int dnIsSuffix( const struct berval *dn, const struct berval *suffix ) { int d = dn->bv_len - suffix->bv_len; assert( dn ); assert( suffix ); /* empty suffix matches any dn */ if ( suffix->bv_len == 0 ) { return 1; } /* suffix longer than dn */ if ( d < 0 ) { return 0; } /* no rdn separator or escaped rdn separator */ if ( d > 1 && !DN_SEPARATOR( dn->bv_val[ d - 1 ] ) ) { return 0; } /* no possible match or malformed dn */ if ( d == 1 ) { return 0; } /* compare */ return( strcmp( dn->bv_val + d, suffix->bv_val ) == 0 ); } #ifdef HAVE_TLS /* * Convert an X.509 DN into a normalized LDAP DN */ int dnX509normalize( void *x509_name, struct berval *out ) { /* Invoke the LDAP library's converter with our schema-rewriter */ return ldap_X509dn2bv( x509_name, out, LDAPDN_rewrite, 0 ); } /* * Get the TLS session's peer's DN into a normalized LDAP DN */ int dnX509peerNormalize( void *ssl, struct berval *dn ) { return ldap_pvt_tls_get_peer_dn( ssl, dn, (LDAPDN_rewrite_dummy *)LDAPDN_rewrite, 0 ); } #endif